CS 537: Intro to Operating Systems (Summer 2017)

Worksheet 13 - RAID
DUE: Aug $3^{\text {rd }} 2017$ (Thursday)
In this worksheet, we'll examine how long it takes to perform a small workload consisting of 12 writes to random locations within a RAID. Assume that these random writes are spread "evenly" across the disks of the RAID. To begin with, assume a simple disk model where each read or write takes \mathbf{D} time units.
a. Assume we have a 4-disk RAID-0 (striping). How long does it take to complete the 12 writes?
b. How long on a 4-disk RAID-1 (mirroring)?
c. How long on a 4-disk RAID-4 (parity)?
d. How long on a 4-disk RAID-5 (rotated parity)?
e. Now assume we have a better disk model, in which it takes \mathbf{S} time units to perform a random seek and \mathbf{R} units of time to perform a full rotation; assume transfer is free. How long do the 12 random writes take to complete on a 4 -disk RAID-0?
f. How long on a 4 -disk RAID-1 (mirroring)?
g. How long on a 4-disk RAID-4 (parity)?
h. How long on a 4-disk RAID-5 (rotated parity)?

