CS 537: Introduction to Operating Systems (Summer 2017)

University of Wisconsin-Madison
Department of Computer Sciences

Midterm Exam 1
July 7, 2017

3 pm -5 pm

There are twelve (12) total numbered pages with ten (10) questions.

There are many easy questions and a few hard questions in this exam. You may want
to use a easiest-question-first scheduling policy. This will help you to answer most
questions on this exam without getting stuck on a single hard question.

Good luck with your exam!

Please write your FULL NAME and UW ID below.

NAME:

UW ID:

Grading Page

Question | Points Scored | Maximum Points
1 10
2 10
3 10
4 10
5 10
6 10
7 10
8 10
9 10
10 10
Total 100

1. Process: State Transitions
What conditions cause a process to transition between the 3 states shown below?
e.g., If one of the arrows indicates that a process is being descheduled, then you are ex-

pected to write what condition(s) may cause the process to be descheduled. If a particular
state transition doesn’t happen, label it N/A and explain why it doesn’t happen.

Y, L/

BLOCKED

Arrow 1:

Arrow 2:

Arrow 3:

Arrow 4:

Arrow 5:

Arrow 6:

2. System Calls vs Timer Interrupts

The following are the list of events (in no particular order) that may happen when a
system call or a timer interrupt happens while a user process is executing.

R Q2T OB B R PR mo Ao TP

Process A: trap into OS via int $64

Process A: calls read()

Process B: continues execution

OS: return from trap (into B)

OS: handle trap

OS: call switch routine

OS: send read to disk

OS: restore registers(B) from PCB(B)

OS: switch to kernel-stack (B)

OS: save registers(A) to PCB(A)

OS: put A to sleep (i.e. A’s state = blocked)
Hardware:
Hardware:
Hardware:
Hardware:
Hardware:
Hardware:
Hardware:

restore registers(B) from kernel-stack(B)
jump to B’s PC

save registers(A) to kernel-stack(A)
timer interrupt

move to user mode

jump to trap handler

move to kernel mode

What are the events that may happen as per the limited direct execution protocol? Choose
and sort them in order for the following two scenarios. Just write the lower-case letters
for each event in order.

1. Process A switches to B, because it calls read() and blocks.

2. Process A switches to B, because a timer interrupt happens.

3. Context Switch

a. When a context switch happens (e.g. from process A to process B), the hardware
saves the registers(A) to kernel-stack(A) (in a structure called trap frame) and the
OS stores the registers(A) to PCB(A). Similarly, to begin executing process B, the
OS restores registers(B) from the PCB(B) and the hardware restores the registers(B)
from the kernel-stack(B). Why do both the hardware and the OS save/restore the
registers of a process during a context switch?

b. The control flow during a context switch from process A to process B is shown in
the figure below.

(a) How many times during this process does the value of stack pointer (%esp
register) change?

(b) What are the different stacks that the stack pointer points to? You may as-
sume that initially the stack pointer was pointing to process A’s user stack.

User thread of User thread of
Process A Process B

2 %
/

\

Kernel Space > >

Kernel thread of Kernel thread of
Process A Scheduler Process B

4. Basic Scheduling

Assumptions: Processes A, B, and C are CPU-bound (no I/O). There is no overhead
for context switching. In round robin scheduling, when a new process enters the system,
it is placed at the front of the round robin queue.

a. Different scheduling policies have different behaviors. Can you tell them apart by
looking at their schedules only? All policies below are scheduling the same set of
processes. The workload is shown below.

Process | Arrival Time | Service Time
A 0 5
B 1 3
C 2 1

Abbreviations: FIFO - First In First Out, SJF - Shortest Job First, STCF -
Shortest Time to Completion First, RR - Round Robin.

Write the abbreviations of a policy on the side of its corresponding schedule for
the given workload.

Schedule Policy
ABCBBAAAA
AAAAACBBB
ABCABABAA
AAAAABBBC

b. Calculate the schedule, average turn around time and the average response
time for the workload given below under different scheduling policies.

Process | Arrival Time | Service Time
A 0 2
B 1 5
C 2 2
) Schedule Avg. Avg.
Policy (e.g., ABCABC) Turnaround Response
e Time Time
FIFO
SJF
STCF
RR

5. MLFQ

Assumptions:
1. Processes A, B, and C are CPU-bound (no I/0).
2. There is no overhead for context switching.
3. When a new process enters a particular queue, it is placed at the end of the round
robin queue.

Consider a Multi-Level Feedback Queue (MLFQ) Scheduler with 3 queues as shown
below. After a time interval of 10 seconds, all processes are boosted up to the top-
most queue with the highest priority.

queue # | priority | Round Robin time slice
2 2 (highest) 1
1 1 2
0 0 (lowest) 3

The table below gives the details of the workload.

Process | Arrival Time | Service Time
A 0 10
B 3 3
C 5 4

a. Fill the table below with the details of which process will be scheduled for each time
unit and at which priority level. In this table, for each time unit n, write which
process will be scheduled from time n to n + 1. e.g., For the cell with time unit 0,
fill in the name of the process that will be scheduled from time 0 to 1.

Time
O 12345 |6 7|89 |10|11]12|13 |14 |15
Priority 2
Priority 1
Priority 0

b. What is the turn around time and the response time for each of the three processes
in the above schedule? Fill in the values in the table below.

Process | Turnaround Time | Response Time
A
B
C

6. fork, exec, wait!

Assumptions:
1. The 2 programs (parent.c, child.c) are present in a directory named /home/cs537.

2. The programs are compiled from the same directory /home/cs537 as shown below.
$ gee -o parent parent.c -Wall
$ gce -o child child.c -Wall

3. An executable named bad is NOT present anywhere in the computer and hence it’s
an invalid program name.

4. pwd is a valid program which prints the current working directory.
5. The 2 programs compile and execute successfully without any errors/warnings.

6. You may assume that the necessary header files are included even though they are
not shown here.

7. You may assume that fork() always succeeds.

parent.c child.c

int main () { int main() |

printf ("Madras\n"); printf("Madison\n"),

int rc = fork(); }nt rc = fork();

if (rc == 0) { if (rc == 0) {
char =*args[2]; char *myargsﬁZ];)
args[0] = "./child"; myargs[0] = "./bad";
args[1l] = NULL; myargs[1l] = NULL;
execvp (args[0], args); exgcvp(Tyargsﬁo], myargs) ;
prlntf("Bangalore\n" printf (SFO\I'?)
exit (1); myargs[0] = "pwd";

} else if (rc > 0) { exec;vp(myargs[O], myargs) ;
wait (NULL) ; } else if (rc > 0) {

wait (NULL) ;

printf ("Leh\n") ; printf ("NYC\n");

}

return 0;

}

return O;

What is the output when we run ./parent from the directory /home/cs5377

7. Base and Bounds

Consider a machine that uses the base and bounds technique for memory virtual-
ization and a slightly different address space as shown below. Note that the stack is
of fixed size and it immediately follows the code section. The heap starts at the end of
the stack and grows upward. In this configuration, there is only one direction of growth,
towards higher regions of the address space. The figure below is NOT drawn to scale.

—————————————— 8KB
| (free) |
—————————————— 7KB
| n |
| | |
| Heap |
—————————————— 4KB
| Stack |
—————————————— 2KB
| Code |
—————————————— OKB

Parameters:

Size of the virtual address space = 8KB, size of the physical memory = 32KB, base register
= 16KB, and bounds register = TKB. References to any address within the bounds would
be considered legal; references above this value are out of bounds and thus the hardware
would raise an exception.

a. For each virtual address, either write down the physical address it translates
to OR write down that it is a segmentation fault (an out-of-bounds address).

Virtual Address Physical Address (in hex or decimal) OR Seg Fault
0x1000 (decimal: 4096)
0x1CO00 (decimal: 7168)

0x0000 (decimal: 0)
0x2000 (decimal: 8192)
0x0800 (decimal: 2048)

b. For each physical address, write the corresponding virtual address (in hex or deci-
mal), and the logical segment (code, stack, heap) that the virtual address belongs
to.

Physical Address Virtual Address | Segment
0x5800 (decimal: 22KB)
0x4400 (decimal: 17KB)
0x4C00 (decimal: 19KB)

8. Segmentation

Assume a machine that uses segmented virtual memory. There are three segments
namely, code, heap, and stack. Note that the stack and the heap grow towards each other,
and the stack grows towards lower addresses.The top two bits (MSBs) in the virtual
address are used to identify the segment. 00 for code, 01 for heap, and 11 for stack. The
figure below is NOT drawn to scale.

—————————————— 4KB
| Stack |
| | |
| v |
—————————————— 3KB
| (free) |
—————————————— 2KB
| » |
| | |
| Heap I
—————————————— 1KB
| Code |
—————————————— OKB

Parameters:

Size of virtual address space = 4KB, size of physical memory = 8KB,
size of stack segment = 1KB, size of heap segment = 1KB

size of code segment = 1KB.

Assume that the following virtual to physical address translations are valid.

Virtual Address Physical Address
0x064 (decimal: 100) | 0x1064 (decimal: 4196)
0x7D0 (decimal: 2000) | 0x1FDO (decimal: 8144)
0xFAO (decimal: 4000) | 0xOFAO (decimal: 4000)

Find the value(in hex or decimal) of the base & bounds register for the 3 segments.

Segment Base Register Bounds Register
Code
Heap
Stack

10

9. Paging

In this question, we consider address translation in a system with a simple linear page
table (an array of Page Table Entries or PTEs).

Parameters:

e Size of virtual address space = 32KB

e Page size = 4KB

e Size of physical memory = 64KB

Answer the following questions based on the parameters described above.

a. Number of bits needed for the Virtual Page Number (VPN):

b. Number of bits needed for the Physical Frame Number (PFN): ————

c. Number of bits needed for the offset: —————

d. Number of virtual pages in a process’ address space:

e. Number of physical frames in this machine’s physical memory: ———

f. The page table for a process in this machine is given below. The format of the
page table is simple. The high-order (left-most) bit is the VALID bit. If the
bit is 1, the rest of the entry is the PEN. If the bit is 0, the page is not valid.

Page Table (from entry 0 down to the max size)

0x8000000C
0x00000000
0x00000000
0x80000006
0x80000004
0x00000000
0x8000000E
0x80000009

For each virtual address, write down the physical address it translates to OR
write down that it is a segmentation fault (an out-of-bounds address).

Virtual Address

Physical Address (in hex or decimal) OR Seg Fault

0x3F2D (decimal: 16173)

0x1F38 (decimal: 7992)

0x0CE3 (decimal: 3299)

0x5C1F (decimal: 23583)

11

10. TLBs

The following are the sequence of steps that take place during each memory reference.
You may assume that the system uses a linear page table and has a Translation-Lookaside
Buffer (TLB) that is managed by the Operating System.

a. Mark (by circling the correct answer), in the timeline below, which steps are done
by the Operating System (OS) and which are done by the Hardware (HW).

Extract the Virtual Page Number (VPN) from the Virtual Address

HW OS
(VA)
Check if the TLB holds the translation for this VPN HW OS
On a TLB hit, extract the Page Frame Number (PFN) from the

HW OS
relevent TLB entry
Concatenate the PFN with the offset from the original VA and form the HW 0S
Physical Address (PA)
Access the memory location corresponding to the PA HW 0OS
On a TLB miss, raise a TLB miss exception HW 0OS
Run the TLB miss trap handler HW OS
Check Page Table (PT) for Page Table Entry (PTE) HW | OS
Extract the PFN from the PTE HW 0S
Update the TLB using special privileged instructions HW 0OS
Return from trap HW 0OS
Retry the current instruction HW 0OS

b. When a context switch happens on a system with a TLB (assuming the TLB only
has a valid bit, VPN, and PFN fields), then the contents of the TLB become invalid
for the next process that is about to run.

i. What support does the OS provide for context switching to work with TLBs?

ii. What support does the hardware provide for context switching to work with
TLBs?

12

