
CS 537: Intro to Operating Systems (Summer 2017)

Worksheet 10 - Reader Writer Locks

July 25th, 2017 (Tuesday)

Many threads can read from a data structure—e.g., a list or tree—in parallel as long as
the data structure is not being updated. Such parallelism can be safely enabled using
reader/writer locks, as we discussed in class (also see Section 31.5 of OSTEP). We dis-
cussed an implementation of reader/writer locks using semaphores.

You should implement each of the reader/writer lock functions whose prototypes are
shown below using only mutexes—i.e., you may NOT use condition variables or
semaphores. You should also provide a definition for the rwlock struct.

typedef struct rwlock rwlock_t;

// Called by a thread to initialize a reader/writer lock
void init(rwlock_t *rw);

// Called by a thread before reading
void read_lock(rwlock_t *rw);

// Called by a thread after it is done reading
void read_unlock(rwlock_t *rw);

// Called by a thread before writing
void write_lock(rwlock_t *rw);

// Called by a thread after it is done writing
void write_unlock(rwlock_t *rw);

struct rwlock {
lock_t lock;
lock_t writelock;
int readers;

};

void init(rwlock_t *rw) {
rw->readers = 0;
lock_init(&rw->lock);
lock_init(&rw->writelock);

}



void read_lock(rwlock_t *rw) {
lock(&rw->lock);
rw->readers++;
if (rw->readers == 1) {

lock(&rw->writelock);
}
unlock(&rw->lock);

}

void read_unlock(rwlock_t *rw) {
lock(&rw->lock);
rw->readers--;
if (rw->readers == 0) {

unlock(&rw->writelock);
}
unlock(&rw->lock);

}

void write_lock(rwlock_t *rw) {
lock(&rw->writelock);

}

void write_unlock(rwlock_t *rw) {
unlock(&rw->writelock);

}

2


