
Chapter 5

Scheduling

Any operating system is likely to run with more processes than the computer has
processors, and so a plan is needed to time-share the processors among the processes.
Ideally the sharing would be transparent to user processes. A common approach is to
provide each process with the illusion that it has its own virtual processor by multi-

plexing the processes onto the hardware processors. This chapter explains how xv6
achieves this multiplexing.

Multiplexing

Xv6 multiplexes by switching each processor from one process to another in two
situations. First, xv6’s sleep and wakeup mechanism switches when a process waits for
device or pipe I/O to complete, or waits for a child to exit, or waits in the sleep sys-
tem call. Second, xv6 periodically forces a switch when a process is executing user in-
structions. This multiplexing creates the illusion that each process has its own CPU,
just as xv6 uses the memory allocator and hardware page tables to create the illusion
that each process has its own memory.

Implementing multiplexing poses a few challenges. First, how to switch from one
process to another? Xv6 uses the standard mechanism of context switching; although
the idea is simple, the implementation is some of the most opaque code in the system.
Second, how to do context switching transparently? Xv6 uses the standard technique
of using the timer interrupt handler to drive context switches. Third, many CPUs may
be switching among processes concurrently, and a locking plan is necessary to avoid
races. Fourth, when a process has exited its memory and other resources must be
freed, but it cannot do all of this itself because (for example) it can’t free its own ker-
nel stack while still using it. Xv6 tries to solve these problems as simply as possible,
but nevertheless the resulting code is tricky.

xv6 must provide ways for processes to coordinate among themselves. For exam-
ple, a parent process may need to wait for one of its children to exit, or a process
reading a pipe may need to wait for some other process to write the pipe. Rather than
make the waiting process waste CPU by repeatedly checking whether the desired event
has happened, xv6 allows a process to give up the CPU and sleep waiting for an event,
and allows another process to wake the first process up. Care is needed to avoid races
that result in the loss of event notifications. As an example of these problems and
their solution, this chapter examines the implementation of pipes.

Code: Context switching

Figure 5-1 outlines the steps involved in switching from one user process to an-

DRAFT as of September 5, 2016 59 https://pdos.csail.mit.edu/6.828/xv6

multiplexing

Kernel

shell cat

user

space

kernel

space
kstack

shell

kstack

cat

kstack

scheduler

save
restoreswtch swtch

Figure 5-1. Switching from one user process to another. In this example, xv6 runs with one CPU (and

thus one scheduler thread).

other: a user-kernel transition (system call or interrupt) to the old process’s kernel
thread, a context switch to the local CPU’s scheduler thread, a context switch to a new
process’s kernel thread, and a trap return to the user-level process. Xv6 uses two con-
text switches because the scheduler runs on its own stack in order to simplify cleaning
up user processes, as we will see when discussing the code for exit and kill. In this
section we’ll examine the mechanics of switching between a kernel thread and a sched-
uler thread.

Every xv6 process has its own kernel stack and register set, as we saw in Chapter
2. Each CPU has a separate scheduler thread for use when it is executing the sched-
uler rather than any process’s kernel thread. Switching from one thread to another in-
volves saving the old thread’s CPU registers, and restoring the previously-saved regis-
ters of the new thread; the fact that %esp and %eip are saved and restored means that
the CPU will switch stacks and switch what code it is executing.

swtch doesn’t directly know about threads; it just saves and restores register sets,
called contexts. When it is time for a process to give up the CPU, the process’s kernel
thread calls swtch to save its own context and return to the scheduler context. Each
context is represented by a struct context*, a pointer to a structure stored on the
kernel stack involved. Swtch takes two arguments: struct context **old and
struct context *new. It pushes the current CPU register onto the stack and saves the
stack pointer in *old. Then swtch copies new to %esp, pops previously saved regis-
ters, and returns.

Let’s follow the initial user process through swtch into the scheduler. We saw in
Chapter 3 that one possibility at the end of each interrupt is that trap calls yield.
Yield in turn calls sched, which calls swtch to save the current context in proc-

>context and switch to the scheduler context previously saved in cpu->scheduler

(2771).
Swtch (2952) starts by copying its arguments from the stack to the caller-saved reg-

isters %eax and %edx (2959-2960); swtch must do this before it changes the stack pointer
and can no longer access the arguments via %esp. Then swtch pushes the register
state, creating a context structure on the current stack. Only the callee-saved registers

DRAFT as of September 5, 2016 60 https://pdos.csail.mit.edu/6.828/xv6

swtch+code
contexts
struct context+code
trap+code
yield+code
sched+code
swtch+code
cpu-

>scheduler+code
swtch+code

need to be saved; the convention on the x86 is that these are %ebp, %ebx, %esi,

%edi, and %esp. Swtch pushes the first four explicitly (2963-2966); it saves the last im-
plicitly as the struct context* written to *old (2969). There is one more important
register: the program counter %eip. It has already been saved on the stack by the
call instruction that invoked swtch. Having saved the old context, swtch is ready to
restore the new one. It moves the pointer to the new context into the stack pointer
(2970). The new stack has the same form as the old one that swtch just left—the new
stack was the old one in a previous call to swtch—so swtch can invert the sequence
to restore the new context. It pops the values for %edi, %esi, %ebx, and %ebp and
then returns (2973-2977). Because swtch has changed the stack pointer, the values re-
stored and the instruction address returned to are the ones from the new context.

In our example, sched called swtch to switch to cpu->scheduler, the per-CPU
scheduler context. That context had been saved by scheduler’s call to swtch (2728).
When the swtch we have been tracing returns, it returns not to sched but to sched-

uler, and its stack pointer points at the current CPU’s scheduler stack, not initproc’s
kernel stack.

Code: Scheduling

The last section looked at the low-level details of swtch; now let’s take swtch as a
given and examine the conventions involved in switching from process to scheduler
and back to process. A process that wants to give up the CPU must acquire the pro-
cess table lock ptable.lock, release any other locks it is holding, update its own state
(proc->state), and then call sched. Yield (2777) follows this convention, as do sleep

and exit, which we will examine later. Sched double-checks those conditions (2762-

2767) and then an implication of those conditions: since a lock is held, the CPU should
be running with interrupts disabled. Finally, sched calls swtch to save the current
context in proc->context and switch to the scheduler context in cpu->scheduler.
Swtch returns on the scheduler’s stack as though scheduler’s swtch had returned
(2728). The scheduler continues the for loop, finds a process to run, switches to it, and
the cycle repeats.

We just saw that xv6 holds ptable.lock across calls to swtch: the caller of
swtch must already hold the lock, and control of the lock passes to the switched-to
code. This convention is unusual with locks; usually the thread that acquires a lock is
also responsible for releasing the lock, which makes it easier to reason about correct-
ness. For context switching it is necessary to break this convention because pt-

able.lock protects invariants on the process’s state and context fields that are not
true while executing in swtch. One example of a problem that could arise if pt-

able.lock were not held during swtch: a different CPU might decide to run the pro-
cess after yield had set its state to RUNNABLE, but before swtch caused it to stop using
its own kernel stack. The result would be two CPUs running on the same stack, which
cannot be right.

A kernel thread always gives up its processor in sched and always switches to the
same location in the scheduler, which (almost) always switches to some kernel thread
that previously called sched. Thus, if one were to print out the line numbers where

DRAFT as of September 5, 2016 61 https://pdos.csail.mit.edu/6.828/xv6

swtch+code
sched+code
swtch+code
cpu-

>scheduler+code
swtch+code
scheduler+code
swtch+code
ptable.lock+code
sched+code
sleep+code
exit+code
sched+code
swtch+code
cpu-

>scheduler+code
scheduler+code
ptable.lock+code
swtch+code
ptable.lock+code
swtch+code
yield+code

xv6 switches threads, one would observe the following simple pattern: (2728), (2771),
(2728), (2771), and so on. The procedures in which this stylized switching between two
threads happens are sometimes referred to as coroutines; in this example, sched and
scheduler are co-routines of each other.

There is one case when the scheduler’s call to swtch does not end up in sched.
We saw this case in Chapter 2: when a new process is first scheduled, it begins at
forkret (2788). Forkret exists to release the ptable.lock; otherwise, the new process
could start at trapret.

Scheduler (2708) runs a simple loop: find a process to run, run it until it stops,
repeat. scheduler holds ptable.lock for most of its actions, but releases the lock
(and explicitly enables interrupts) once in each iteration of its outer loop. This is im-
portant for the special case in which this CPU is idle (can find no RUNNABLE process).
If an idling scheduler looped with the lock continuously held, no other CPU that was
running a process could ever perform a context switch or any process-related system
call, and in particular could never mark a process as RUNNABLE so as to break the
idling CPU out of its scheduling loop. The reason to enable interrupts periodically on
an idling CPU is that there might be no RUNNABLE process because processes (e.g., the
shell) are waiting for I/O; if the scheduler left interrupts disabled all the time, the I/O
would never arrive.

The scheduler loops over the process table looking for a runnable process, one
that has p->state == RUNNABLE. Once it finds a process, it sets the per-CPU current
process variable proc, switches to the process’s page table with switchuvm, marks the
process as RUNNING, and then calls swtch to start running it (2722-2728).

One way to think about the structure of the scheduling code is that it arranges to
enforce a set of invariants about each process, and holds ptable.lock whenever those
invariants are not true. One invariant is that if a process is RUNNING, a timer inter-
rupt’s yield must be able to switch away from the process; this means that the CPU
registers must hold the process’s register values (i.e. they aren’t actually in a context),
%cr3 must refer to the process’s pagetable, %esp must refer to the process’s kernel stack
so that swtch can push registers correctly, and proc must refer to the process’s proc[]
slot. Another invariant is that if a process is RUNNABLE, an idle CPU’s scheduler

must be able to run it; this means that p->context must hold the process’s kernel
thread variables, that no CPU is executing on the process’s kernel stack, that no CPU’s
%cr3 refers to the process’s page table, and that no CPU’s proc refers to the process.

Maintaining the above invariants is the reason why xv6 acquires ptable.lock in
one thread (often in yield) and releases the lock in a different thread (the scheduler
thread or another next kernel thread). Once the code has started to modify a running
process’s state to make it RUNNABLE, it must hold the lock until it has finished restoring
the invariants: the earliest correct release point is after scheduler stops using the pro-
cess’s page table and clears proc. Similarly, once scheduler starts to convert a
runnable process to RUNNING, the lock cannot be released until the kernel thread is
completely running (after the swtch, e.g. in yield).

ptable.lock protects other things as well: allocation of process IDs and free
process table slots, the interplay between exit and wait, the machinery to avoid lost
wakeups (see next section), and probably other things too. It might be worth thinking

DRAFT as of September 5, 2016 62 https://pdos.csail.mit.edu/6.828/xv6

coroutines
sched+code
scheduler+code
swtch+code
sched+code
forkret+code
ptable.lock+code
scheduler+code
ptable.lock+code
RUNNABLE+code
switchuvm+code
swtch+code
ptable.lock+code
yield+code
RUNNABLE+code
scheduler+code
p->context+code
ptable.lock+code
ptable.lock+code
exit+code
wait+code

about whether the different functions of ptable.lock could be split up, certainly for
clarity and perhaps for performance.

Sleep and wakeup

Scheduling and locks help conceal the existence of one process from another, but
so far we have no abstractions that help processes intentionally interact. Sleep and
wakeup fill that void, allowing one process to sleep waiting for an event and another
process to wake it up once the event has happened. Sleep and wakeup are often called
sequence coordination or conditional synchronization mechanisms, and there
are many other similar mechanisms in the operating systems literature.

To illustrate what we mean, let’s consider a simple producer/consumer queue.
This queue is similar to the one that feeds commands from processes to the IDE driv-
er (see Chapter 3), but abstracts away all IDE-specific code. The queue allows one
process to send a nonzero pointer to another process. If there were only one sender
and one receiver, and they executed on different CPUs, and the compiler didn’t opti-
mize too agressively, this implementation would be correct:

100 struct q {

101 void *ptr;

102 };

103

104 void*

105 send(struct q *q, void *p)

106 {

107 while(q->ptr != 0)

108 ;

109 q->ptr = p;

110 }

111

112 void*

113 recv(struct q *q)

114 {

115 void *p;

116

117 while((p = q->ptr) == 0)

118 ;

119 q->ptr = 0;

120 return p;

121 }

Send loops until the queue is empty (ptr == 0) and then puts the pointer p in the
queue. Recv loops until the queue is non-empty and takes the pointer out. When run
in different processes, send and recv both modify q->ptr, but send only writes the
pointer when it is zero and recv only writes the pointer when it is nonzero, so no up-
dates are lost.

The implementation above is expensive. If the sender sends rarely, the receiver
will spend most of its time spinning in the while loop hoping for a pointer. The re-
ceiver’s CPU could find more productive work than busy waiting by repeatedly
polling q->ptr. Avoiding busy waiting requires a way for the receiver to yield the

DRAFT as of September 5, 2016 63 https://pdos.csail.mit.edu/6.828/xv6

sequence
coordination

conditional
synchronization

busy waiting
polling

recv

send

206 207

216

Time

sleep

wakeup

wait for wakeup forever
215

test

store p

204

test

205

spin forever

Figure 5-2. Example lost wakeup problem

CPU and resume only when send delivers a pointer.
Let’s imagine a pair of calls, sleep and wakeup, that work as follows.

Sleep(chan) sleeps on the arbitrary value chan, called the wait channel. Sleep puts
the calling process to sleep, releasing the CPU for other work. Wakeup(chan) wakes
all processes sleeping on chan (if any), causing their sleep calls to return. If no pro-
cesses are waiting on chan, wakeup does nothing. We can change the queue imple-
mentation to use sleep and wakeup:

201 void*

202 send(struct q *q, void *p)

203 {

204 while(q->ptr != 0)

205 ;

206 q->ptr = p;

207 wakeup(q); /* wake recv */

208 }

209

210 void*

211 recv(struct q *q)

212 {

213 void *p;

214

215 while((p = q->ptr) == 0)

216 sleep(q);

217 q->ptr = 0;

218 return p;

219 }

Recv now gives up the CPU instead of spinning, which is nice. However, it turns
out not to be straightforward to design sleep and wakeup with this interface without
suffering from what is known as the ‘‘lost wake-up’’ problem (see Figure 5-2). Suppose
that recv finds that q->ptr == 0 on line 215. While recv is between lines 215 and
216, send runs on another CPU: it changes q->ptr to be nonzero and calls wakeup,
which finds no processes sleeping and thus does nothing. Now recv continues execut-
ing at line 216: it calls sleep and goes to sleep. This causes a problem: recv is
asleep waiting for a pointer that has already arrived. The next send will wait for recv
to consume the pointer in the queue, at which point the system will be deadlocked.

DRAFT as of September 5, 2016 64 https://pdos.csail.mit.edu/6.828/xv6

sleep+code
wakeup+code
chan+code
wait channel
deadlocked

The root of this problem is that the invariant that recv only sleeps when q->ptr

== 0 is violated by send running at just the wrong moment. One incorrect way of
protecting the invariant would be to modify the code for recv as follows:

300 struct q {

301 struct spinlock lock;

302 void *ptr;

303 };

304

305 void*

306 send(struct q *q, void *p)

307 {

308 acquire(&q->lock);

309 while(q->ptr != 0)

310 ;

311 q->ptr = p;

312 wakeup(q);

313 release(&q->lock);

314 }

315

316 void*

317 recv(struct q *q)

318 {

319 void *p;

320

321 acquire(&q->lock);

322 while((p = q->ptr) == 0)

323 sleep(q);

324 q->ptr = 0;

325 release(&q->lock);

326 return p;

327 }

One might hope that this version of recv would avoid the lost wakeup because the
lock prevents send from executing between lines 322 and 323. It does that, but it also
deadlocks: recv holds the lock while it sleeps, so the sender will block forever waiting
for the lock.

We’ll fix the preceding scheme by changing sleep’s interface: the caller must pass
the lock to sleep so it can release the lock after the calling process is marked as
asleep and waiting on the sleep channel. The lock will force a concurrent send to wait
until the receiver has finished putting itself to sleep, so that the wakeup will find the
sleeping receiver and wake it up. Once the receiver is awake again sleep reacquires
the lock before returning. Our new correct scheme is useable as follows:

400 struct q {

401 struct spinlock lock;

402 void *ptr;

403 };

404

405 void*

406 send(struct q *q, void *p)

407 {

408 acquire(&q->lock);

DRAFT as of September 5, 2016 65 https://pdos.csail.mit.edu/6.828/xv6

sleep+code

409 while(q->ptr != 0)

410 ;

411 q->ptr = p;

412 wakeup(q);

413 release(&q->lock);

414 }

415

416 void*

417 recv(struct q *q)

418 {

419 void *p;

420

421 acquire(&q->lock);

422 while((p = q->ptr) == 0)

423 sleep(q, &q->lock);

424 q->ptr = 0;

425 release(&q->lock);

426 return p;

427 }

The fact that recv holds q->lock prevents send from trying to wake it up be-
tween recv’s check of q->ptr and its call to sleep. We need sleep to atomically re-
lease q->lock and put the receiving process to sleep.

A complete sender/receiver implementation would also sleep in send when wait-
ing for a receiver to consume the value from a previous send.

Code: Sleep and wakeup

Let’s look at the implementation of sleep (2809) and wakeup (2853). The basic idea
is to have sleep mark the current process as SLEEPING and then call sched to release
the processor; wakeup looks for a process sleeping on the given wait channel and
marks it as RUNNABLE. Callers of sleep and wakeup can use any mutually convenient
number as the channel. Xv6 often uses the address of a kernel data structure involved
in the waiting.

Sleep (2809) begins with a few sanity checks: there must be a current process
(2811) and sleep must have been passed a lock (2814-2815). Then sleep acquires pt-

able.lock (2824). Now the process going to sleep holds both ptable.lock and lk.
Holding lk was necessary in the caller (in the example, recv): it ensured that no other
process (in the example, one running send) could start a call to wakeup(chan). Now
that sleep holds ptable.lock, it is safe to release lk: some other process may start a
call to wakeup(chan), but wakeup will not run until it can acquire ptable.lock, so it
must wait until sleep has finished putting the process to sleep, keeping the wakeup

from missing the sleep.
There is a minor complication: if lk is equal to &ptable.lock, then sleep would

deadlock trying to acquire it as &ptable.lock and then release it as lk. In this case,
sleep considers the acquire and release to cancel each other out and skips them en-
tirely (2823). For example, wait (2864) calls sleep with &ptable.lock.

Now that sleep holds ptable.lock and no others, it can put the process to sleep
by recording the sleep channel, changing the process state, and calling sched (2829-2831).

DRAFT as of September 5, 2016 66 https://pdos.csail.mit.edu/6.828/xv6

sleep+code
wakeup+code
SLEEPING+code
sched+code
RUNNABLE+code
ptable.lock+code
wakeup+code
ptable.lock+code

At some point later, a process will call wakeup(chan). Wakeup (2864) acquires pt-
able.lock and calls wakeup1, which does the real work. It is important that wakeup
hold the ptable.lock both because it is manipulating process states and because, as
we just saw, ptable.lock makes sure that sleep and wakeup do not miss each other.
Wakeup1 is a separate function because sometimes the scheduler needs to execute a
wakeup when it already holds the ptable.lock; we will see an example of this later.
Wakeup1 (2853) loops over the process table. When it finds a process in state SLEEPING
with a matching chan, it changes that process’s state to RUNNABLE. The next time the
scheduler runs, it will see that the process is ready to be run.

Wakeup must always be called while holding a lock that guards whatever the
wakeup condition is; in the example above that lock is q->lock. The complete argu-
ment for why the sleeping process won’t miss a wakeup is that at all times from before
it checks the condition until after it is asleep, it holds either the lock on the condition
or the ptable.lock or both. Since wakeup executes while holding both of those
locks, the wakeup must execute either before the potential sleeper checks the
condition, or after the potential sleeper has completed putting itself to sleep.

It is sometimes the case that multiple processes are sleeping on the same channel;
for example, more than one process reading from a pipe. A single call to wakeup will
wake them all up. One of them will run first and acquire the lock that sleep was
called with, and (in the case of pipes) read whatever data is waiting in the pipe. The
other processes will find that, despite being woken up, there is no data to be read.
From their point of view the wakeup was ‘‘spurious,’’ and they must sleep again. For
this reason sleep is always called inside a loop that checks the condition.

No harm is done if two uses of sleep/wakeup accidentally choose the same chan-
nel: they will see spurious wakeups, but looping as described above will tolerate this
problem. Much of the charm of sleep/wakeup is that it is both lightweight (no need to
create special data structures to act as sleep channels) and provides a layer of indirec-
tion (callers need not know which specific process they are interacting with).

Code: Pipes

The simple queue we used earlier in this chapter was a toy, but xv6 contains two real
queues that use sleep and wakeup to synchronize readers and writers. One is in the
IDE driver: a process adds a disk request to a queue and then calls sleep. The IDE
interrupt handler uses wakeup to alert the process that its request has completed.

A more complex example is the implementation of pipes. We saw the interface
for pipes in Chapter 0: bytes written to one end of a pipe are copied in an in-kernel
buffer and then can be read out of the other end of the pipe. Future chapters will ex-
amine the file descriptor support surrounding pipes, but let’s look now at the imple-
mentations of pipewrite and piperead.

Each pipe is represented by a struct pipe, which contains a lock and a data

buffer. The fields nread and nwrite count the number of bytes read from and written
to the buffer. The buffer wraps around: the next byte written after buf[PIPESIZE-1]
is buf[0]. The counts do not wrap. This convention lets the implementation distin-
guish a full buffer (nwrite == nread+PIPESIZE) from an empty buffer (nwrite ==

DRAFT as of September 5, 2016 67 https://pdos.csail.mit.edu/6.828/xv6

ptable.lock+code
wakeup1+code
wakeup+code
SLEEPING+code
chan+code
RUNNABLE+code
pipewrite+code
piperead+code
struct pipe+code

nread), but it means that indexing into the buffer must use buf[nread % PIPESIZE]

instead of just buf[nread] (and similarly for nwrite). Let’s suppose that calls to
piperead and pipewrite happen simultaneously on two different CPUs.

Pipewrite (6530) begins by acquiring the pipe’s lock, which protects the counts,
the data, and their associated invariants. Piperead (6551) then tries to acquire the lock
too, but cannot. It spins in acquire (1574) waiting for the lock. While piperead waits,
pipewrite loops over the bytes being written—addr[0], addr[1], ..., addr[n-

1]—adding each to the pipe in turn (6544). During this loop, it could happen that the
buffer fills (6536). In this case, pipewrite calls wakeup to alert any sleeping readers to
the fact that there is data waiting in the buffer and then sleeps on &p->nwrite to wait
for a reader to take some bytes out of the buffer. Sleep releases p->lock as part of
putting pipewrite’s process to sleep.

Now that p->lock is available, piperead manages to acquire it and enters its crit-
ical section: it finds that p->nread != p->nwrite (6556) (pipewrite went to sleep be-
cause p->nwrite == p->nread+PIPESIZE (6536)) so it falls through to the for loop,
copies data out of the pipe (6563-6567), and increments nread by the number of bytes
copied. That many bytes are now available for writing, so piperead calls wakeup (6568)

to wake any sleeping writers before it returns to its caller. Wakeup finds a process
sleeping on &p->nwrite, the process that was running pipewrite but stopped when
the buffer filled. It marks that process as RUNNABLE.

The pipe code uses separate sleep channels for reader and writer (p->nread and
p->nwrite); this might make the system more efficient in the unlikely event that there
are lots of readers and writers waiting for the same pipe. The pipe code sleeps inside
a loop checking the sleep condition; if there are multiple readers or writers, all but the
first process to wake up will see the condition is still false and sleep again.

Code: Wait, exit, and kill

Sleep and wakeup can be used for many kinds of waiting. An interesting example,
seen in Chapter 0, is the wait system call that a parent process uses to wait for a child
to exit. When a child exits, it does not die immediately. Instead, it switches to the
ZOMBIE process state until the parent calls wait to learn of the exit. The parent is
then responsible for freeing the memory associated with the process and preparing the
struct proc for reuse. If the parent exits before the child, the init process adopts
the child and waits for it, so that every child has a parent to clean up after it.

An implementation challenge is the possibility of races between parent and child
wait and exit, as well as exit and exit. Wait begins by acquiring ptable.lock.
Then it scans the process table looking for children. If wait finds that the current
process has children but that none have exited, it calls sleep to wait for one of them
to exit (2689) and scans again. Here, the lock being released in sleep is ptable.lock,
the special case we saw above.

Exit acquires ptable.lock and then wakes up any process sleeping on a wait
channel equal to the current process’s parent proc (2628); if there is such a process, it
will be the parent in wait. This may look premature, since exit has not marked the
current process as a ZOMBIE yet, but it is safe: although wakeup may mark the parent

DRAFT as of September 5, 2016 68 https://pdos.csail.mit.edu/6.828/xv6

RUNNABLE+code
wait+code
ZOMBIE+code
struct proc+code
exit+code

as RUNNABLE, the loop in wait cannot run until exit releases ptable.lock by calling
sched to enter the scheduler, so wait can’t look at the exiting process until after exit
has set its state to ZOMBIE (2640). Before exit reschedules, it reparents all of the exiting
process’s children, passing them to the initproc (2630-2637). Finally, exit calls sched
to relinquish the CPU.

If the parent process was sleeping in wait, the scheduler will eventually run it.
The call to sleep returns holding ptable.lock; wait rescans the process table and
finds the exited child with state == ZOMBIE. (2634). It records the child’s pid and then
cleans up the struct proc, freeing the memory associated with the process (2668-2675).

The child process could have done most of the cleanup during exit, but it is im-
portant that the parent process be the one to free p->kstack and p->pgdir: when the
child runs exit, its stack sits in the memory allocated as p->kstack and it uses its
own pagetable. They can only be freed after the child process has finished running for
the last time by calling swtch (via sched). This is one reason that the scheduler proce-
dure runs on its own stack rather than on the stack of the thread that called sched.

While exit allows a process to terminate itself, kill (2875) lets one process re-
quest that another be terminated. It would be too complex for kill to directly de-
stroy the victim process, since the victim might be executing on another CPU or sleep-
ing while midway through updating kernel data structures. To address these chal-
lenges, kill does very little: it just sets the victim’s p->killed and, if it is sleeping,
wakes it up. Eventually the victim will enter or leave the kernel, at which point code
in trap will call exit if p->killed is set. If the victim is running in user space, it
will soon enter the kernel by making a system call or because the timer (or some other
device) interrupts.

If the victim process is in sleep, the call to wakeup will cause the victim process
to return from sleep. This is potentially dangerous because the condition being wait-
ing for may not be true. However, xv6 calls to sleep are always wrapped in a while

loop that re-tests the condition after sleep returns. Some calls to sleep also test p-
>killed in the loop, and abandon the current activity if it is set. This is only done
when such abandonment would be correct. For example, the pipe read and write code
(6537) returns if the killed flag is set; eventually the code will return back to trap, which
will again check the flag and exit.

Some xv6 sleep loops do not check p->killed because the code is in the middle
of a multi-step system call that should be atomic. The IDE driver (4279) is an example:
it does not check p->killed because a disk operation may be one of a set of writes
that are all needed in order for the file system to be left in a correct state. To avoid
the complication of cleaning up after a partial operation, xv6 delays the killing of a
process that is in the IDE driver until some point later when it is easy to kill the pro-
cess (e.g., when the complete file system operation has completed and the process is
about to return to user space).

Real world

The xv6 scheduler implements a simple scheduling policy, which runs each pro-
cess in turn. This policy is called round robin. Real operating systems implement

DRAFT as of September 5, 2016 69 https://pdos.csail.mit.edu/6.828/xv6

sched+code
p->kstack+code
p->pgdir+code
swtch+code
round robin

more sophisticated policies that, for example, allow processes to have priorities. The
idea is that a runnable high-priority process will be preferred by the scheduler over a
runnable low-priority thread. These policies can become complex quickly because
there are often competing goals: for example, the operating might also want to guaran-
tee fairness and high-throughput. In addition, complex policies may lead to unintend-
ed interactions such as priority inversion and convoys. Priority inversion can
happen when a low-priority and high-priority process share a lock, which when ac-
quired by the low-priority process can cause the high-priority process to not run. A
long convoy can form when many high-priority processes are waiting for a low-priori-
ty process that acquires a shared lock; once a convoy has formed they can persist for
long period of time. To avoid these kinds of problems additional mechanisms are nec-
essary in sophisticated schedulers.

Sleep and wakeup are a simple and effective synchronization method, but there
are many others. The first challenge in all of them is to avoid the ‘‘missed wakeups’’
problem we saw at the beginning of the chapter. The original Unix kernel’s sleep

simply disabled interrupts, which sufficed because Unix ran on a single-CPU system.
Because xv6 runs on multiprocessors, it adds an explicit lock to sleep. FreeBSD’s
msleep takes the same approach. Plan 9’s sleep uses a callback function that runs
with the scheduling lock held just before going to sleep; the function serves as a last
minute check of the sleep condition, to avoid missed wakeups. The Linux kernel’s
sleep uses an explicit process queue instead of a wait channel; the queue has its own
internal lock.

Scanning the entire process list in wakeup for processes with a matching chan is
inefficient. A better solution is to replace the chan in both sleep and wakeup with a
data structure that holds a list of processes sleeping on that structure. Plan 9’s sleep
and wakeup call that structure a rendezvous point or Rendez. Many thread libraries re-
fer to the same structure as a condition variable; in that context, the operations sleep
and wakeup are called wait and signal. All of these mechanisms share the same fla-
vor: the sleep condition is protected by some kind of lock dropped atomically during
sleep.

The implementation of wakeup wakes up all processes that are waiting on a par-
ticular channel, and it might be the case that many processes are waiting for that par-
ticular channel. The operating system will schedule all these processes and they will
race to check the sleep condition. Processes that behave in this way are sometimes
called a thundering herd, and it is best avoided. Most condition variables have two
primitives for wakeup: signal, which wakes up one process, and broadcast, which
wakes up all processes waiting.

Semaphores are another common coordination mechanism. A semaphore is an
integer value with two operations, increment and decrement (or up and down). It is
aways possible to increment a semaphore, but the semaphore value is not allowed to
drop below zero: a decrement of a zero semaphore sleeps until another process incre-
ments the semaphore, and then those two operations cancel out. The integer value
typically corresponds to a real count, such as the number of bytes available in a pipe
buffer or the number of zombie children that a process has. Using an explicit count as
part of the abstraction avoids the ‘‘missed wakeup’’ problem: there is an explicit count

DRAFT as of September 5, 2016 70 https://pdos.csail.mit.edu/6.828/xv6

priority inversion
convoys
thundering herd

of the number of wakeups that have occurred. The count also avoids the spurious
wakeup and thundering herd problems.

Terminating processes and cleaning them up introduces much complexity in xv6.
In most operating systems it is even more complex, because, for example, the victim
process may be deep inside the kernel sleeping, and unwinding its stack requires much
careful programming. Many operating system unwind the stack using explicit mecha-
nisms for exception handling, such as longjmp. Furthermore, there are other events
that can cause a sleeping process to be woken up, even though the events it is waiting
for has not happened yet. For example, when a Unix process is sleeping, another pro-
cess may send a signal to it. In this case, the process will return from the interrupt-
ed system call with the value -1 and with the error code set to EINTR. The application
can check for these values and decide what to do. Xv6 doesn’t support signals and this
complexity doesn’t arise.

Xv6’s support for kill is not entirely satisfactory: there are sleep loops which
probably should check for p->killed. A related problem is that, even for sleep loops
that check p->killed, there is a race between sleep and kill; the latter may set p-
>killed and try to wake up the victim just after the victim’s loop checks p->killed
but before it calls sleep. If this problem occurs, the victim won’t notice the p-

>killed until the condition it is waiting for occurs. This may be quite a bit later (e.g.,
when the IDE driver returns a disk block that the victim is waiting for) or never (e.g.,
if the victim is waiting from input from the console, but the user doesn’t type any in-
put).

Exercises

1. Sleep has to check lk != &ptable.lock to avoid a deadlock (2823-2826). It
could eliminate the special case by replacing

if(lk != &ptable.lock){

acquire(&ptable.lock);

release(lk);

}

with

release(lk);

acquire(&ptable.lock);

Doing this would break sleep. How?
2. Most process cleanup could be done by either exit or wait, but we saw above

that exit must not free p->stack. It turns out that exit must be the one to close the
open files. Why? The answer involves pipes.

3. Implement semaphores in xv6. You can use mutexes but do not use sleep and
wakeup. Replace the uses of sleep and wakeup in xv6 with semaphores. Judge the re-
sult.

4. Fix the race mentioned above between kill and sleep, so that a kill that oc-
curs after the victim’s sleep loop checks p->killed but before it calls sleep results in
the victim abandoning the current system call.

DRAFT as of September 5, 2016 71 https://pdos.csail.mit.edu/6.828/xv6

signal+code

5. Design a plan so that every sleep loop checks p->killed so that, for example,
a process that is in the IDE driver can return quickly from the while loop if another
kills that process.

6. Design a plan that uses only one context switch when switching from one user
process to another. This plan involves running the scheduler procedure on the kernel
stack of the user process, instead of the dedicated scheduler stack. The main challenge
is to clean up a user process correctly. Measure the performance benefit of avoiding
one context switch.

7. The lock p->lock protects many invariants, and when looking at a particular
piece of xv6 code that is protected by p->lock, it can be difficult to figure out which
invariant is being enforced. Design a plan that is more clean by perhaps splitting p-

>lock in several locks.

DRAFT as of September 5, 2016 72 https://pdos.csail.mit.edu/6.828/xv6

