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Abstract

Coronary Heart Disease is the single leading cause of
death world-wide, with lack of early diagnosis being a key
contributory factor. This disease can be diagnosed by mea-
suring and scoring regional motion of the heart wall in
echocardiography images of the left ventricle (LV) of the
heart. We describe a completely automated and robust tech-
nique that detects diseased hearts based on automatic de-
tection and tracking of the endocardium and epicardium
of the LV. We describe a novel feature selection technique
based on mathematical programming that results in a robust
hyperplane-based classifier. The classifier depends only on
a small subset of numerical feature extracted from dual-
contours tracked through time. We verify the robustness of
our system on echocardiograms collected in routine clini-
cal practice at one hospital, both with the standard cross-
validation analysis, and then on a held-out set of completely
unseen echocardiography images.

1. Introduction

Cardiovascular Disease (CVD) is a global epidemic that
is the leading cause of death worldwide (17 mil. deaths)
[16]. In the United States, CVD accounted for 38% of all
deaths in 2002 [1] and was the primary or contributing cause
in 60% of deaths.Coronary Heart Disease(CHD) accounts
for more than half the CVD deaths (roughly 7.2 mil. deaths
worldwide every year, and 1 of every 5 deaths in the US),
and is thesinglelargest killer in the world. It is well-known
that early detection (along with prevention) is an excellent
way of controlling CHD. CHD can be detected by measur-
ing and scoring the regional and global motion of the left
ventricle (LV) of the heart; CHD typically results inwall-
motion abnormalities, i.e., local segments of the LV wall
move abnormally (move weakly, not at all, or out of sync
with the rest of the heart), and sometimes motion in multi-
ple regions, or indeed the entire heart, is compromised. The

LV can be imaged in a number of ways. The most com-
mon method is the echocardiogram – an ultrasound video
of different 2-D cross-sections of the LV.

Unfortunately, echocardiograms are notoriously difficult
to interpret, even for the best of physicians. Inter-observer
studies have shown that even world-class experts agree
on their diagnosis only 80% of the time [10], and intra-
observer studies have shown a similar variation when the
expert reads the same case twice at widely different points
in time. There is a tremendous need for an automated
“second-reader” system that can provide objective diagnos-
tic assistance, particularly to the less-experienced cardiolo-
gist.

In this paper, we address the task of building a computer-
aided diagnosis system that can automatically detect wall-
motion abnormalities from echocardiograms.

The following section provides some medical back-
ground on cardiac ultrasound and the standard methodol-
ogy used by cardiologists to score wall-motion abnormali-
ties. We also describe our real-life dataset, which consists of
echocardiograms used by cardiologists at St. Francis Heart
Hospital to diagnose wall-motion abnormalities. The next
section provides an overview of our proposed system which
we built on top of an algorithm that detects and tracks the
inner and outer cardiac walls [9, 17, 5, 6]. It consists of
a classifier that classifies the local region of the heart wall
(and the entire heart) as normal or abnormal based on the
wall motion. Then we describe our methodology for feature
selection and classification, followed by our experimental
results. We conclude with some thoughts about our plans
for future research.

2. Medical Background Knowledge

There are many imaging modalities that have been used
to measure myocardial perfusion, left ventricular function,
and coronary anatomy for clinical management and re-
search; for this project we are using echocardiography.
The Cardiac Imaging Committee of the Council on Clini-



cal Cardiology of the American Heart Association has cre-
ated a standardized recommendation for the orientation of
the heart, angle selection and names for cardiac planes and
number of myocardial segments [4]. This is the standard-
ization used in this project.

Accurate regional wall motion analysis of the left ven-
tricle is an essential component of interpreting echocardio-
grams (echos). The left ventricle (LV) is divided into 17
myocardial segments as shown in Figure 1 (modified from
reference [4]), which are fed by 3 coronary arteries: the
left anterior descending(LAD) (feeds segments 1, 2, 7, 8,
13, 14, 17), right coronary artery (RCA) (feeds segments 3,
4, 9, 10, 15), and the left circumflex coronary artery(LCX)
(feeds segments 5, 6, 11, 12, 16).

Figure 1. Display, on a circumferential polar
plot, of the 17 myocardial segments and the
recommended nomenclature for tomographic
imaging of the heart. Modified from reference
[4].

The echocardiograms are run through an algorithm
which automatically detects and tracks both the endocardial
and epicardial borders of the LV [5, 6]. Motion interfer-
ences (e.g. probe motion, patient movement, respiration,
etc.) are compensated for using global motion estimation
based on robust statistics outside the LV. Numerical feature
vectors extracted from the dual-contours tracked through
time form the basis for regional wall motion classification.

3. Data

The data is based on standard adult transthoracic B-
mode ultrasound images collected from the four standard
views: apical 4 chamber (A4C), apical 2 chamber (A2C),
parasternal long axis (PLAX) or apical 3 chamber (A3C),

Figure 2. The three basic image planes used
in transthoracic echocardiography. The ven-
tricles have been cut away to show how these
image planes intersect the left and right ven-
tricles. Dashed linesindicate the image planes
at the great vessel and atrial levels. From ref-
erence [3]

and parasternal short axis (PSAX) – shown in Figure 2 from
reference [3]. Currently we are only utilizing two of the four
possible views - A4C and A2C. These two views show 12
of the 16 total segments, but that is enough to achieve our
goal of classifying hearts.

Even though we have images at different levels of stress
(resting, low-dose stress, peak-dose stress, recovery) this
work is based on images taken when the patient was rest-
ing. The goal of this work is to automatically provide an
initial score or classification to determine whether a heartis
normal or abnormal given the ultrasound.

The ultrasound data was collected from St. Francis Heart
Hospital, Roslyn, NY, USA (abbrev: SF). The SF data con-
sists of 141 cases that will be used for training, and 59 cases
that are ear-marked as the final test set. All the cases have
been labeled at the segment level by a group of trained car-
diologists. The heart level classification labels can be ob-
tained from the segment level labels by applying the fol-
lowing definition: A heart is considered abnormal if two or
more segments are abnormal.

4. Methodology

The classification algorithm used in the system is based
on a novel feature selection technique, which is in turn
based on mathematical programming. As a result we obtain
a hyperplane-based classifier that only depends on a sub-



Figure 3. One frame from an A4C image clip
with the yellow box showing the localized LV,
and the yellow dots representing the control
points along the detected contour.

set of numerical features extracted from the dual-contours
tracked through time, and these are then used to provide
classification for each segment and the entire heart.

4.1. Image processing

The first step toward classification of the heart involves
automatic contour generation of the LV [9]. Ultrasound
is known to be noisier than other common medical imag-
ing modalities such as MRI or CT, and echocardiograms
are even worse due to the fast motion of the heart mus-
cle and respiratory interferences. The framework used by
the algorithm we use is ideal for tracking echo sequences
since it exploits heteroscedastic (i.e. location-dependent
and anisotropic) measurement uncertainties. The process
can be divided into 2 steps: border detection and border
tracking. Border detection involves localizing the LV on
multiple frames of the image clip (shown in Figure 3 as
a box drawn around the LV), and then detecting the LV’s
shape within that box. Border tracking involves tracking
this LV border from one frame to the next through the en-
tire movie clip. Motion interferences (e.g. probe motion,
patient movement, respiration, etc.) are compensated for
by using global motion estimation based on robust statis-
tics outside the LV. This global motion estimation can be
seen in Figure 4 as a vertical red line near the center of the
image. After detection and tracking numerical features are
computed from the dual-contours tracked through time. The
features extracted are both global (involving the whole LV)
and local (involving individual segments visible in the im-
age), and are based on velocity, thickening, timing, volume
changes, etc.

Figure 4. One frame from an A4C image
clip with the outer and inner contour control
points shown. The red vertical line shows use
of global motion compensation, and the two
squares denote the centers of the individual
contours.

4.2. Extracted Features

A number of features have been developed to character-
ize cardiac motion in order to detect cardiac wall motion
abnormalities, among them: global and local ejection frac-
tion (EF) ratio, radial displacement, circumferential strain,
velocity, thickness, thickening, timing, eigenmotion, curva-
ture, and bending energy. Some of these features, including
timing, eigenmotion, curvature, local EF ratio and bending
energy, are based on the endocardial contour.

Due to the patient examination protocol, only the systole
(i.e. contraction phase of the heart) is recorded for some
patients. In order for the features to be consistent, the sys-
tole is extracted from each patient based on the cavity area
change. For each frame, the LV cavity area can be estimated
accurately based on the endocardial contour of that frame.
The frame corresponding to the maximal cavity area that
is achieved at the end of diastolic phase (expansion phase
of the heart) is the frame considered to be the beginning of
systole. The frame corresponding to the minimal cavity area
(achieved at the end of systolic phase) is the frame assumed
to be the end of systole. For the time being, all features are
computed based only on the systolic phase. However, the
methods used to calculate the features are generally appli-
cable for the diastolic phase as well.

The following is a basic description of some of the fea-
tures:

• Timing-based features: examine the synchronousness



of the cardiac motion, i.e. whether all the points along
the LV move consistently or not.

• Eigenmotion-based features: determine the most sig-
nificant moving direction of a point and the amount of
it’s motion in that direction.

• Curvature-based features: Are mainly aimed at detect-
ing abnormalities at the apex. It is also useful in identi-
fying more general abnormalities associated with car-
diac shapes. If a segment is dead, it may still move
because it is connected to other segments, but we can
observe that it’s shape will largely remain unchanged
during the cardiac cycles. Curvature can capture this
type of information.

• Local EF ratio features: Are aimed at capturing local
cardiac contraction abnormalities.

• Bending energy features: Assuming that the provided
contour is made of elastic material and moving under
tension, then the bending energy associated with the
contour may be used to capture the cardiac contraction
strength of a segment or the whole LV.

• Circumferential strain features: also called Fractional
Shortening, measures how much the contour between
any two control points shrinks in the systolic phase.

In general, the global version of certain features (e.g. ra-
dial displacement, radial velocity, etc) can be calculatedby
taking the mean, or standard deviation, of the 6 segment’s
respective feature values from any one view. All in all we
had 192 local and global features, all of which were contin-
uous.

4.3. Classification and Feature Selection

One of the difficulties in constructing a classifier for this
task is the problem of feature selection. It is a well-known
fact that a reduction on classifier feature dependence im-
proves the classifier generalization capability. However,the
problem of selecting an “optimal” minimum subset of fea-
tures from a large pool (in the order of hundreds) of po-
tential original features is known to be NP-hard. Recently,
Mika et al, proposed a novel mathematical programming
formulation for Fisher’s Linear Discriminant using kernels
[14, 13], this new formulations included a regularization
term similar to the used in the standard SVM formulation
[12]. We will make use of Mika’s formulation but by using
the 1-norm instead of the 2-norm we will obtained solutions
that are moire sparse and hence depend on a smaller num-
ber of features. The next section describe the details of the
approach.

4.4. Fisher’s Linear Discriminant

Let Ai ∈ Rd×l be a matrix containing thel training data
points ond-dimensional space andli the number of labeled
samples for classwi, i ∈ {±}. FLD [7]is the projectionα,
which maximizes,

J (α) =
αT SBα

αT SW α
(1)

where

SB = (m+ − m−) (m+ − m−)
T

SW =
∑

i∈{±}

1

li

(

Ai − mie
T
li

) (

Ai − mie
T
li

)T

are the between and within class scatter matrices respec-
tively and mi = 1

li
Aieli is the mean of classwi and

eli is an li dimensional vector of ones. Transforming the
above problem into a convex quadratic programming prob-
lem provides us some algorithmic advantages. First notice
that if α is a solution to (1), then so is any scalar multi-
ple of it. Therefore to avoid multiplicity of solutions, we
impose the constraintαT SBα = b2, which is equivalent
to αT (m+ − m−) = b where b is some arbitrary positive
scalar. Then the optimization problem (1) becomes,

minα∈Rd αT SW α

s.t.

αT (m+ − m−) = b

(2)

For binary classification problems the solution of this
problem is

α∗ =
bS−1

W (m+ − m−)

(m+ − m−)
T

S−1

W (m+ − m−)
(3)

According to this expansion sinceS−1

W is positive definite
unless the difference of the class means along a given fea-
ture is zero all features contributes to the final discriminant.

If a given feature in the training set is redundant, its con-
tribution to the final discriminant would be artificial and not
desirable. As a linear classifier FLD is well-suited to han-
dle features of this sort provided that they do not dominate
the feature set, that is, the ratio of redundant to relevant fea-
tures is not significant. Although the contribution of a single
redundant feature to the final discriminant would be negligi-
ble when several of these features are available at the same
time, the overall impact could be quite significant leading
to poor prediction accuracy. Apart from this impact, in the
context of FLD these undesirable features also pose numer-
ical constraints on the computation ofS−1

W especially when
the number of training samples is limited. Indeed, when the



number of features,d is higher than the number of training
samples,l, SW becomes ill-conditioned and its inverse does
not exist. Hence eliminating the irrelevant and redundant
features may provide a two-fold boost on the performance.
In what follows we propose a sparse formulation of FLD.
The proposed approach incorporates a regularization con-
straint on the conventional algorithm and seeks to eliminate
those features with limited impact on the objective function.

4.5. Sparse Fisher’s Linear Discriminant via linear
programming

We propose a formulation similar to the one used for 1-
norm SVM classifiers [2] where the 1-norm is introduced
for both measuring the classification error and regulation.
The use of the 1-norm instead of the 2-norm leads to linear
programming formulations where very sparse solutions can
be obtained. Our objective is to formulate an algorithm that
can be seen as an approximation to (1) and that provides a
sparse projection vectorα. In order achieve this we add a
regularization term to the objective function of (2):

minα∈Rd ναT SW α + ‖α‖
1

s.t.

αT (m+ − m−) = b

(4)

Whereν is the trade-off betweenJ(α) maximization and
regularization or sparsity of the projection vectorα. The
price to pay for sparsity of the solution is that unlike
(2), there is no a closed form solution for the constrained
quadratic in (4), furthermore the parameterν introduced in
(4) has to be chosen by means of a tuning set which requires
the problem to be solved several times and that can be com-
putationally demanding. In order to address this issue we
propose next, a linear programming formulation that can be
interpreted as an approximation to (4) and that results in
sparser solutions than (4). Lets consider the following ma-
trix:

HT =

[

1
√

l+

(

A+ − m+eT
l+

)T 1
√

l−

(

A− − m−eT
l
−

)

]

From (1) we have thatSw = HT H , then:

αT SW α = αT HT Hα

= (Hα)T (Hα)

= ‖Hα‖
2

2
(5)

Hence, quadratic programming problem (4) can be rewrit-
ten as:

minα∈Rd ν ‖Hα‖2

2
+ ‖α‖

1

s.t.

αT (m+ − m−) = b

(6)

We can now use the 1-norm instead of the 2-norm in the
objective function of (6) to obtain the following linear pro-
gramming formulation that can be solved more efficiently
and gives sparser solutions:

minα∈Rd ν ‖Hα‖
1

+ ‖α‖
1

s.t.

αT (m+ − m−) = b

(7)

That this problem is indeed a linear program, can be easily
seen from the equivalent formulation:

minα∈Rd νe′s + e′t

s.t.

αT (m+ − m−) = b

−s ≤ Hα ≤ s

−t ≤ α ≤ t

(8)

Next, we propose an algorithm based on formulation (8) and
equation (3) that provides accurate FLD classifiers depend-
ing on a minimal set of features.

Algorithm 1 Sparse Linear Fisher Discriminant
Given the training dataset{A−, A+} and a set of values
N =

{

10−5, 10−4, . . . , 105
}

for the parameterν do:

1. For eachν ∈ N calculate cross-validation perfor-
mance using the linear programming formulation (8).

2. Let ν∗ the value for which formulation (8) gives the
best cross-validation performance. Let’s callα̂ the ob-
tained sparse projection.

3. Select the subset̂F of the feature setF defined byfi ∈
F̂ ⇔ α̂i 6= 0, this is, select the features corresponding
to nonzero components of the projectionα̂.

4. Solve original quadratic programming problem (1)
with close form solution (3) considering only the fea-
ture subsetF̂ to obtain a final projectionα∗ that de-
pends on only the “small” feature subsetF̂ .

5. Numerical Experiments

In order to empirically demonstrate the effectiveness of
the proposed approach, we compared our feature selection
algorithm, Sparse LFD (SLFD) to three other well-known
classification algorithms: The first algorithm is a very pop-
ular publicly available implementation of SVM,SVMlight

[11]. This formulation does not incorporate feature selec-
tion and produces classifiers that often depend on all the
input features. The purpose of the comparison is to show
that a feature selection method improves generalization per-
formance on this dataset. The second method included
in our numerical comparisons is the Automatic Relevance
Determination (ARD) algorithm [15] which is one of the



Table 1. Results including AUCArea under the
ROC curve for the testing set and number of
features selected for the four methods: SLFD,
SVMlight,ARD and LFD . Best results in bold

Algorithm AUC # of features

SLFD 89.6 % 3
SVMlight 87.4 % 79∗

ARD 85.8% 13
LFD 87.4% 79∗

∗ classifier uses all the features.

most successful Bayesian methods for feature selection and
sparse learning. It finds the relevance of features by opti-
mizing the model marginal likelihood, also known as the
evidence. The third approach consists of applying the stan-
dardLFD algorithm [7] without feature selection. All the
classifiers were trained using 141 cases, and were tested
on 59 cases. For the methods that needed parameters to
be tuned, i.e. our algorithm and SVMlight, the model pa-
rameters were tuned by the means of leave-one-patient-out
(LOPO) [8] cross validation on the training set.

We have gotten many different answers from doctors
as to what they feel the cost of a false positive (FP, i.e.
wrongly labeling the heart abnormal) or false negative (FN,
i.e. wrongly labeling the heart normal) happens to be. If
this system is used as an initial reader then too many FPs or
FNs will cause the doctors to shut off the system because it
is too unreliable. But as a validation system the main focus
is to keep the FN rate low. In general, if you have a high FP
rate then you are sending too many patients for additional,
more expensive tests, which would lead to higher costs for
health insurance. A high FN rate could mean that a patient
might go undiagnosed if the doctor using the system is not
well trained and also misses potential abnormalities. For us,
the “cost” of a FN is thus higher than a FP. By focusing on
keeping the FN rate low, we lower the risk of missing abnor-
malities and leave the final diagnosis to the expertise of the
doctor. Taking this into account, we decided that the best
way to evaluate the classifier performance is to measure the
area under the ROC curve (AUC).

For each algorithm, Table (1) shows the AUC for the test-
ing set and the number of features that the corresponding
classifier depends on. As it can be seen from the results, our
method obtained the ROC with the largest area and only de-
pended on three features. This very low feature dependence
is very important in our application since the features used
for classification have to be calculated in real time.

6. Final Results

The three features selected bySLFD were:

1. A feature that measures the motion along the signifi-
cant directions of movement of the wall of hearts

2. A feature that measures the correlation between the es-
timated area of the heart cavity and the distance be-
tween the walls of the heart to the center of mass of
the heart.

3. The estimated ejection fraction of the heart.

The Receiver Operating Characteristic (ROC) curve on the
testing set for the final classifier is shown in figure 5. The
area under the ROC curve for the testing set was 0.896.
The LOPO cross-validation performance for the final model
was 7 false positives and 17 false negatives out of 81 pos-
itives (abnormals) and 60 negatives (normals), i.e., 88.3%
of the normal hearts and 79.0% of the abnormal hearts were
correctly classified. On the testing set we got 3 false posi-
tives and 6 false negatives out of 39 positives (abnormals)
and 20 negatives (normals), i.e., 85.0% of the normal hearts
and 84.6% of the abnormal hearts were correctly classified.
A 3D plot depicting the final classifier and the testing set
is shown in Figure 6. The clinical results were presented
and published at the American College of Cardiology meet-
ing in March 2005 under the title:“Clinical Evaluation of a
Novel Automatic Real-Time Myocardial Tracking and Wall
Motion Scoring Algorithm for Echocardiography Introduc-
tion”.

Figure 5. ROC curve for the testing set
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Figure 6. Final hyperplane classifier in three
dimensions, circles represent normal hearts
and stars represent abnormal hearts in the
testing set

7. Future work

In the future we plan on expanding our classification
to identify different levels of CHD severity (Levels 1-5:
1 = normal, 2 = hypo-kinetic, 3 = a-kinetic, 4 = dys-
kinetic, 5 = aneurysm), incorporating the use of other stan-
dard echocardiography views (for example: apical 3 cham-
ber (A3C), parasternal short axis (PSAX), parasternal long
axis(PLAX)), and including images from other levels of
stress. Comparisons of our proposed SLFD algorithm on
other publicly available datasets and medical applications
are also planned to further explore the potential of the algo-
rithm.
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