
Machine Learning and Data Mining Via

Mathematical Programing Based Support Vector

Machines

By

Glenn Fung

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN – MADISON

2003

i

Abstract

Several issues that arise in machine learning and data mining are addressed using mathe-

matical programming based support vector machines (SVMs). We address the following

important problems. Instead of a standard SVM that classifies points by assigning them

to one of two disjoint halfspaces, points are classified by assigning them to the closest of

two parallel planes (in input or feature space) that are pushed apart as far as possible.

This formulation leads to an extremely fast and simple algorithm for generating a linear

or nonlinear classifier that merely requires the solution of a single system of nonsingular

linear equations. Multiclass and incremental extensions of this proximal formulation are

also presented.

Prior knowledge, in the form of multiple polyhedral sets each belonging to one of two

categories, is introduced into a reformulation of a linear SVM classifier. The resulting

formulation is solved efficiently by a linear program and results in enhanced testing set

correctness.

A finite concave minimization algorithm is proposed for constructing classifiers that

use a minimal number of data points both in generating and characterizing classifiers.

The algorithm is theoretically justified by linear programming perturbation theory and

a leave-one-out error bound, as well as by effective computational results on several real

world datasets. Another very fast Newton based stand-alone algorithm to solve this

problem is also presented.

The problem of incorporating unlabeled data into a support vector machine is for-

mulated as a concave minimization problem on a polyhedral set for which a stationary

point is quickly obtained by solving a few (5 to 7) linear programs.

ii

We also propose an implicit Lagrangian formulation of a support vector machine

classifier that results in a highly effective iterative scheme and that is solved here by a

finite Newton method. The proposed method, which is extremely fast and terminates

in 6 or 7 iterations, can handle classification problems in very high dimensional spaces,

e.g. over 28,000, in a few seconds on a 400 MHz Pentium II machine. The method can

also handle problems with large datasets and requires no specialized software other than

a commonly available solver for a system of linear equations. Finite termination of the

proposed method is established.

To sum up, we present several mathematical programming based algorithms that

address various important SVM related issues such as: speed, scalability, data dependence

and sparse representation, use of unlabeled data and knowledge incorporation.

iii

Acknowledgements

I would like to express my gratitude to many people, beginning with my beloved wife

Ceri, whose unconditional love and support have given me a solid base to confront every

challenge and complete every difficult task on the road with confidence. Thanks to mamá

Ling who is always there and who is largely responsible for who I am. Many thanks to

all my families (Fischer, Fung, Jenkins, Goodrich) for all their support, and thanks to

all the panitax for being so close despite the physical distance.

I am very grateful to an excellent professor, Javier Maguregui who introduced me to

Madison, an incredible place that I am very attached to and that I love. He was was

a very caring person who always wanted the best for his students. Prof. Maguregui

recently passed away.

Thanks to Olvi Mangasarian, my advisor, for all the knowledge he shared with me.

He showed me a new world of Mathematical Programming applications, including the

fascinating area of support vector machines. I want also want to give special thanks

to Robert Meyer – not only a great professor but an exceptional person – for all his

support. I am also indebted to Michael Ferris for teaching me the practical and technical

skills that have helped me to close the gap between theory and implementation ; and to

Jude Shavlik for all the new ideas and suggestions and for introducing me to the area of

artificial intelligence.

A number of colleagues in the department have also been of great help. Of them, I

thank Dave Musicant, Yuh-Jye Lee, Jin-ho Lim, Meta Voelker and Michael Thompson.

I also want to thank to all my good Madison friends that made me feel like at home:

Mario and Katy Pi, Dan Lerner, Leito Guzman, Bernardo Uribe, Cold R. (Riofrio) and

iv

Sonja Hanson.

Thanks to all the staff and friends at WORT for all that I have learned there; you

have been an integral part of my education here in Madison.

Finally, thanks to Tula, an extraordinary being, for all the love, bites and fun that

kept me always entertained and laughing the last two years.

This research was partially supported by National Science Foundation Grants CCR-

9729842 and CCR-0138308, by Air Force Office of Scientific Research Grants F49620-97-

1-0326 and F49620-00-1-0085, and by the Microsoft Corporation.

v

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Notation and Mathematical Background 5

1.2 Computational Resources . 8

2 Proximal Support Vector Machines for Binary, Multiclass and Incre-

mental Classification 9

2.1 The linear Proximal Support Vector Machine 9

2.2 Nonlinear Proximal Support Vector Machines 17

2.2.1 Numerical Implementation and Comparisons 20

2.3 Incremental Proximal Support Vector Machine 32

2.3.1 Numerical Testing . 34

2.4 Multicategory Proximal Support Vector Machine Classifiers 38

2.4.1 PSVM Modification for Unbalanced Classes 39

2.4.2 Newton Refinement . 40

2.4.3 Nonlinear Multicategory Proximal Support Vector Machines . . . 49

2.4.4 Numerical Implementation and Comparisons 51

3 Knowledge Based Support Vector

Machines 59

vi

3.1 The Linear Support Vector Machine and Prior Knowledge 59

3.1.1 Knowledge-Based SVM Classification 63

3.1.2 Numerical Testing for the Linear Case 66

3.2 Knowledge-Based Nonlinear Kernel Classifiers 79

3.2.1 Prior Knowledge in a Nonlinear Kernel Classifier 79

3.2.2 Knowledge-Based Linear Programming Formulation of Nonlinear

Kernel Classifiers . 84

3.2.3 Numerical Experience . 86

4 Sparse Classifiers: Data and Feature Selection 93

4.1 Data Selection for Support Vector Machine Classifiers 93

4.1.1 MSVM: A Minimal Linear Support Vector Machine 95

4.1.2 Numerical Implementation and Comparisons 99

4.2 Minimal Kernel Classifiers . 103

4.2.1 Leave-One-Out-Correctness (looc) and

Leave-One-Out-Error (looe) Bounds 104

4.2.2 The Minimal Kernel Problem Formulation & Algorithm 107

4.2.3 Computational Results . 114

4.2.4 Results for the Checkerboard . 114

4.2.5 Results on the USPS Dataset . 114

4.2.6 Results on Six Public Datasets 116

4.3 A Feature Selection Newton Method for Support Vector Machine Classi-

fication . 119

4.3.1 Least 2-norm Solution of the Linear Programming SVM 120

4.3.2 Newton Method for Linear Programming SVM (NLPSVM) 124

vii

4.3.3 Numerical Experience . 127

5 Semi-Supervised Support Vector Machines for Unlabeled Data Classi-

fication 138

5.1 Concave Semi-supervised SVM (VS3VM) 139

5.2 Clustering + VS3VM (CVS3VM) for Unlabeled Data 143

5.3 The k-median Clustering Algorithm . 144

5.4 Numerical Testing . 149

6 Finite Newton Method for Lagrangian Support Vector Machine Clas-

sification 154

6.1 Strongly Convex Quadratic Programming SVM Formulation 155

6.2 Implicit Lagrangian Formulation . 157

6.3 Finite Newton Classification Method . 160

6.4 Numerical Experience . 164

6.4.1 Multiple Myeloma Dataset . 166

6.4.2 Six Publicly Available Datasets 168

6.4.3 Numerical Comparisons Using a Linear Classifier 168

6.4.4 Numerical Comparisons Using a Nonlinear Classifier 169

7 Conclusion 172

7.1 Proximal Support Vector Machine Classification 172

7.2 Knowledge Based Support Vector Machines 174

7.3 Sparse Classifiers: Data and Feature Selection 175

7.4 Semi-Supervised Support Vector Machines for Unlabeled Data Classification177

viii

7.5 Finite Newton Method for Lagrangian Support Vector Machine Classifi-

cation . 177

7.6 Summary . 178

Bibliography 180

ix

List of Tables

2.1 Testing set correctness and running times on the larger Adult dataset . . 28

2.2 PSVM, SSVM and LSVM correctness using a nonlinear classifier 29

2.3 PSVM, SSVM, LSVM and SVMlight correctness using a linear classifier . 30

2.4 LSVM and PSVM performance on two, 2 million point NDC datasets . . 31

2.5 OFRQP, MPSVM,B-MPSVM,BR-MPSVM linear classifier correctness . . 54

2.6 Nonlinear OFRQP and Nonlinear BR-MPSVM correctness 55

3.1 Comparison of KSVM leave-one-out total error with various classification

algorithms. 76

4.1 Linear MSVM, SVM ‖ · ‖1 and FSV Comparisons. 102

4.2 Comparison of total number of kernel support vectors 115

4.3 Results for six UC Irvine datasets showing the percentage of reduction

achieved over ten-fold runs. 117

4.4 Different methods comparisons on the Myeloma dataset 133

4.5 NSVM [34], CPLEX SVM [48], LSVM [71] & NLPSVM comparisons using

a linear classifier . 136

4.6 NSVM [34], LSVM [71], NLPSVM, CPLEX SVM [48] and Reduced [52]

NSVM, LSVM, NLPSVM, CPLEX SVM comparisons using a nonlinear

classifier . 137

5.1 Tenfold test set correctness of the experiments described in Test 5.4.1 . . 153

6.1 NSVM, SVMlight & LSVM comparisons using a linear classifier 168

6.2 NSVM, SVMlight & LSVM comparisons using a linear classifier. 170

x

6.3 NSVM, Reduced NSVM, SVMlight, LSVM & Reduced LSVM comparisons

using a nonlinear classifier . 171

xi

List of Figures

2.1 The Standard Support Vector Machine Classifier 12

2.2 The Proximal Support Vector Machine Classifier 13

2.3 The spiral dataset . 20

2.4 Comparisons of running times on the Adult dataset 27

2.5 Flow chart for the Linear Incremental Algorithm 2.3.1. 35

2.6 Computational time of the Linear Incremental Algorithm 36

2.7 Normals to the separating hyperplanes x′wi = γi, i = 1, . . . , 30, corre-

sponding to 5-day intervals . 37

2.8 An unbalanced dataset consisting of 100 points 44

2.9 Linear classifier improvement by balancing 45

2.10 Very significant linear classifier improvement as a consequence of balancing

and the use of the Newton refinement . 46

2.11 Example consisting of 500 data points in 2 dimensions belonging to one of

three classes . 58

2.12 The same example as that of Figure 2.11 classified using BR-MSPVM . . 58

3.1 The linear programming support vector machine 60

3.2 Separation for 200 points in R2 using the lp formulation 67

3.3 Same example of Figure 3.2 but incorporating three knowledge sets . . . 68

3.4 Real-valued representation of the nucleotide set {A,G,C, T} 70

3.5 Real-valued representation of a promoter 70

3.6 Totally or partially knowledge-based XOR classification problem. 87

3.7 Another XOR classification problem . 88

xii

3.8 CULO, A poor nonlinear classifier based on 16 points taken from each of

the 16 squares of a checkerboard. 90

3.9 Totally or partially knowledge-based checkerboard classification problem. 91

4.1 The Support Vectors . 94

4.2 The loss function x# . 109

4.3 Loss function x# approximation by x + µ(1 − εαx) on x ≥ 0. 112

4.4 The checkerboard classifier depends on only 2.7% of the original data . . 118

5.1 CVS3VM for Unlabeled Data . 145

5.2 Cluster + SVM for Unlabeled Data . 146

5.3 Random + SVM for Unlabeled Data . 147

5.4 CVS3VM tenfold Cross Validation . 151

6.1 Real-valued representation of the AC features set {A,M,P} 166

1

Chapter 1

Introduction

In the last ten years, the dramatic rise in the use of the Internet, the improvement

in technologies related to communications, and more recently, the advances related to

the understanding of human biology and genetics have created increased dependence on

information in our society. The huge amount of data generated daily contains important

information that accumulates incrementally in databases and is not easy to extract. The

field of data mining developed as a means of extracting information and knowledge from

databases to discover patterns or concepts that are not evident or easy to obtain.

As stated in [108], machine learning provides the technical basis of data mining by

extracting information from the raw data in the databases. The process usually consists

of the following: transforming the data to a suitable format, cleaning it, and inferring or

making conclusions regarding the data.

Two major sub-fields of machine learning are supervised learning and unsupervised

learning. Within the category of supervised learning, one of the primary tools devel-

oped in recent years, support vector machines (SVMs)[10, 17, 19, 22, 57, 65, 92, 103], have

proven to be powerful tools for data classification. There are several difficulties associ-

ated with the use of a standard SVM for classification. In this thesis we propose several

math programming based algorithms that address several of these difficulties.

The first difficulty is related to the fact that standard SVMs require the solution

of either a quadratic or a linear program, which require specialized codes such as [21].

2

Standard SVMs classify points by assigning them to one of two disjoint halfspaces. These

halfspaces are either in the original input space of the problem for linear classifiers, or in

a higher dimensional feature space for nonlinear classifiers [19, 65, 103]. As an alternative

to standard SVMs, we propose here a proximal SVM (PSVM) which classifies points

depending on proximity to one of two parallel planes that are pushed as far apart as

possible. In Chapter 2, using our geometrically motivated proximal formulation, we give

extensive computational implementation and results not contained in earlier theoretical

and statistical related work on regularized networks [26, 27]. Our specific formulation

leads to a strongly convex objective function, which is not always the case in other regu-

larized network approaches [26, 27]. Strong convexity is an important factor in simplifying

the proximal code provided here as well as resulting in very fast computational times.

Furthermore, unlike other recent similar work [95–97], our formulation does not require

any restrictive conditions on the kernel function such as Mercer’s positive definiteness

condition [103]. Obtaining a linear or nonlinear PSVM classifier requires nothing more

sophisticated than solving a single system of linear equations. Efficient and fast linear

equation solvers are freely available [1], or are part of standard commercial packages

such as MATLAB [75], and can solve large systems very fast. By taking advantage of

the structure of the (n + 1)× (n + 1) symmetric positive definite matrix constituting the

system of linear equations, where n is the usually small dimensional input space of the

proximal SVM classifier [33], we are able also to propose two extensions of PSVM:

• An incremental algorithm that can handle extremely large datasets, of the order of

109 in an incremental fashion. Old data can be easily retired while new data can

just as easily be incorporated into the classifier.

• A multiclass PSVM that is based on the well known “one-from-the-rest” approach.

3

This approach is a natural choice in order to take advantage of its fast performance.

However, there is a drawback associated with this one-from-the-rest approach. The

resulting two-class problems are often very unbalanced, leading in some cases to

poor performance. We propose balancing the k classes and a novel Newton refine-

ment modification to PSVM in order to deal with this problem. Computational

results indicate that these two modifications preserve the speed of PSVM while of-

ten leading to significant test set improvement over a plain PSVM one-from-the-rest

application. The modified approach is considerably faster than other one-from-the-

rest methods that use conventional SVM formulations, while still giving comparable

test set correctness.

In Chapter 3 we present a novel approach to incorporating prior knowledge in the

form of polyhedral knowledge sets in the input space of the given data. These knowledge

sets, which can be as simple as cubes or more complex polyhedral sets, belong to one of

two categories into which all the data is divided. Thus, a single knowledge set can be

interpreted as a generalization of a training example, which typically consists of a single

point in input space. In contrast, each of our knowledge sets consists of a region in the

same space. By using a powerful tool from mathematical programming, theorems of the

alternative [59, Chapter 2], we are able to embed such prior data into a linear program

that can be efficiently solved by any of the publicly available linear programming solvers.

Furthermore, we also propose an extension to a nonlinear classifier.

In Chapter 4, we address the problem of constructing classifiers that use a minimal

number of data points both in generating and characterizing the separating surface. We

propose three algorithms, the first two algorithms in Sections 4.1 and 4.2 are theoretically

justified on the basis of linear programming perturbation theory and both formulated as

4

concave minimization problems, then solved using a successive linearization algorithm.

In the linear case, a sparse representation results in a considerable reduction in the

number of support vectors and/or in the number of input space feature dependencies.

In the nonlinear case, this can result in substantial reduction in kernel data-dependence

(over 94% in six of the seven public datasets tested on) and test set correctness equal

to that obtained by using a conventional support vector machine classifier that depends

on many more data points. This reduction in data dependence results in a much faster

classifier that requires less storage. In Section 4.3 we propose a third algorithm: a

fast Newton method, that suppresses input space features, for a linear programming

formulation of support vector machine classifiers. The proposed stand-alone method can

handle classification problems in very high dimensional spaces, such as 28,032 dimensions,

and generates a classifier that depends on very few input features, such as 7 out of the

original 28,032. The method can also handle problems with a large number of data points

and requires no specialized linear programming packages, but merely a linear equation

solver. For nonlinear kernel classifiers, the method utilizes a minimal number of kernel

functions in the classifier that it generates.

The problem of incorporating unlabeled data into an SVM classifier is addressed in

Chapter 5. This latter problem is formulated as a concave minimization problem on a

polyhedral set for which a stationary point is quickly obtained by solving a few (5 to 7)

linear programs. Such stationary points turn out to be very effective, as evidenced by

our computational results.

Finally, in Chapter 6, an implicit Lagrangian [74] formulation of a support vector

machine classifier that led to a highly effective iterative scheme [71] is solved by a finite

Newton method. The proposed method, which is extremely fast and terminates in 6

5

or 7 iterations, can handle classification problems in very high dimensional spaces, e.g.

over 28,000, in a few seconds on a 400 MHz Pentium II machine. The method can also

handle problems with large datasets and requires no specialized software other than a

commonly available solver for a system of linear equations. Finite termination of the

proposed method is also established.

1.1 Notation and Mathematical Background

• All vectors will be column vectors unless transposed to a row vector by a prime

superscript ′. The scalar (inner) product of two vectors x and y in Rn will be

denoted as x′y.

• For a vector x in the n-dimensional real space Rn, |x| will denote a vector of absolute

values of the components xi, i = 1, . . . , n of x.

• The sign function sign(x) is defined as sign(x)i = 1 if xi > 0 else sign(x)i = −1 if

xi ≤ 0,

• For a vector x in Rn, the plus function x+ denotes the vector in Rn with components

max{0, xi}.

• For a vector x in Rn, x∗ denotes the vector in Rn with components (x∗)i equal 1 if

xi > 0 and 0 otherwise.

• For x ∈ Rn and 1 ≤ p < ∞, the norm ‖x‖p will denote the p-norm:

‖x‖p =

(

n
∑

i=1

|xi|
p

) 1

p

,

6

and

‖x‖∞ = max
1≤i≤n

|xi|.

• The notation A ∈ Rm×n will signify a real m×n matrix. For such a matrix A′ will

denote the transpose of A, Ai will denote the i-th row of A, and A·j will denote the

jth column of A.

• A vector of ones in a real space of arbitrary dimension will be denoted by e. A

vector of zeros in a real space of arbitrary dimension will be denoted by 0. The

identity matrix in a real space of arbitrary dimension will be denoted by I.

• For e ∈ Rm and y ∈ Rm the notation e′y will signify the summation
m
∑

i=1

yi.

• We shall employ the MATLAB “dot” notation [75] to signify application of a func-

tion to all components of a matrix or a vector. For example if A ∈ Rm×n, then

A2
• ∈ Rm×n will denote the matrix of elements of A squared.

• A separating plane, with respect to two given point sets A and B in Rn, is a plane

that attempts to separate Rn into two halfspaces such that each open halfspace

contains points of A or B when the sets are strictly linearly separable.

• A bounding plane to the set A is a plane that places A in one of the two closed

halfspaces that the plane generates.

• The symbol ∧ will denote the logical “and”.

• For A ∈ Rm×n and B ∈ Rn×k, the kernel K(A,B) maps Rm×n × Rn×k into Rm×k.

In particular, if x and y are column vectors in Rn then, K(x′, y) is a real number,

K(x′, A′) is a row vector in Rm and K(A,A′) is an m × m matrix. We shall only

assume that K(A,A′) is symmetric, that is (K(A,A′))′ = K(A,A′).

7

• The base of the natural logarithm will be denoted by ε.

• We will make use of the following Gaussian kernel [19, 65, 103] that is frequently

used in the SVM literature:

(K(A,B))ij = ε−µ‖Ai
′−B·j‖2

, i = 1 . . . ,m, j = 1 . . . , k, (1.1)

where A ∈ Rm×n, B ∈ Rn×k and µ is a positive constant.

• For simplicity, the dimensionality of some vectors will not be explicitly given. The

abbreviation “s.t.” stands for “such that”.

• If f is a real valued function defined on the n-dimensional real space Rn, the

gradient of f at x is denoted by ∇f(x) which is a column vector in Rn and the

n × n matrix of second partial derivatives of f at x is denoted by ∇2f(x).

• For a piecewise quadratic function such as, f(x) = 1
2
||(Ax − b)+||

2 + 1
2
x′Px, where

A ∈ Rm×n, P ∈ Rn×n, P = P ′, P positive semidefinite and b ∈ Rm, the ordinary

Hessian does not exist because its gradient, the n × 1 vector ∇f(x) = A′(Ax −

b)+ + Px, is not differentiable. However, one can define its generalized Hessian

[28, 43, 66] which is the n × n symmetric positive semidefinite matrix:

∂2f(x) = A′diag(Ax − b)∗A + P, (1.2)

where diag(Ax − b)∗ denotes an m × m diagonal matrix with diagonal elements

(Aix− bi)∗, i = 1, . . . ,m. The generalized Hessian (1.2) has many of the properties

of the regular Hessian [28, 43, 66] in relation to f(x). For simplicity we use 0 when

Aix − bi = 0 for (Aix − bi)∗ instead of a value in (0, 1]. This does not affect

computational results.

8

• If the smallest eigenvalue of ∂2f(x) is greater than some positive constant for all

x ∈ Rn, then f(x) is a strongly convex piecewise quadratic function on Rn.

1.2 Computational Resources

Most of our computations were performed on the University of Wisconsin Data Mining

Institute “locop1” machine, which utilizes a 400 Mhz Pentium II and allows a maximum

of 2 Gigabytes of memory for each process. This computer runs on Windows NT server

4.0, with MATLAB 6 installed. Even though “locop1” is a multiprocessor machine,

only one processor was used for all the experiments since MATLAB is a single threaded

application and does not distribute any load across processors [75].

9

Chapter 2

Proximal Support Vector Machines

for Binary, Multiclass and

Incremental Classification

2.1 The linear Proximal Support Vector Machine

We consider the problem, depicted in Figure 2.1, of classifying m points in the n-

dimensional real space Rn, represented by the m×n matrix A, according to membership

of each point Ai in the class A+ or A− as specified by a given m × m diagonal matrix

D with plus ones or minus ones along its diagonal respectively. For this problem, the

standard support vector machine with a linear kernel [19, 102] is given by the following

quadratic program with parameter ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2
w′w

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(2.1)

As depicted in Figure 2.1, w is the normal to the bounding planes:

x′w = γ + 1

x′w = γ − 1,
(2.2)

10

that bound most of the sets A+ and A− respectively. The constant γ determines their

location relative to the origin. When the two classes are strictly linearly separable, that

is when the error variable y = 0 in (2.1) (which is not the case shown in Figure 2.1), the

plane x′w = γ +1 bounds all of the class A+ points, while the plane x′w = γ − 1 bounds

all of the class A− points as follows:

Aiw ≥ γ + 1, for Dii = 1

Aiw ≤ γ − 1, for Dii = −1.
(2.3)

Consequently, the plane:

x′w = γ, (2.4)

midway between the bounding planes (2.2), is a separating plane that separates A+

from A− completely if y = 0, else only approximately as depicted in Figure 2.1. The

quadratic term in (2.1), which is twice the reciprocal of the square of the 2-norm distance

2
‖w‖

between the two bounding planes of (2.2) (see Figure 2.1), maximizes this distance,

often called the “margin”. Maximizing the margin enhances the generalization capability

of a support vector machine [19, 102]. If the classes are linearly inseparable, which is the

case shown in Figure 2.1, then the two planes bound the two classes with a “soft margin”

(i.e. bound approximately with some error) determined by the nonnegative error variable

y, that is:

Aiw + yi ≥ γ + 1, for Dii = 1

Aiw − yi ≤ γ − 1, for Dii = −1.
(2.5)

The 1-norm of the error variable y is minimized parametrically with weight ν in (2.1)

resulting in an approximate separating plane (2.4) as depicted in Figure 2.1. This plane

11

acts as a linear classifier as follows:

x′w − γ































> 0, then x ∈ A+,

< 0, then x ∈ A−,

= 0, then x ∈ A+ or x ∈ A−.

(2.6)

Our point of departure is similar to that of [69, 71], where the optimization problem (2.1)

is replaced by the following problem:

min
(w,γ,y)∈Rn+1+m

ν 1
2
‖y‖2 + 1

2
(w′w + γ2)

s.t. D(Aw − eγ) + y ≥ e

(2.7)

Note that no explicit nonnegativity constraint is needed on y, because if any component yi

is negative then the objective function can be decreased by setting that yi = 0 while still

satisfying the corresponding inequality constraint. Note further that the 2-norm of the

error vector y is minimized instead of the 1-norm, and the margin between the bounding

planes is maximized with respect to both orientation w and relative location to the origin

γ. Extensive computational experience [52, 53, 68, 69, 71] indicates that this formulation

is just as good as the classical formulation (2.1) with some added advantages such as

strong convexity of the objective function. Our key idea here is to make a simple but

fundamental change in the formulation (2.7), namely replace the inequality constraint by

an equality as follows:

min
(w,γ,y)∈Rn+1+m

ν 1
2
‖y‖2 + 1

2
(w′w + γ2)

s.t. D(Aw − eγ) + y = e

(2.8)

This modification, even though very simple, changes the nature of optimization problem

significantly. In fact it turns out that we can write an explicit exact solution to the

12

x
x
x x

x
x

xx
x

x
x

A+

A-

o oo
o
o

o
o

o
o

o

oo

o
o

o

o
o

x

x
x

o

x

o

o
o

o
o

x
x

x

wMargin= 2
‖w‖

x′w = γ − 1

x′w = γ + 1

Separating Plane: x′w = γ

Figure 2.1: The Standard Support Vector Machine Classifier in the w-space of Rn: The
approximately bounding planes of equation (2.2) with a soft (i.e. with some error) margin

2
‖w‖

, and the plane of equation (2.4) approximately separating A+ from A−.

problem in terms of the problem data as we show below. In contrast, it is impossible

to do so in the conventional inequality based because of their combinatorial nature.

Geometrically the formulation (2.8) is depicted in Figure 2.2, which can be interpreted

as follows. The planes x′w − γ = ±1 are not bounding planes anymore, but can be

thought of as “proximal” planes, around which the points of each class are clustered and

which are pushed as far apart as possible by the term (w′w+γ2) in the objective function

which is nothing other than the reciprocal of the 2-norm distance squared between the

two planes in the (w, γ) space of Rn+1.

We note that our formulation (2.8) can be also interpreted as a regularized least

squares solution [98] of the system of linear equations D(Aw− eγ) = e, that is finding an

approximate solution (w, γ) with least 2-norm. Similarly the standard SVM formulation

(2.1) can be interpreted, by using linear programming perturbation theory [67], as a

least 2-norm approximate solution to the system of linear inequalities D(Aw − eγ) ≥ e.

Neither of these interpretations, however, is based on the idea of maximizing the margin,

13

x
x
x x

x
x

xx
x

x
x

A+

A-

o oo
o
o

o
o

o
o

o

oo

o
o

o

o
o

x

x
x

o

x

o

o
o

o
o

x
x

x

[

w
γ

]

Margin= 2

‖[wγ]‖

x′w − γ = −1

x′w − γ = +1

Separating Plane: x′w − γ = 0

Figure 2.2: The Proximal Support Vector Machine Classifier in the (w, γ)-space of Rn+1:
The planes x′w− γ = ±1 around which points of the sets A+ and A− cluster and which
are pushed apart by the optimization problem (2.8).

the distance between the parallel planes (2.2), which is a key feature of support vector

machines [19, 65, 103].

The Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions [59,

p. 112] for our equality constrained problem (2.8) are obtained by setting equal to zero

the gradients with respect to (w, γ, y, u) of the Lagrangian:

L(w, γ, y, u) =
ν

2
‖y‖2 +

1

2
‖

[

w

γ

]

‖2 − u′(D(Aw − eγ) + y − e). (2.9)

Here, u ∈ Rm is the Lagrange multiplier associated with the equality constraint of (2.8).

Setting the gradients of L equal to zero gives the following KKT optimality conditions:

14

w − A′Du = 0

γ + e′Du = 0

νy − u = 0

D(Aw − eγ) + y − e = 0

(2.10)

The first three equations of (2.10) give the following expressions for the original problem

variables (w, γ, y) in terms of the Lagrange multiplier u:

w = A′Du, γ = −e′Du, y =
u

ν
. (2.11)

Substituting these expressions in the last equality of (2.10) allows us to obtain an explicit

expression for u in terms of the problem data A and D as follows:

u = (
I

ν
+ D(AA′ + ee′)D)−1e = (

I

ν
+ HH ′)−1e, (2.12)

where H is defined as:

H = D[A − e]. (2.13)

Having u from (2.12), the explicit solution (w, γ, y) to our problem (2.8) is given by

(2.11). Because the solution (2.12) for u entails the inversion of a possibly massive

m×m matrix, we make immediate use of the Sherman-Morrison-Woodbury formula [40,

p. 51] for matrix inversion, as was done in [29, 69, 71], which results in:

u = ν(I − H(
I

ν
+ H ′H)−1H ′)e. (2.14)

This expression, as well as another simple expression (2.28) for
[

w

γ

]

below, involve the

inversion of a much smaller dimensional matrix of order (n+1)× (n+1) and completely

solves the classification problem. This is a key difference relative to other approaches

15

that also substitute the inequalities by equalities [41]. For concreteness we explicitly

state our very simple algorithm.

Algorithm 2.1.1 Linear Proximal SVM Given m data points in Rn represented by

the m× n matrix A and a diagonal matrix D of ±1 labels denoting the class of each row

of A, we generate the linear classifier (2.6) as follows:

(i) Define H by (2.13) where e is an m× 1 vector of ones and compute u by (2.14) for

some positive ν. Typically ν is chosen by means of a tuning (validating) set.

(ii) Determine (w, γ) from (2.11).

(iii) Classify a new x by using (2.6).

For standard SVMs, support vectors consist of all data points which are the comple-

ment of the data points that can be dropped from the problem without changing the

separating plane (2.4) [65, 103]. Thus, for the standard SVM formulation (2.1), support

vectors correspond to data points for which the Lagrange multipliers are nonzero because,

solving (2.1) with these data points only will give the same answer as solving it with the

entire dataset. In our proximal formulation (2.8) however, the Lagrange multipliers u

are merely a multiple of the error vector y: u = νy as given by (2.11). Consequently,

because all components of y are typically nonzero since none of the data points usually

lie on the proximal planes x′w = ±1, the concept of support vectors needs to be modified

as follows. Because (w, γ) ∈ Rn+1 are given as linear functions of y by (2.10), it follows

by the basis theorem for linear equations [38, Theorem 2.11][73, Lemma 2.1], applied

to the last equality of (2.10) for a fixed value of the error vector y, that at most n + 1

linearly independent data points are needed to determine the basic nonzero components

16

of (w, γ) ∈ Rn+1. Guided by this fact that only a small number of data points can charac-

terize any specific (w, γ), we define the concept of ǫ-support vectors as those data points

Ai for which error vector yi is less than ǫ in absolute value. We typically pick ǫ small

enough such that about 1% of the data are ǫ-support vectors. Re-solving our proximal

SVM problem (2.8) with these data points and a ν adjusted (typically upwards) by a

tuning set gives test set correctness that is essentially identical to that obtained by using

the entire dataset.

We note that with explicit expressions (w, γ, y, u) in terms of problem data given by

(2.11) and (2.14), we are able to get also an explicit expression for the leave-one-out-

correctness looc [91], that is the fraction of correctly classified data points if each point

in turn is left out of the PSVM formulation (2.8) and then is classified by the classifier

(2.6). Omitting some algebra, we have the following leave-one-out-correctness:

looc =
e′h∗

m
, (2.15)

where the “*” denotes the “step” function defined in the Introduction, and for i =

1, . . . ,m:

hi =
DiHH i′Diui

ν
= DiHH i′Di(I − H i(

I

ν
+ H i′H i)−1H i′)e. (2.16)

Here, H is defined by (2.13), Hi denotes row i of H, while H i denotes H with row Hi

removed from H, and ui is defined by (2.14) with H replaced by H i. Similarly, Di denotes

row i of D.

We extend now some of the above results to nonlinear proximal support vector ma-

chines.

17

2.2 Nonlinear Proximal Support Vector Machines

To obtain our nonlinear proximal classifier we modify our equality constrained optimiza-

tion problem (2.8) as in [53, 65] by replacing the primal variable w by its dual equivalent

w = A′Du from (2.11) to obtain:

min
(u,γ,y)∈Rm+1+m

ν 1
2
‖y‖2 + 1

2
(u′u + γ2)

s.t. D(AA′Du − eγ) + y = e,

(2.17)

where the objective function has also been modified to minimize weighted 2-norm sums

of the problem variables (u, γ, y). If we now replace the linear kernel AA′ by a nonlinear

kernel K(A,A′) as defined in the Introduction, we obtain:

min
(u,γ,y)∈Rm+1+m

ν 1
2
‖y‖2 + 1

2
(u′u + γ2)

s.t. D(K(A,A′)Du − eγ) + y = e.

(2.18)

Using the shorthand notation:

K := K(A,A′), (2.19)

the Lagrangian for (2.18) can be written similarly to (2.9) as:

L(u, γ, y, v) =
ν

2
‖y‖2 +

1

2
‖

[

u

γ

]

‖2 − v′(D(KDu − eγ) + y − e). (2.20)

Here, v ∈ Rm is the Lagrange multiplier associated with the equality constraint of (2.18).

Setting the gradients of this Lagrangian with respect to (u, γ, y, v) equal to zero gives

the following KKT optimality conditions:

u − DK ′Dv = 0

γ + e′Dv = 0

νy − v = 0

D(KDu − eγ) + y = e.

(2.21)

18

The first three equations of (2.21) give the following expressions for (u, γ, y) in terms of

the Lagrange multiplier v:

u = DK ′Dv, γ = −e′Dv, y =
v

ν
. (2.22)

Substituting these expressions in the last equality of (2.21) gives an explicit expression

for v in terms of the problem data A and D as follows:

v = (
I

ν
+ D(KK ′ + ee′)D)−1e = (

I

ν
+ GG′))−1e, (2.23)

where G is defined as:

G = D[K − e]. (2.24)

Note the similarity between G above and H as defined in (2.13). This similarity allows

us to obtain G from the expression (2.13) for H by replacing A by K in (2.13). This can

be taken advantage of in the MATLAB code 2.2.2 of Algorithm 2.1.1 which is written

for the linear classifier (2.6). Thus, to generate a nonlinear classifier by Algorithm 2.2.1

merely replace A by K in the algorithm.

Having the solution v from (2.23), the solution (u, γ, y) to our problem (2.18) is given

by (2.22). Unlike the situation with linear kernels, the Sherman-Morrison-Woodbury

formula is useless here because the kernel matrix K = K(A,A′) is a square m × m

matrix, so the inversion must take place in a potentially high-dimensional Rm. However,

the reduced kernel techniques of [52], reduce the m×m dimensionality of the kernel K =

K(A,A′) to a much smaller m× m̄ dimensionality of a rectangular kernel K = K(A, Ā′),

where m̄ is as small as 1% of m and Ā is an m̄ × n random submatrix of of A.

This reduced technique can be justified by the theory of random projections [24, 25]

and the idea behind it is similar to using low-rank kernel representations [31].

19

Such reduced kernels not only make most large problems tractable, but they also

often lead to improved generalization by avoiding data overfitting. The effectiveness of

these reduced kernels is demonstrated by means of a numerical test problem in the next

section of the paper.

The nonlinear separating surface corresponding to the kernel K(A,A′) [65, Equation

(8.1)] and can be deduced from the linear separating surface (2.4) and w = A′Du from

(2.11) as follows:

x′w − γ = x′A′Du − γ = 0. (2.25)

If we replace x′A′ by the corresponding kernel expression K(x′, A′), and substitute from

(2.22) for u and γ: u = DK ′Dv and γ = −e′Dv we obtain the nonlinear separating

surface:

K(x′, A′)Du − γ = K(x′, A′)DDK(A,A′)′Dv + e′Dv

= (K(x′, A′)K(A,A′)′ + e′)Dv = 0.
(2.26)

The corresponding nonlinear classifier to this nonlinear separating surface is then:

(K(x′, A′)K(A,A′)′ + e′)Dv































> 0, then x ∈ A+,

< 0, then x ∈ A−,

= 0, then x ∈ A+ or x ∈ A−.

(2.27)

We now give an explicit statement of our nonlinear classifier algorithm.

Algorithm 2.2.1 Nonlinear Proximal SVM Given m data points in Rn represented

by the m × n matrix A and a diagonal matrix D of ±1 labels denoting the class of each

row of A, we generate the nonlinear classifier (2.27) as follows:

(i) Choose a kernel function K(A,A′), typically the Gaussian kernel (1.1).

20

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Figure 2.3: The spiral dataset consisting of 97 black points and 97 white points inter-
twined as two spirals in 2-dimensional space. PSVM with a Gaussian kernel generated a
sharp nonlinear spiral-shaped separating surface.

(ii) Define G by (2.24) where K = K(A,A′) and e is an m×1 vector of ones. Compute

v by (2.23) for some positive ν. (Typically ν is chosen by means of a tuning set.)

(iii) The nonlinear surface (2.26) with the computed v constitutes the nonlinear classifier

(2.27) for classifying a new point x.

The nonlinear classifier (2.27), which is a direct generalization of the linear classifier

(2.6), works quite effectively as indicated by the numerical examples presented in the

next section.

2.2.1 Numerical Implementation and Comparisons

Our algorithms require the solution of a single square system of linear equations of the

size of the number of input attributes n in the linear case, and of the size of the number

of data points m in the nonlinear case. When using a rectangular kernel [53], the size of

the problem can be reduced from m to k with k << m for the nonlinear case. Because

21

of the simplicity of our algorithm, we give below the actual MATLAB implementation

that was used in our experiments and which consists of 6 lines of native MATLAB code.

Code 2.2.2 PSVM MATLAB Code

function [w,gamma] = psvm(A,D,nu)

% PSVM:linear and nonlinear classification

% INPUT: A, D, nu. OUTPUT: w, gamma

% [w, gamma] = psvm(A,D,nu);

[m,n]=size(A);e=ones(m,1);H=D*[A -e];

r=sum(H)’; %r=H’*e;

r=(speye(n+1)/nu+H’*H)\r; %solve (I/nu+H’*H)r=H’*e

u=nu*(1-(H*r)); s=D*u;

w=(s’*A)’; %w=A’*D*u

gamma=-sum(s); %gamma=-e’*D*u

Note that the command line in the MATLAB code above: r=(speye(n+1)/nu+H’*H);̊

computes directly the factor (I
ν

+ H ′H)−1H ′e of (2.14). This is much more economical

and stable than computing the inverse (I
ν
+H ′H)−1 explicitly then multiplying it by H ′e.

Using MATLAB, the calculations H ′e and A′s involve the transpose of typically large

matrices which can be time consuming. Instead, we calculate r=sum(H)’ and w=(s’*A)’

respectively, the transposes of these vectors.

We further note that the MATLAB code above not only works for a linear classifier,

but also for a nonlinear classifier as well. In the nonlinear case, the matrix K(A,A′)

22

is used as input instead of A, [65, Equations (1), (10)], and the pair (û, γ), where û =

K(A,A′)Du, is returned instead of (w, γ). The nonlinear separating surface is then given

by (2.26) as:

K(x,A′)û − γ = 0.

Rectangular kernels [52] can also be handled by this code. The input then is the rect-

angular matrix K(A, Ā′) , where Ā ∈ Rm×k, k << m and the given output is the pair

(û, γ) with û ∈ Rk and û = D̄ū, where D̄ and ū are the D and u associated with the

reduced matrix Ā.

A final note regarding a further simplification of PSVM. If we substitute the expression

(2.14) for u in (2.11), we obtain after some algebra the following simple expression for w

and γ in terms of the problem data:

[

w

γ

]

= (
I

ν
+ E ′E)−1E ′De, (2.28)

where E = DH and hence H = DE, (D = D−1). Thus:

E = DH = [A − e], and H = DE = D[A − e]. (2.29)

This direct explicit solution of our PSVM problem (2.8) can be written as the following

single line of MATLAB code, which also does not perform the explicit matrix inversion

(I
ν

+ E ′E)−1, and is slightly faster than the above MATLAB code:

r=(I/nu+E’*E)\(diag(D)’*E)’;w=r(1:n);gamma=r(n+1); (2.30)

Here, according to MATLAB commands, diag(D) is an m× 1 vector generated from the

diagonal of the matrix D. Computational testing results using this one-line MATLAB

code (2.30) are slightly better than those obtained with Code 2.2.2 and are the ones

23

reported in the tables below. We comment further that the solution (2.28) can also be

obtained directly from (2.8) by using the equality constraint to eliminate y from the

problem and solving the resulting unconstrained minimization problem in the variables

w and γ by setting to zero the gradients with respect to w and γ. We turn now to our

computations.

The datasets used for our numerical tests were the following:

• Seven publicly available datasets from the UCI Machine Learning Repository [77]:

WPBC, Ionosphere, Cleveland Heart, Pima Indians, BUPA Liver, Mushroom, Tic-

Tac-Toe.

• The Census dataset is a version of the US Census Bureau “Adult” dataset, which

is publicly available from the Silicon Graphics website [16].

• The Galaxy Dim dataset used in galaxy discrimination with neural networks from

[79]

• Two large datasets (2 million points and 10 attributes) created using David Musi-

cant’s NDC Data Generator [78].

• The Spiral dataset proposed by Alexis Wieland of the MITRE Corporation and

available from the CMU Artificial Intelligence Repository [107].

We outline our computational results now in five groups as follows.

1. Table 2.2.1: Comparison of seven different methods on the Adult dataset

In this experiment we compared the performance of seven different methods for lin-

ear classification on different sized versions of the Adult dataset. Reported results

on the SOR [68], SMO [84] and SVMlight [50] are from [68]. Results for LSVM [71]

24

results were computed here using “locop1”, whereas SSVM [53] and RLP [4] are

from [53]. The SMO experiments were run on a 266 MHz Pentium II processor

under Windows NT 4 using Microsoft’s Visual C++ 5.0 compiler. The SOR ex-

periments were run on a 200 MHz Pentium Pro with 64 megabytes of RAM, also

under Windows NT 4 and using Visual C++ 5.0. The SVMlight experiments were

run on the same hardware as that for SOR, but under the Solaris 5.6 operating

system. Bold type indicates the best result and a dash (-) indicates that the results

were not available from [68]. Although the timing comparisons are approximate

because of the different machines used, they do indicate that PSVM has a distinct

edge in speed, e.g. solving the largest problem in 7.4 seconds, which is much faster

than any other method. Times and ten-fold testing correctness are shown in Table

2.2.1. Times are for the ten-folds.

2. Table 2.2.1: Comparative performances of LSVM [71] and PSVM on a

large dataset

Two large datasets consisting of 2 million points and 10 attributes were created

using the NDC Data Generator [78]. One of them is called NDC-easy because it

is highly linearly separable (around 90%). The other one is called NDC-hard since

it has linear separability of around 70%. As is shown in Table 2.2.1 the linear

classifiers obtained using both methods performed almost identically. Despite the

2 million size of the datasets, PSVM solved the problems in about 20 seconds each

compared to LSVM’s times of over 650 seconds. In contrast, SVMlight [50] failed

on this problem due to memory problems [71] on the same machine.

3. Table 2.2.1: Comparison of PSVM, SSVM and LSVM and SVMlight,

using a Linear Classifier

25

In this experiment we compared four methods: PSVM,

SSVM, LSVM and SVMlight on seven publicly available datasets from UCI Machine

Learning Repository [77] and [79]. As shown in Table 2.2.1, the correctness of the

four methods were very similar but the execution time including ten-fold cross

validation for PSVM was smaller by as much as one order of magnitude or more

than the other three methods tested. Since LSVM, SSVM and PSVM are all based

on similar formulations of the classification problem the same value of ν was used

for all of them. For SVM light the trade-off between trading error and margin is

represented by a parameter C. The value of C was chosen by tuning. A paired

t-test [76] at 95% confidence level was performed to compare the performance of

PSVM and the other algorithms tested. The p-values obtained show that there is

no significant difference between PSVM and the other methods tested.

4. Figure 2.3: PSVM on the Spiral Dataset

We used a Gaussian kernel in order to classify the spiral dataset. This dataset

consisting of 194 black and white points intertwined in the shape of a spiral is

a synthetic dataset [107]. However, it apparently is a difficult test case for data

mining algorithms and is known to give neural networks severe problems [42]. In

contrast, a sharp separation was obtained using PSVM as can be seen in Figure

2.3.

5. Table 2.2.1: Nonlinear Classifier Comparison using PSVM, SSVM and

LSVM

26

For this experiment we chose four datasets from the UCI Machine Learning Repos-

itory for which it is known that a nonlinear classifier performs significantly bet-

ter that a linear classifier. We used PSVM, SSVM and LSVM in order to find

a Gaussian-kernel-based nonlinear classifier to classify the data. In all datasets

tested, the three methods performed similarly as far as ten-fold cross validation

is concerned. However, execution time of PSVM was much smaller than that of

other two methods. Note that for the mushroom dataset that consists of m = 8124

points with n = 22 attributes each, the square 8124× 8124 kernel matrix does not

fit into memory. In order to address this problem, we used a rectangular kernel with

Ā ∈ R215×8124 instead, as described in [52]. In general, our algorithm performed

particularly well with a rectangular kernel since the system solved is of size k × k,

with k << m and where k is the much smaller number of rows of Ā. In contrast

with a full square kernel matrix the system solved is of size m×m. A paired t-test

[76] at 95% confidence level was performed to compare the performance of PSVM

and the other algorithms tested. The p-values obtained show that there is no sig-

nificant difference between PSVM and the other methods tested as far as ten-fold

testing correctness is concerned.

27

0.5 1 1.5 2 2.5 3

x 10
4

0

20

40

60

80

100

120

140

160

180

Number of training points

T
im

e
in

 s
ec

on
ds

PSVM
LSVM
SSVM
SOR
SMO
SVM LIGHT
RLP

Figure 2.4: Running times on the Adult dataset obtained by seven different methods
using a linear classifier. As in table 2.2.1 the slope of the curve corresponding to PSVM
indicate that it is much faster than any other method.

28

Testing Correctness %
Dataset size Running Time Sec.

(Training, Testing) Method

n = no. of attributes PSVM LSVM SSVM SOR SMO SVMlight RLP

(1605, 30957) 84.00 84.27 84.27 84.06 - 84.25 78.68
n = 123 0.3 3.3 1.9 0.3 0.4 5.4 9.9

(2265, 30297) 84.13 84.66 84.57 84.24 - 84.43 77.19
n = 123 0.5 5.0 2.8 1.2 0.9 10.8 19.12

(3185, 29377) 84.25 84.55 84.63 84.23 - 84.40 77.83
n = 123 0.7 8.1 3.9 1.4 1.8 21.0 80.1

(4781, 27781) 84.35 84.55 84.55 84.28 - 84.47 79.15
n = 123 1.2 8.1 6.0 1.6 3.6 43.2 88.6

(6414, 26148) 84.49 84.68 84.60 84.30 - 84.43 71.85
n = 123 1.6 18.8 8.1 4.1 5.5 87.6 218.8

(11221, 21341) 84.48 84.84 84.79 84.37 - 84.68 60.00
n = 123 2.5 38.9 14.1 18.8 17.0 306.6 449.2

(16101, 16461) 84.78 85.01 84.96 84.62 - 84.83 72.52
n = 123 3.7 60.5 21.5 24.8 35.3 667.2 632.6

(22697, 9865) 85.16 85.35 85.35 85.06 - 85.17 77.43
n = 123 5.2 92.0 29.0 31.3 85.7 1425.6 991.9

(32562, 16282) 84.56 85.05 85.02 84.96 - 85.05 83.25
n = 123 7.4 140.9 44.5 83.9 163.6 2184.0 1561.1

Table 2.1: Testing set correctness and running times on the larger Adult
dataset obtained by seven different methods using a linear classifier.
Timing comparisons are approximate because of the different machines
used, but they do indicate that PSVM has a distinct edge, e.g. solving
the largest problem in 7.4 seconds, much faster than any other method.
Best results are shown in bold.

29

Data Set PSVM SSVM LSVM

m × n Train Train Train

Test Test Test

Time (Sec.) Time (Sec.) Time (Sec.)

p-value ∗ p-value∗

Ionosphere 96.5% 97.0 % 97.0 %
351 × 34 95.2% 95.8 % 95.8%

4.60 25.25 14.58
0.71 0.71

BUPA Liver 75.7% 75.8% 75.8%
345 × 6 73.6% 73.7% 73.7%

4.34 20.65 30.75
0.97 0.97

Tic-Tac-Toe 98.0% 98.0% 98.2%
958 × 9 98.4% 98.4% 94.7%

74.95 395.30 350.64
1 1

Mushroom ∗∗ 88.0% 89.0% 87.6
8124 × 22 88.0% 88.8% 87.8

35.50 307.66 503.74
0.09 0.79

Table 2.2: PSVM, SSVM and LSVM training and ten-fold test-
ing correctness and running times using a nonlinear classifier.
Execution times include ten-fold training. Same value of ν was
used in all the methods. Best results are in bold.

∗ Paired t-test p-values are calculated for each method relative to
PSVM for ten-fold test correctness.
∗∗ A Rectangular kernel [53] of the size 8124 × 215 was used here
instead of the square 8124 × 8124 kernel which does not fit into
memory.

30

Data Set PSVM SSVM LSVM SVMlight

m × n Train Train Train Train

Test Test Test Test

Time (Sec.) Time (Sec.) Time (Sec.) Time (Sec.)

p-value ∗ p-value∗ p-value∗

WPBC (60 mo.) 70.8% 70.8% 70.8% 62.7%

110 × 32 68.5% 68.5% 68.5% 62.7%

0.02 0.17 0.53 3.85

1 1 0.30

Ionosphere 90.7% 94.3 % 94.4 % 91.4 %

351 × 34 87.3% 88.7 % 88.7 % 88.0 %

0.17 1.23 1.40 2.19

0.55 0.55 0.71

Cleveland Heart 87.0% 87.3% 87.3% 87.7%

297 × 13 85.9% 86.2% 86.2% 86.5 %

0.01 0.7 0.78 1.44

0.91 0.91 0.80

Pima Indians 77.9% 78.2% 78.2% 77.0 %

768 × 8 77.5% 77.6% 77.6% 76.4 %

0.02 0.78 2.18 37.00

0.95 0.95 0.59

BUPA Liver 70.1% 70.2% 70.2% 70.6%

345 × 6 69.4% 70.0% 70.0% 69.5%

0.02 0.78 2.18 6.65

0.84 0.72 0.96

Galaxy Dim 93.7% 95.0% 95.0% 94.2 %

4192 × 14 93.5% 95.0% 95.0% 94.1 %

0.34 5.21 21.56 28.33

4 × 10−4 4 × 10−4 0.14

Mushroom 81.0% 81.7% 81.7% 81.5%

8124 × 22 81.0% 81.5% 81.5% 81.5%

1.15 11.73 61.62 145.59

0.49 0.49 0.48

Table 2.3: PSVM, SSVM, LSVM and SVMlight training and ten-fold testing
correctness and running times using a linear classifier. Execution times include
ten-fold training. Same value of ν was used in all the methods. The value of
the parameter C in SVMlight was chosen by tuning. Best results are in bold.
∗ Paired t-test p-values are calculated for each method relative to PSVM for
ten-fold test correctness.

31

Method Dataset Training Testing Time
Correctness % Correctness % (CPU) sec.

LSVM NDC-easy 90.86 91.23 658.5
PSVM NDC-easy 90.80 91.13 20.8

LSVM NDC-hard 69.80 69.44 655.6
PSVM NDC-hard 69.84 69.52 20.6

Table 2.4: LSVM and PSVM performance on two, 2 million point NDC
datasets with 10-attributes. A linear classifier with parameter ν = 0.1
was used in both methods on the same locop1 machine. SVMlight failed
to solve this problem due to memory problems.

32

2.3 Incremental Proximal Support Vector Machine

We describe now how a simple procedure can be applied to the proximal SVM, described

in the previous section, that will allow it to generate a new linear classifier (2.6) by

retiring old data while simultaneously adding new data. To do that let us augment the

input vector x ∈ Rn by −1 and define an augmented input vector z ∈ Rn+1 as follows:

z :=

[

x

−1

]

. (2.31)

Coupling this definition with the solution expression for
[

w

γ

]

given by (2.11) and (2.12),

the linear classifier (2.6) can be written explicitly in terms of the input data as follows:

sign(z′(
I

ν
+ E ′E)−1E ′De)















= 1, then x ∈ A+,

= −1, then x ∈ A−,

(2.32)

where, as before, E = [A − e]. Two key properties of the classifier (2.32) are:

(i) The size of the data to be stored is of order of (n+1)2 for E ′E and of order (n+1)

for E ′De, even if the number of data points is of the order of millions.

(ii) Time to solve the system of linear equations determined by the positive definite

matrix I
ν

+ E ′E is of order (n + 1)3.

In order to reduced numerical errors on the calculation of E ′E scaling of the data matrix

A may be necessary.

Since n is typically less than 100 and often around 10, the above classifier is extremely

effective for massive datasets with millions of data points. Based on these simple facts

we describe an incremental algorithm that is capable of retiring any desired portion of

the data while at the same time adding new data to generate an appropriately altered

33

classifier. To keep the notation simple assume that the current classifier is based on an

input dataset E ∈ Rm×(n+1) and a corresponding diagonal matrix D ∈ Rm×m of ±1.

Suppose that an “old” subset of this data represented by the submatrix E1 ∈ Rm1×(n+1)

of E and a corresponding diagonal submatrix D1 ∈ Rm1×m1

of ±1 of D needs to be

retired and removed from the characterization of our classifier, leaving its complement in

E to determine the new classifier together with new data. The “new” set of data points

is represented by a new matrix E2 ∈ Rm2×(n+1) and a corresponding diagonal matrix

D2 ∈ Rm2×m2

of ±1 that needs to be added to the characterization of our new classifier.

The classifier (2.32) can be updated to reflect the retirement of E1 and the addition of

E2 as stated below in our incremental algorithm.

Algorithm 2.3.1 Linear Incremental SVM Given m data points in Rn represented

by the m × n matrix A and a diagonal matrix D of ±1 labels denoting the class of each

row of A, we generate an incremental linear classifier by retiring old data represented

by the submatrix E1 ∈ Rm1×(n+1) of E = [A − e] and a corresponding diagonal

submatrix D1 ∈ Rm1×m1

of D of ±1 and adding new data represented by a new matrix

E2 ∈ Rm2×(n+1) and a corresponding diagonal matrix D2 ∈ Rm2×m2

of ±1 as follows:

sign(z′(I
ν

+ E ′E − E1′E1 + E2′E2)−1(E ′De − E1′D1e + E2′D2e)) =














1, then x ∈ A+,

−1, then x ∈ A−.

(2.33)

Note that for each block of data, say Ei ∈ Rmi×(n+1), all we need to store is the relatively

small (n+1)× (n+1) matrix Ei′Ei and the (n+1)× 1 vector Ei′Die. These quantities,

which are of order than (n+1)2 and n+1 respectively, allow us to retire and add data to

classifiers as often as we wish. Furthermore, this incremental process allows us to handle

arbitrarily large datasets, by successively adding blocks of data in the form of Ei′Ei and

34

Ei′Die, as will be demonstrated by the numerical results of the next section. Note also

that Ei′Ei which is of order (n + 1)2 can be considered to be a compression of the much

larger dataset Ei which is of order mi(n + 1). Since it takes 2(n + 1)2mi operations to

compute Ei′Ei and 2(n+1)mi operations to compute Ei′Die, the amount of computation

of the incremental algorithm only grows linearly in the number of data points m =
∑

mi

as shown in Figure 2.6.

2.3.1 Numerical Testing

Because we are principally interested in massive problems, we focus our numerical tests on

two datasets synthetically generated and totally stored on disk. These sets are generated

by Musicant’s NDC (normally distributed clustered) dataset generator [78]. The data

is generated as clusters of normally distributed points in Rn with an adjustable linear

separability.

The first dataset consists of 1 billion points in 10-dimensional input space. The

purpose of this dataset is to demonstrate the capability of our incremental SVM algorithm

to obtain linear classifier by 500 increments of 2 million points each. The 1-billion dataset

was generated first, and stored in 500 subsets of size 2 million points each. A testing

set of size 10 million, was also generated with the same distribution used to generate

the 1 billion dataset and hence, resulting in essentially the same linear separability. It is

important to note that every block of data is read from disk only once, and that once the

new block of data is processed, the only data that has to be kept in memory is a matrix

of size 11 × 11 and a vector of size 11 × 1 in our case here. Every time a new block is

read from disk, new incoming data is processed by the algorithm, the 11×11 matrix and

11× 1 vector are updated, and after this, all the processed data is discarded, leaving the

35

Figure 2.5: Flow chart for the Linear Incremental Algorithm 2.3.1.

memory ready for new incoming data. This process is graphically depicted in Figure 2.5.

The proposed incremental algorithm solved this 1-billion point problem in less than

2 hours and 26 minutes (8747 seconds). About 43 minutes, slightly less than 30% of

the total time, was spent reading data from disk. Training set correctness was 90.78 %

while testing set correctness was 90.79%. A graph exhibiting the linear dependence of

computational time of the algorithm on the number of data points used to generate the

solution
[

w

γ

]

of (2.12) and (2.11) is presented in Figure 2.6.

36

0 100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Millions of points

T
im

e
in

 s
ec

on
ds

Figure 2.6: Computational time of the Linear Incremental Algorithm 2.3.1 as a function
of the number of data points used to compute the solution

[

w

γ

]

of (2.28) for the 1-billion
point dataset. The straight line depicts actual computational times obtained for 500
different problems each incremented by 2 million points.

The second dataset of 60 million points in 10-dimensional input space is intended to

simulate two months of data. We use this dataset to demonstrate how our algorithm can

incrementally retire 1 million old points and add 1 million new points in 30 successive

steps which simulate daily retirement of the oldest data and addition of the newest data.

In the previous experiment all the data was assumed to be on disk from the beginning

and just one final separating hyperplane was required. In this case at the beginning we

assume that we just have 30 days of data and every day the oldest block of data has to be

retired (1-million points) and one new block of data (1-million points) corresponding to

the new data just collected has to be added. Furthermore, we assume that at every time

that an update of the data is made, a new separating hyperplane has to be calculated.

The data was generated in such a way that the starting and final separating hyperplanes

differ considerably. This means that the incoming data is constantly changing and the

37

30

60

90

0
1st day

30th day

5th day

10th day

15th day

20th day

25th day

Figure 2.7: Normals to the separating hyperplanes x′wi = γi, i = 1, . . . , 30, correspond-
ing to 5-day intervals. Separating hyperplanes change due to the incorporation of new
data and the retirement of old data as described in Algorithm 2.3.1.

separating criteria to be learned changes dynamically with respect to time. A gradual

change in the resulting hyperplane after incrementally retiring 1 million old points and

adding 1 million new points can be observed. In order to show this gradual change, we

measure the differences between planes by calculating the angle α between their normals.

Thus, given two hyperplane normals wi, wj ∈ Rn we compute:

cos α =
|wi′wj |

‖wi‖‖wj‖

A plot showing the angles between the normals to the hyperplanes as the data changes

is depicted in Figure 2.7.

38

2.4 Multicategory Proximal Support Vector Machine

Classifiers

It is the purpose of this section to apply the simple 2-class PSVM classifier to k-category

classification by using a one-from-rest (OFR) separation for each class [8]. However, due

to the fact that the number of points belonging to one class is usually much smaller

than the number of points in the union of the remaining classes, the resulting two-class

problems are very unbalanced. It is important to note that this unbalanced property also

appears often in real life datasets. PSVM fits each class with one of two distant parallel

planes and errors in both classes are penalized similarly in the objective function. Because

of the unbalanced classes, PSVM tends to fit better the class with more data points and

it underestimates the overall error of the class with fewer data points. This often results

in a poor PSVM performance. In order to override this difficulty, we propose a balanced

modification of PSVM which weights each class equally no matter how many points are

in each class. In addition, we propose a very fast Newton refinement algorithm, which

is applicable to any SVM classification approach, and which leads to a better classifier.

Experimental results show that incorporation of these two modifications into a plain

PSVM one-from-the-rest approach improves significantly test set correctness while while

maintaining its speed.

In contrast, other one-from-the-rest and SVM k-class classifiers [5, 8, 14] require the

solution of either a large single or k smaller quadratic or linear programs that need

specialized optimization codes such as CPLEX [21]. On the other hand, obtaining a linear

or nonlinear PSVM classifier as we propose here, requires nothing more sophisticated than

solving k systems of linear equations. Efficient and fast linear equation solvers are freely

39

available [1] or are part of standard commercial packages such as MATLAB [75], and can

solve very large systems. We note that in [94, 97], multiclass least squares formulations

are proposed that explicitly require Mercer’s positive definiteness condition [19, 102] on

the kernels used which is not needed here. In addition, the problem in [97] is formulated

as single large constrained optimization problem in contrast to the k smaller uncoupled

and unconstrained OFR approach used here. Various multiclass schemes are investigated

in [39, 106]. We also note that, in concept, PSVM can be interpreted as ridge regression

[46] which is essentially regularized least squares [98]. However, ridge regression in its

general form lacks the geometric justification and interpretation of PSVM which consists

of constructing two parallel planes, each proximal to one of two classes of data points,

while simultaneously pushing these plane as far apart as possible. A ridge regression

application similar to PSVM is given in [101], which however uses a variation of the EM-

algorithm to solve the classification problem, whereas we use a straightforward solution

of the normal equations of regularized least squares. Interesting numerical comparison

of multiclass methods is given in [47].

2.4.1 PSVM Modification for Unbalanced Classes

In order to improve PSVM performance when one of classes has many more data points

than the other one, which is usually the case in the two-class subproblems that the OFR

approach generates, we propose the following simple balancing approach.

Let m1 and m2 be the number of points in classes 1 and −1 respectively. We first

40

define an m × m diagonal matrix N as follows:

Nii =











1
m1

, if dii = 1,

1
m2

, if dii = −1.
(2.34)

We then formulate the following balanced PSVM problem:

min
(w,γ)∈Rn+1

ν

2
(D(Aw − eγ) − e)′N(D(Aw − eγ) − e) +

1

2

∥

∥

∥

∥

[

w

γ

]∥

∥

∥

∥

2

(2.35)

This formulation is equivalent to re-weighting the examples on the training set, so

that examples in a class with fewer members have more “influence” on the objective

function that points in a majority class.

Setting the gradient with respect to w and γ equal to zero and noting that D2 = I

and DND = N we obtain the following necessary and sufficient optimality conditions

for (2.35):

νA′N(Aw − eγ − De) + w = 0

νe′N(−Aw + eγ + De) + γ = 0
(2.36)

We describe now a computational enhancement to PSVM which is also applicable to

other SVM classifiers as well.

2.4.2 Newton Refinement

The simple computational refinement that we have implemented, and which is applicable

to any type of SVM classifier, consists of taking a solution obtained by either a linear or

nonlinear classifier, say for simplicity a solution
[

w̄

γ̄

]

to the PSVM problem (2.8), which

generates a separating plane x′w̄ − 1 · γ̄ = 0 as shown in Figure 2.2. The idea here is

to move this plane parallel to itself in such a way to improve the separation of the two

41

sets A+ and A−. One way to measure such improvement is by counting the number of

misclassified points as was done in [18]. A simpler way is to slightly alter the objective

function of (2.8) so that the first term is zero if all the points are correctly classified

by the separating plane. This is easily achieved by setting nonnegative components of

D(Aw − eγ) − e, which correspond to correctly classified points, equal to zero, that is:

(−D(Aw − eγ) + e)+ = 0, where as defined in the Introduction, (z)+ = max{0, z}. Thus

the minimization problem (2.8) becomes:

min
(w,γ)∈Rn+1

ν

2
‖((−D(Aw − eγ) + e)+‖

2 +
1

2

∥

∥

∥

∥

[

w

γ

]∥

∥

∥

∥

2

, (2.37)

which is the optimization problem underlying the smooth support vector machine algo-

rithm [53]. Since we are only interested in merely refining our solution while maximizing

the margin
[

w̄

γ̄

]

of (2.8), we replace w by λw̄ in (2.37) and obtain our refinement problem:

min
(λ,γ)∈R2

f(λ, γ) =
ν

2
‖((−D(λAw̄ − eγ) + e)+‖

2 +
1

2

∥

∥

∥

∥

[

λw̄

γ

]∥

∥

∥

∥

2

(2.38)

This is a simple strongly convex problem in the 2-dimensional space of (λ, γ), that can be

very quickly solved by a fast Newton method, the quadratic convergence and effectiveness

of which has been established in [53] for the full problem (2.37) in the n + 1 dimensional

space (w, γ). We briefly describe this approach now. We first need the expressions for

the gradient and generalized Hessian matrix [28, 43] of f(λ, γ) as follows. We first define:

d(λ, γ) = (−D(λAw̄ − eγ) + e), (2.39)

then the 2× 1 gradient and the 2× 2 generalized Hessian matrix of f(λ, γ) are given by:

∇f(λ, γ) =

[

−νw̄′A′D(d(λ, γ))++ ‖ w̄ ‖2 λ

νe′D(d(λ, γ))+ + γ

]

, (2.40)

42

and,

∂2f(λ, γ) =







νw̄′A′EAw̄+ ‖ w̄ ‖2 −νw̄′A′Ee

−νe′EAw̄ νe′Ee + 1






, (2.41)

where E is the diagonal matrix:

E = Ddiag((d(λ, γ))∗)D = diag((d(λ, γ))∗), (2.42)

and the (·)∗ is the step function defined in the Introduction and which is taken here

as a specific subgradient [85, 88] of the plus function (·)+ and is used to generate the

generalized Hessian matrix in the same manner as in [51, 53].

A key difference between PSVM and SVM, is that with PSVM the conventional

concept of support vectors (the data points corresponding to the positive multipliers)

does not hold [33]. However, it is interesting to note that after this refinement is applied

to the PSVM solution, the concept of support vectors applies to the new solution. If the

pair (λ∗, γ∗) is the solution obtained by (2.38), then the corresponding dual multipliers

associated with this problems are given by [53]:

u = (−D(λ∗Aw̄ − eγ∗) + e)+ (2.43)

Then, the support vectors for the problem (2.38) are the data points of A correspond-

ing to positive components of u.

The Newton refinement procedure can then be summarized as follows.

Algorithm 2.4.1 Newton Refinement Given a solution
[

w̄

γ̄

]

to the PSVM 2-class

problem (2.8) refine it as follows:

(i) Start with λ0 = 1 and γ0 = γ̄. maxiter (maximum number of iterations).

43

(ii) Iterate (iii) until either j = maxiter or:

∥

∥

∥

∥

[

λj

γj

]

−

[

λj+1

γj+1

]∥

∥

∥

∥

≤ 10−3, (2.44)

in which case
[

w

γ

]

=
[

λj+1w̄

γj+1

]

is the refined solution to (2.8).

(iii) Calculate the new iterates:

[

λj+1

γj+1

]

=

[

λj

γj

]

−∇2f(λj, γj)−1∇f(λj, γj) (2.45)

With obvious modifications this algorithm can be applied to refine a solution
[

ū

γ̄

]

of the

nonlinear PSVM (2.51) as well.

In order to illustrate the proposed modifications we generated a small unbalanced

artificial two-dimensional two-class dataset. The dataset consist of 100 points, 85 of

which are in class A+ and 15 points in class A−. When the problem is solved using

plain PSVM (2.8), the influence of the 85 points in class A+ prevails over that of the

much smaller set of data points in A−. As a result, 14 out of 15 points in class A− are

misclassified. The total training set correctness is 86%, with only 6.6% correctness for the

smaller class A− and 100% correctness for the larger class A+. The resulting separating

plane is shown in Figure 2.8. When a balanced PSVM (2.35) is used we can see an

improvement over the plain PSVM, in the sense that a separating plane is obtained that

correctly classifies all the points in class A−. However due to the significant difference in

the cardinality of the two classes and the distribution of their points, a subset of 16 points

in class A+ is now misclassified. The total training set correctness is 84%, with 100%

correctness for A− points and 81.2% correctness for A+ points. The resulting separating

plane is shown in Figure 2.9. If now in addition to balancing, the Newton refinement is

also applied, we obtain a separating plane that misclassifies only two points. The total

training set correctness is 98%. The resulting separating plane is shown in Figure 2.10.

44

0.8 1 1.2 1.4 1.6 1.8 2
−8

−6

−4

−2

0

2

4

6

x’w=γ−1

x’w=γ+1

A−

A+

x’w=γ

Figure 2.8: An unbalanced dataset consisting of 100 points, 85 of which in class A+
represented by hollow circles, and 15 points of which in class A− represented by hollow
diamonds. The separating plane is obtained by using a plain PSVM (2.8). The class
A− is practically ignored by the solution. The total training set correctness is 86% with
6.6% correctness for A− and 100% correctness for A+.

45

0.8 1 1.2 1.4 1.6 1.8 2
−6

−4

−2

0

2

4

6

A−

A+

x’w=γ−1

x’w=γ+1

x’w=γ

Figure 2.9: Linear classifier improvement by balancing is demonstrated on the same
dataset of Figure 2.8. The separating plane is obtained by using a balanced PSVM (2.35).
Even though the class A− is correctly classified in its entirety, the overall performance
is still rather unsatisfactory due to significant difference in the distribution of points in
each of the classes. Total training set correctness is 84%.

46

0.8 1 1.2 1.4 1.6 1.8 2
−4

−3

−2

−1

0

1

2

3

A−

A+

x’w=γ

x’w=γ+1

x’w=γ−1

Figure 2.10: Very significant linear classifier improvement as a consequence of balancing
and the use of the Newton refinement is demonstrated on the same dataset of Figures 2.8
and 2.9. The separating plane is obtained using both modifications to PSVM: balancing
and Newton refinement . The total training set correctness is now 98% compared to 86%
for plain PSVM and 84% for balanced PSVM.

47

To extend this formulation to k classes, all we need is to redefine the following for

separating class r from the rest:

A =













A1

...

Ak













A+ = Ar,

A− =



































A1

...

Ar−1

Ar+1

...

Ak



































r ∈ {1, . . . , k},

(2.46)

where, Ar ∈ Rmr×n represents the mr points in class r. We then define for m =

m1 + . . . + mk the m × m diagonal matrix D of ±1 as follows:

Dii = 1 for Ai ∈ Ar

Dii = -1 for Ai 6∈ Ar

r ∈ {1, . . . , k}

(2.47)

We note that since the multicategory classification problem, A− has many more rows

than A+, a normalization is usually carried out by dividing the error vector yi by mr for

Ai ∈ Ar and by (m−mr) for Ai /∈ Ar. Here, mr is the number of points in class r which

is represented by the matrix Ar ∈ Rmr×n.

48

Once the k minimization problems (2.8) are solved (with A and D defined as in (2.46)

and (2.47)) by solving the linear system of equations (2.36), k unique separating planes

are generated:

x′wr − γr = 0, r = 1, . . . , k. (2.48)

A given new point x ∈ Rn is assigned to class s, depending on which of the k halfspaces

generated by the k planes (2.48) it lies deepest in, that is:

x′ws − γs = max
r=1,... ,k

x′wr − γr. (2.49)

For concreteness we explicitly state our multicategory PSVM algorithm.

Algorithm 2.4.2 Linear Multicategory Proximal SVM Given m data points in

Rn, each belonging to one of k classes and represented by k matrices Ar of order mr ×n,

r = 1, . . . , k, with m1 + . . . + mk = m, we generate the linear classifier (2.49) as follows:

(i) Solve k independent nonsingular systems of (n+1) linear equations (2.36) in (n+1)

unknowns, with A and D defined as in (2.46) and (2.47), for some positive value

of ν. (Typically ν is chosen by means of a tuning set.)

(ii) Apply the Newton Refinement 2.4.1 to each solution (w̄r, γ̄r) , (r = 1 . . . k) obtained

on step (i) to get the refined solutions (wr, γr) .

(iii) The point x belongs to class s as determined by the criterion (2.49).

We extend now the above results to nonlinear proximal support vector machines that

result in nonlinear proximal surfaces instead of planes in the input space.

49

2.4.3 Nonlinear Multicategory Proximal Support Vector Ma-

chines

To obtain our nonlinear proximal classifier we modify our proximal minimization problem

(2.8) as in [33, 65] by first replacing the primal variable w by its dual equivalent , w =

A′Du, and modifying the last term of the objective function to be the norm of the new

dual variable u and γ. We obtain then the following problem:

min
(u,γ)∈Rm+1

ν

2
‖D(AA′Du − eγ) − e‖2 +

1

2

∥

∥

∥

∥

[

u

γ

]∥

∥

∥

∥

2

. (2.50)

If we now replace the linear kernel AA′ by a nonlinear kernel K(A,A′), as defined in the

Introduction, we obtain:

min
(u,γ)∈Rm+1

ν

2
‖D(K(A,A′)Du − eγ) − e‖2 +

1

2

∥

∥

∥

∥

[

u

γ

]∥

∥

∥

∥

2

. (2.51)

As in the linear kernel case, we extend the above two category case to k categories by

redefining A and D as in (2.46) and (2.47) to obtain k minimization problems. Setting

the gradient with respect to u and γ to zero and noting again that D2 = I gives the

following necessary and sufficient optimality conditions for (2.51):

νD(K(A,A′)′K(A,A′)Du − eγ − De) + u = 0

νe′(−K(A,A′)Du + eγ + De) + γ = 0.
(2.52)

Once the k minimization problems (2.51) are solved (with A and D defined as in (2.46)

and (2.47)) by solving the k independent linear systems of equations (2.52), k unique

proximal surfaces are generated:

K(x′, A′)Dur − γr = 0, r = 1, . . . , k. (2.53)

50

A given new point x ∈ Rn is assigned to class s depending on which of the k nonlinear

halfspaces generated by the k surfaces (2.53) it lies deepest in, that is:

K(x′, A′)Dus − γs = max
r=1,... ,k

K(x′, A′)Dur − γr. (2.54)

For concreteness we explicitly state our multicategory nonlinear PSVM algorithm.

Algorithm 2.4.3 Nonlinear Multicategory Proximal SVM Given m data points

in Rn, each belonging to one of k classes and represented by k matrices Ar of order

mr ×n, r = 1, . . . , k, with m1 + . . .+mk = m, we generate the nonlinear classifier (2.54)

as follows:

(i) Solve k independent nonsingular systems of (m+1) linear equations (2.52) in (m+1)

unknowns, with A and D defined as in (2.46) and (2.47), for some positive value

of ν. (Typically ν is chosen by means of a tuning set.)

(ii) Apply the Newton refinement algorithm 2.4.1 to each solution (ūr, γ̄r) , (r = 1 . . . k)

obtained on step (i) to get the refined solutions (ur, γr) .

(ii) The point x belongs to class s as determined by the criterion (2.54).

When each of the k subproblems become large enough so as not to fit in memory, then the

m×m kernel K(A,A′) is replaced by the considerably smaller m× m̄ rectangular kernel

K(A, Ā′), where Ā consists of as little as 15% of randomly chosen rows of A. This leads

to the extremely fast and effective Reduced Support Vector Machine (RSVM) algorithm

as described in [52] and presented next.

Algorithm 2.4.4 RSVM Algorithm

51

(i) Choose a random subset matrix Ā ∈ Rm̄×n of the original data matrix A ∈ Rm×n.

Typically m̄ is 1% to 15% of m, and Ā consists of the union of random samples of

each class that maintain the original relative sizes of the k classes.

(ii) Solve the following modified version of the PSVM (2.51) where A′ only is replaced

by Ā′ with corresponding D̄ ⊂ D:

min
(ū,γ)∈Rm+1

ν

2
‖D(K(A, Ā′)D̄ū − eγ) − e‖2 +

1

2

∥

∥

∥

∥

[

ū

γ

]∥

∥

∥

∥

2

(2.55)

which is equivalent to solving (2.51) with A′ only replaced by Ā′.

The separating k surface is given by (2.53) with A′ replaced by Ā′ as follows:

K(x′, Ā′)D̄ūr = γr, (2.56)

where (ū, γ) ∈ Rm̄+1 is the unique solution of (2.55), and x ∈ Rn is a free input space

variable of a new point.

We turn now to our numerical results.

2.4.4 Numerical Implementation and Comparisons

Our algorithms require the solution of k square systems of linear equations, where k is the

number of classes to be classified. Each one of the linear systems of equations involved is

of the size of the number of input attributes n plus one in the linear case, and of the size

of the number of data points m plus one in the nonlinear case. When using a rectangular

kernel [53], the size of the problem can be reduced from m to m̄ with m̄ < m for the

nonlinear case.

The real life datasets used for our numerical tests are the following:

52

• Four publicly available datasets from the UCI Machine Learning Repository [77]:

Wine, Glass, Iris, Vowel, with 3, 6, 3 and 11 categories respectively.

• Two publicly available datasets from the Statlog Project Databases, also available

from UCI [77]: Vehicle and Segment, with 4 and 7 categories respectively.

Properties of each dataset such as number of points, number of features and number

of classes are given in Table 2.4.4.

Numerical Experiments Using Multicategory Linear Classifiers

We compared the performances of the methods described below.

• Linear OFRQP: One-From-Rest Quadratic Programming classifier using a stan-

dard support vector machine formulation for each subproblem and solved using a

MATLAB-CPLEX interface [21]. CPLEX is a state of the art software widely used

to solve linear and quadratic programs.

• Linear MPSVM : Multicategory Proximal SVM One-From-Rest classifier using

a Linear Proximal support vector machine (PSVM) for each subproblem. Usually,

each one-from-rest problem is an unbalanced two-class classification problem. This

means that the number of points m− in A− is much larger than the number of

points m+ in A+. In order to address this problem, we apply balancing, which is,

a weight factor added to each error term in the objective function of (2.8) that is

inversely proportional to the number of points in each class. We call this MPSVM

modification Balanced MPSVM (B-MPSVM) and is given in (2.35). In order

to further improve the performance of B-PSVM, for each two-class classification

subproblem we use the Newton Refinement 2.4.1. Although the refinement step is

53

very simple and fast, in almost all the tested cases this refinement combined with

the balancing procedure improved test set correctness of the MPSVM by as much

as 16.8% (Table 2.4.4, Iris). We called this MPSVM modification Balanced and

Refined MPSVM (BR-MPSVM).

The value of the parameter ν in each of these methods was chosen by using a tuning

set extracted from the training set. In order to find an optimal value for ν the following

tuning procedure was employed on each fold:

• A random tuning set of the the size of 10% of the training data was chosen and

separated from the training set.

• Several SVMs were trained on the remaining 90% of the training data using values

for ν equal to 2i, where i = 0, 1, . . . , 25.

• The value of ν that gave the best SVM correctness on the tuning set was chosen.

• A final SVM was trained using the chosen value of ν and all the training data. The

resulting SVM was tested on the testing data.

The linear BR-MPSVM running time was often one order of magnitude less than

the standard OFRQP time. Furthermore, there was no a significant statistical difference

between both methods as far test set correctness was concerned. This is shown by the

p-values obtained using a 95% confidence interval paired t-test for the tenfold test set

correctness. Experiments indicated that both modifications, balancing and refinement

achieved significant accuracy improvements over the plain MPSVM, while maintaining

relatively fast performances. Testing set correctness, training set correctness, CPU times

and p-values are given in Table 2.4.4.

54

Data Set OFRQP MPSVM B-MPSVM BR-MPSVM
m × n Train Train Train Train

of Classes Test Test Test Test

Time (Sec.) Time (Sec.) Time (Sec.) Time (Sec.)

p-value† p-value† p-value†

Wine 100.0% 100.0 % 99.9% 100.0%
178 × 13 96.1 % 98.9 % 98.9% 99.4%

3 1.39 0.02 0.02 0.11
0.20 0.80 0.10

Glass 72.9 % 66.5 % 68.29 % 68.9%
214 × 9 67.2 % 60.6 % 61.6 % 63.0 %

6 1.80 0.02 0.03 0.14
0.19 0.28 0.35

Iris 98.7 % 85.6% 86.9 % 97.6%
150 × 4 98.0 % 83.3% 86.7 % 97.3%

3 0.73 0.02 0.02 0.11
1.2e − 6 2.0e − 4 0.66

Vowel 68.7 % 54.6% 56.1% 64.5%
528 × 10 57.2 % 45.5 % 47.0% 57.6%

11 5.56 0.05 0.05 0.14
9.9e − 3 1.8e(−2) 0.93

Vehicle 83.3 % 79.1% 81.0% 81.1 %
846 × 18 79.0 % 76.2 % 77.4% 77.5 %

4 2.88 0.11 0.11 0.34
8.8e − 2 0.33 0.30

Segment 93.0 % 85.5% 90.3% 91.3%
2310 × 19 91.9 % 84.8 % 90.1% 90.8%

7 18.57 0.22 0.31 0.67
7.5e − 7 2.2e(−2) 0.14

Table 2.5: OFRQP, MPSVM,B-MPSVM,BR-MPSVM linear
classifier training correctness, tenfold testing correctness and
running times. Execution times include tenfold training. Best
results are in bold.

† p-values calculated with respect to OFRQP for tenfold test-
ing correctness, using a paired t-test with 95% confidence
interval.

55

Data Set Nonlinear OFRQP Nonlinear BR-MPSVM

m × n Train Train

of Classes Test Test

Time (Sec.) Time (Sec.)

p-value†

Wine 99.2 % 100.0 %
178 × 13 97.7 % 100.0 %

3 5.39 0.45
2.5e − 2

Glass 88.5% 78.09%
214 × 9 70.0 % 69.1%

6 9.05 0.59
0.84

Iris 98.1 % 99.5%
150 × 4 98.0 % 98.7%

3 3.01 0.31
0.62

Vowel 100.0% 100.0%
528 × 10 94.3 % 98.5%

11 221.34 6.62
0.67

Vehicle ∗ 89.5% 88.6%
846 × 18 80.5 % 82.2%

4 148.01 1.17
0.78

Segment ∗∗ 99.9 % 98.3%
2310 × 19 96.1% 97.0%

7 5562.31 11.65
0.16

Table 2.6: Nonlinear OFRQP and Nonlinear BR-MPSVM train-
ing correctness, tenfold testing correctness and running times.
Execution times include tenfold training.

* For this nonlinear MPSVM classifier, RSVM [52] with an 85%
kernel reduction was used here in order to obtain a smaller rect-
angular kernel problem that will fit in memory (846 × 127 instead
of 846 × 846).

** For this nonlinear MPSVM classifier, RSVM [52] with an 85%
kernel reduction was used here in order to obtain a smaller rect-
angular kernel problem that will fit in memory (2310 × 350 instead
of 2310 × 2310).

† p-values calculated with respect to OFRQP for tenfold testing cor-
rectness, using a paired t-test with 95% confidence interval.

56

Numerical Experiments Using Multicategory Nonlinear Classifiers

For the nonlinear case, we compared again nonlinear OFRQP and nonlinear PSVM and

its modifications. In all experiments, a Gaussian kernel was used. In order to find an op-

timal value for ν and the Gaussian kernel parameter µ, a tuning procedure similar to that

employed for the linear case was employed. Values for ν where taken equal to 2i, where

i = 5, 6, . . . , 35. Values for µ where taken equal to 2i, where i = −7,−6, . . . , 1. Since

the difference between the plain MPSVM and the modified MPSVM was not significant,

Table 2.4.4 shows comparisons between the following methods only:

• Nonlinear OFRQP: One-From-Rest Quadratic Programming classifier using a

standard nonlinear support vector machine for each subproblem which is solved by

a MATLAB-CPLEX.

• Nonlinear BR-MPSVM : Balanced Refined Multicategory PSVM One-From-

Rest classifier using a nonlinear PSVM including both modifications, balancing

and Newton refinement.

On the larger datasets (Vehicle, Segment) a rectangular kernel [52] was used on both

methods in order to reduce even more the computational time while maintaining the

correctness achieved by using the full kernel.

The nonlinear BP-MPSVM classifier was obtained in shorter time than the nonlinear

OFRQP classifier in all the datasets tested. Furthermore, the BR-MPSVM algorithm

was statistically better or equal to the nonlinear OFRQP on test set correctness. CPU

times and p-values are given in Table 2.4.4.

In order to show graphically for the nonlinear case that BP-MPSVM can produce

significant improvement over MPSVM, we created an artificial 2-dimensional example

57

where this improvement can be visually observed. The example consists of 500 data

points in 2 dimensions belonging to one of three classes. Class 1 consists of 400 points,

class 2 consists of 50 points and class 3 consists of 50 points. Figure 2.11 depicts a non-

linear classification obtained using MSPVM without any modifications using a Gaussian

kernel. Since the classes are unbalanced, we observe that the majority of the x class is

misclassified by the algorithm leading to 91.8% training set correctness. On the other

hand, Figure 2.12 depicts a nonlinear classification obtained by BP-MPSVM that utilizes

balancing and Newton refinement which gives a significantly improved 98.8% training set

correctness.

58

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.11: Example consisting of 500 data points in 2 dimensions belonging to one
of three classes. Nonlinear Gaussian kernel classifiers using MSPVM without balancing
or Newton refinement generated a torus containing mostly white diamonds, a crescent
containing black x’s, and an ellipse containing mostly yellow circles. Since the classes
are unbalanced, most of the x class is misclassified by the algorithm and resulting in a
91.8% overall training set correctness.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.12: The same example as that of Figure 2.11 classified by a nonlinear BR-
MPSVM which uses MSPVM plus balancing and Newton refinement. This resulted in
a torus containing mostly white diamonds, another torus containing black x’s and an
ellipse containing mostly yellow circles. Overall training set correctness is 98.8%.

59

Chapter 3

Knowledge Based Support Vector

Machines

3.1 The Linear Support Vector Machine and Prior

Knowledge

We consider the problem, depicted in Figure 3.1, of classifying m points in the n-

dimensional input space Rn, represented by the m × n matrix A, according to mem-

bership of each point Ai in the class A+ or A− as specified by a given m × m diagonal

matrix D with plus ones or minus ones along its diagonal. For this problem, the linear

programming support vector machine [9, 65] with a linear kernel, which is a variant of the

standard support vector machine (2.1) [19, 103], is given by the following linear program

with parameter ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0,

(3.1)

60

x
x
x x

x
x

xx
x

x
x

A+

A-

o oo
o
o

o
o

o
o

o

oo

o
o

o

o
o

x

x
x

o

x

o

o
o

o
o

x
x

x

wMargin= 2
‖w‖1

x′w = γ − 1

x′w = γ + 1

Separating Plane: x′w = γ

Figure 3.1: The linear programming support vector machine classifier in the w-space of
Rn: The approximately bounding planes of equation (2.2) with a soft (i.e. with some
error) margin 2

‖w‖1
, and the plane of equation (2.4) approximately separating points in

A+ from points in A−.

where ‖ · ‖1 denotes the 1-norm as defined in the Introduction. That this problem is

indeed a linear program, can be easily seen from the equivalent formulation:

min
(w,γ,y,t)∈Rn+1+m

νe′y + e′t

s.t. D(Aw − eγ) + y ≥ e

t ≥ w ≥ −t

y ≥ 0.

(3.2)

For economy of notation we shall use the first formulation (3.1) with the understanding

that computational implementation is via (3.2).

The 1-norm term ‖w‖1 in (3.1), which is half the reciprocal of the distance 2
‖w‖1

measured using the ∞-norm distance [63] between the two bounding planes of (2.2) (see

Figure 3.1), maximizes the “margin”. As was pointed out in chapter 2 maximizing the

margin enhances the generalization capability of a support vector machine [19, 103].

The 1-norm of the error variable y is minimized parametrically with weight ν in (3.1),

61

resulting in an approximate separating plane (2.4) as depicted in Figure 3.1. This plane

acts as a linear classifier as follows:

sign(x′w − γ)















= 1, then x ∈ A+,

= −1, then x ∈ A−,

(3.3)

where sign(·) is the sign function defined in the Introduction.

Suppose now that we have prior information of the following type. All points x lying

in the polyhedral set determined by the linear inequalities:

Bx ≤ b, (3.4)

belong to class A+. Such inequalities generalize simple box constraints such as a ≤

x ≤ d. Looking at Figure 3.1 or at the inequalities (2.3) we conclude that the following

implication must hold:

Bx ≤ b =⇒ x′w ≥ γ + 1. (3.5)

That is, the knowledge set {x | Bx ≤ b} lies on the A+ side of the bounding plane

x′w = γ + 1. This implication is equivalent to the following statement for a given (w, γ):

Bx ≤ b, x′w < γ + 1, has no solution x. (3.6)

This statement in turn is implied by the following statement:

B′u + w = 0, b′u + γ + 1 ≤ 0, u ≥ 0, has a solution (u,w). (3.7)

To see this simple backward implication: (3.6)⇐=(3.7), we suppose the contrary that

there exists an x satisfying (3.6) and obtain the contradiction b′u > b′u as follows:

b′u ≥ u′Bx = −w′x > −γ − 1 ≥ b′u, (3.8)

62

where the first inequality follows by premultiplying Bx ≤ b by u ≥ 0. In fact, under the

natural assumption that the prior knowledge set {x | Bx ≤ b} is nonempty, the forward

implication: (3.6)=⇒(3.7) is also true, as a direct consequence of the nonhomogeneous

Farkas theorem of the alternative [59, Theorem 2.4.8]. We state this equivalence as the

following key proposition to our knowledge-based approach.

Proposition 3.1.1 Knowledge Set Classification. Let the set {x | Bx ≤ b} be

nonempty. Then for a given (w, γ), the implication (3.5) is equivalent to the statement

(3.7). In other words, the set {x | Bx ≤ b} lies in the halfspace {x | w′x ≥ γ + 1} if and

only if there exists u such that B′u + w = 0, b′u + γ + 1 ≤ 0 and u ≥ 0.

Proof We establish the equivalence of (3.5) and (3.7) by showing the equivalence

(3.6) and (3.7). By the nonhomogeneous Farkas theorem [59, Theorem 2.4.8] we have

that (3.6) is equivalent to either:

B′u + w = 0, b′u + γ + 1 ≤ 0, u ≥ 0, having solution (u,w), (3.9)

or

B′u = 0, b′u < 0, u ≥ 0, having solution u. (3.10)

However, the second alternative (3.10) contradicts the nonemptiness of the knowledge-

set {x | Bx ≤ b}, because for x ∈ {x | Bx ≤ b} and u solving (3.10) we obtain the

contradiction:

0 ≥ u′(Bx − b) = x′B′u − b′u = −b′u > 0. (3.11)

Hence (3.10) is ruled out and we have that (3.6) is equivalent to (3.9) which is (3.7). �
This proposition will play a key role in incorporating knowledge sets, such as {x | Bx ≤

b}, into one of two categories in a support vector classifier formulation as demonstrated

in the next section.

63

3.1.1 Knowledge-Based SVM Classification

We describe now how to incorporate prior knowledge in the form of polyhedral sets into

our linear programming SVM classifier formulation (3.1).

We assume that we are given the following knowledge sets:

k sets belonging to A+ : {x | Bix ≤ bi}, i = 1, . . . , k

ℓ sets belonging to A− : {x | C ix ≤ ci}, i = 1, . . . , ℓ
(3.12)

By Proposition 3.1.1 this knowledge is equivalent to the following requirements with

respect to the bounding planes (2.2):

There exist ui, i = 1, . . . , k, vj, j = 1, . . . , ℓ, such that:

Bi′ui + w = 0, bi′ui + γ + 1 ≤ 0, ui ≥ 0, i = 1, . . . , k

Cj ′vj − w = 0, cj ′vj − γ + 1 ≤ 0, vj ≥ 0, j = 1, . . . , ℓ

(3.13)

All we need to do now in order to incorporate the knowledge sets (3.12) into the linear

programming formulation (3.1) of an SVM classifier, is to add the conditions (3.13) as

constraints to (3.1) as follows:

min
w,γ,y,ui,vj

νe′y + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0

Bi′ui + w = 0

bi′ui + γ + 1 ≤ 0

ui ≥ 0, i = 1, . . . , k

Cj ′vj − w = 0

cj ′vj − γ + 1 ≤ 0

vj ≥ 0, j = 1, . . . , ℓ

(3.14)

64

This linear programming formulation will ensure that each of the knowledge sets {x | Bix ≤

bi}, i = 1, . . . , k and {x | C ix ≤ ci}, i = 1, . . . , ℓ lie on the appropriate side of the bound-

ing planes (2.2). However, there is no guarantee that such bounding planes exist that

will precisely separate these two classes of knowledge sets, just as there is no a priori

guarantee that the original points belonging to the sets A+ and A− are linearly separa-

ble. We therefore add error variables ri, ρi, i = 1, . . . , k, sj , σj, j = 1, . . . , ℓ, just like the

error variable y of the SVM formulation (3.1), and attempt to drive these error variables

to zero by modifying our last formulation above as follows:

min
w,γ,y,ui,ri,ρi,vj ,sj ,σj

νe′y+

µ(
k
∑

i=1

(ri + ρi) +
ℓ
∑

j=1

(sj + σj)) + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0

−ri ≤ Bi′ui + w ≤ ri

bi′ui + γ + 1 ≤ ρi

ui, ri, ρi ≥ 0, i = 1, . . . , k

−sj ≤ Cj ′vj − w ≤ sj

cj ′vj − γ + 1 ≤ σj

vj, sj, σj ≥ 0, j = 1, . . . , ℓ

(3.15)

This is our final knowledge-based linear programming formulation which incorporates the

knowledge sets (3.12) into the linear classifier with weight µ, while the (empirical) error

term e′y is given weight ν. Note that for simplicity we chose the same weighting factor

µ for all the slack variables associated with the knowledge sets. There is also possible to

define a different weighting factor mui or muj for each prior knowledge set. As usual, the

value of these two parameters, ν, µ, are chosen by means of a tuning set extracted from

65

the training set. If we set µ = 0 then the linear program (3.15) degenerates to (3.1), the

linear program associated with an ordinary linear SVM. However, if set ν = 0, then the

linear program (3.15) generates a linear SVM that is strictly based on knowledge sets,

but not on any specific training data. This might be a useful paradigm for situations

where training datasets are not easily available, but expert knowledge, such as doctors’

experience in diagnosing certain diseases, is readily available. This will be demonstrated

in the breast cancer dataset of subsection 3.1.2.

Note that the 1-norm term ‖w‖1 can be replaced by one half the 2-norm squared,

1
2
‖w‖2

2, which is the usual margin maximization term for ordinary support vector ma-

chine classifiers [19, 103]. However, this changes the linear program (3.15) to a quadratic

program which typically takes much longer to solve.

For completeness we state our knowledge-based algorithm as follows.

Algorithm 3.1.2 Knowledge-Based Linear SVM (KSVM). Given m data points

in Rn represented by the m× n matrix A and a diagonal matrix D of ±1 labels denoting

the class of each row of A, and given the knowledge sets (3.12), we generate the linear

classifier (3.3) as follows:

(i) Compute
[

w

γ

]

by solving the linear program (3.15) for some positive values of ν and

µ. Typically ν and µ are chosen by means of a tuning (validating) set.

(ii) Classify a new x by using (3.3) and the solution
[

w

γ

]

from Step (i) above.

For standard SVMs, support vectors consist of all data points which are the complement

of the data points that can be dropped from the problem without changing the separating

plane (2.4) [65, 103]. Thus for our knowledge-based linear programming formulation

(3.15), support vectors correspond to data points (rows of the matrix A) for which the

66

Lagrange multipliers are nonzero, because solving (3.15) with these data points only will

give the same answer as solving (3.15) with the entire matrix A.

The concept of support vectors has to be modified as follows for our knowledge sets.

Since each knowledge set in (3.12) is represented by a matrix Bi or Cj, each row of these

matrices can be thought of as characterizing a plane boundary of the knowledge set. In

our formulation (3.15) above, such rows are wiped out if the corresponding component

of the variables ui or vj are zero at an optimal solution. We call the complement of these

components of the the knowledge sets (3.12) support constraints. Deleting constraints

(rows of Bi or Cj), for which the corresponding components of ui or vj are zero, will

not alter the solution of the knowledge-based linear program (3.15). This in fact is

corroborated by numerical tests that were carried out.

We demonstrate the geometry of incorporating knowledge sets into a classification

problem by considering a synthetic example in R2 with m = 200 points, 100 of which

are in A+ and the other 100 in A−. Figure 3.2 depicts ordinary linear separation using

the linear SVM formulation (3.1). We now incorporate three knowledge sets into the

the problem: {x | B1x ≤ b1} belonging to A+ and {x | C1x ≤ c1} and {x | C2x ≤

c2} belonging to A−, and solve our linear program (3.15). We depict the new linear

separation in Figure 3.3 and note the substantial change generated in the linear separation

by the incorporation of these three knowledge sets.

3.1.2 Numerical Testing for the Linear Case

Our numerical testing was performed on two publicly available datasets [77]. A descrip-

tion of the datasets and the experiments performed is presented next.

67

−20 −15 −10 −5 0 5
−45

−40

−35

−30

−25

−20

−15

x’w= γ +1

x’w= γ

x’w= γ −1

A−

A+

Figure 3.2: A linear SVM separation for 200 points in R2 using the linear programming
formulation (3.1).

68

−20 −15 −10 −5 0 5
−45

−40

−35

−30

−25

−20

−15

{x | B 1x ≤ b1}

x’w= γ

x’w= γ +1

{x | C 1x ≤ c1}

{x | C 2x ≤ c2}

x’w= γ −1

A−

A+

Figure 3.3: A linear SVM separation for the same 200 points in R2 as those in Figure 3.2
but using the linear programming formulation (3.15) which incorporates three knowledge
sets: {x | B1x ≤ b1} into the halfspace of A+, and {x | C1x ≤ c1}, {x | C2x ≤ c2} into
the halfspace of A−, as depicted in the figure above. Note the substantial difference
between the linear classifiers x′w = γ of Figures 3.2 and 3.3.

69

Promoter Recognition Dataset

The first dataset [100] is from the domain of DNA sequence analysis and is called the

promoter recognition dataset. A promoter is a short DNA sequence that precedes a

gene sequence. Hence, it is important distinguish between promoter and nonpromoter

sequences, since this will make it possible to identify the starting locations of genes in

long, uncharacterized sequences of DNA.

Description of the data

For classification purposes of this experiment it is sufficient to consider the DNA as a

linear sequence of characters belonging to a four elements set {A,G,C, T}. These four

elements are commonly referred to nucleotides.

Each promoter consists of a sequence of 57 consecutive DNA nucleotides. The lo-

cations are numbered with respect to a fixed meaningful, reference point. Starting at

position -50 (p−50) and ending at position +7 (p7). Negative numbers indicate sites pre-

ceding the reference point while positive numbers indicate sites following the reference

point. Since each one of the 57 feature takes nominal values from the set {A,G,C, T},

a real valued representation is needed to apply our KSVM formulation. Each nominal

value is mapped into a four dimensional binary vector depending on the nucleotide that is

being represented. This simple and widely used “1 of N” mapping scheme for converting

nominal attributes into real-valued attributes is illustrated in Figure 3.4.

Once this simple conversion is applied to the dataset, the feature space is transformed

from a 57-dimensional space with nominal values into a 57× 4 = 228 real-valued dimen-

sional space. So, each data point is now a point in R228. See Figure 3.5. The training

70

1 0 0 0

0 0

0

0 0 0

0

0 1

1

1

0

G

T

C

A

Figure 3.4: Real-valued representation of the nucleotide set {A,G,C, T} .

1 0 0 00 0 0 10 00 1

TG

... ...

... ...C C A A G T

G T A

Figure 3.5: Real-valued representation of a promoter, from a 57 nominal-valued vector
to a 57 × 4 = 228 real-valued vector.

71

example consist of 53 sample promoters and 53 nonpromoter sequences for a total of 106

data points.

The Prior Knowledge

The prior knowledge for the promoters dataset is also publicly available [77] using

a prolog notation. However in order to make these rules accessible to a wider audience

we will use standard logic notation to describe them below. There are two facts that will

imply that the sequence is very likely to be a promoter: If the sequence has a region where

a certain protein (RNA polymerase) make CONTACT and the helical DNA sequence

has a valid conformation (CONF) so the two pieces of the contact region spatially align.

This rule can be written as:

CONTACT ∧ CONF =⇒ PROMOTER (3.16)

There are two regions named M35 and M10 in the original representation of the

sequences in which the RNA polymerase makes CONTACT , this means:

M35 ∧ M10 =⇒ CONTACT (3.17)

The following 4 rules R1, R2, R3, R4 imply possible contact in the region M35:

R1 :
(p−37 = C) ∧ (p−36 = T) ∧ (p−35 = T)∧

(p−34 = G) ∧ (p−33 = A) ∧ (p−32 = C) =⇒ M35

72

R2 :
(p−36 = T) ∧ (p−35 = T) ∧ (p−34 = G)∧

(p−32 = C) ∧ (p−31 = A) =⇒ M35

R3 :
(p−36 = T) ∧ (p−35 = T) ∧ (p−34 = G)∧

(p−33 = A) ∧ (p−32 = C) ∧ (p−31 = A) =⇒ M35

R4 :
(p−36 = T) ∧ (p−35 = T) ∧ (p−34 = G)∧

(p−33 = A) ∧ (p−32 = C) =⇒ M35

The following 4 rules R5, R6, R7, R8 imply possible contact in the region M10:

R5 :
(p−14 = T) ∧ (p−13 = A) ∧ (p−12 = T)∧

(p−11 = A) ∧ (p−10 = A) ∧ (p−09 = T) =⇒ M10

R6 :
(p−13 = T) ∧ (p−12 = A) ∧ (p−10 = A)∧

(p−08 = T) =⇒ M10

R7 :
(p−13 = T) ∧ (p−12 = A) ∧ (p−11 = T)∧

(p−10 = A) ∧ (p−09 = A) ∧ (p−08 = T) =⇒ M10

R8 : (p−12 = T) ∧ (p−11 = A) ∧ (p−07 = T) =⇒ M10

The following 4 rules R9, R10, R11, R12 imply characteristics that produce acceptable con-

formations:

73

R9 :

(p−47 = C) ∧ (p−46 = A) ∧ (p−45 = A)∧

(p−43 = T) ∧ (p−42 = T) ∧ (p−40 = A)∧

(p−39 = C) ∧ (p−22 = G) ∧ (p−18 = T)∧

(p−16 = C) ∧ (p−08 = G) ∧ (p−07 = C)∧

(p−06 = G) ∧ (p−05 = C) ∧ (p−04 = C)∧

(p−02 = C) ∧ (p−01 = C) =⇒ CONF

R10 : (p−45 = A) ∧ (p−44 = A) ∧ (p−41 = A) =⇒ CONF

R11 :

(p−49 = A) ∧ (p−44 = T) ∧ (p−27 = T)∧

(p−22 = T) ∧ (p−18 = T) ∧ (p−16 = A)∧

(p−15 = C) ∧ (p−01 = C) =⇒ CONF

R12 :

(p−45 = A) ∧ (p−41 = A) ∧ (p−28 = T)∧

(p−27 = T) ∧ (p−23 = T) ∧ (p−21 = A)∧

(p−20 = A) ∧ (p−17 = T) ∧ (p−15 = T)∧

(p−04 = T) =⇒ CONF

It is important to note that this prior knowledge matches none of the given examples

of the training set. Hence, this set of rules is useless as a classifier by itself. However, they

do capture a significant amount of information about promoters and it has been shown

that incorporating them into a classifier results in a better and more accurate classifier

using knowledge-based neural networks [100]. We will demonstrate a similar result using

our simpler linear support vector machine linear classifier.

74

Conversion of the rules to sets of the form Bx ≤ b

To convert the above rules R1, . . . , R12 to a set of matrix inequalities we group them

as follows:

M35 : M10 : CONF :








































R1

or

R2

or

R3

or

R4









































∧









































R5

or

R6

or

R7

or

R8









































∧









































R9

or

R10

or

R11

or

R12









































=⇒ PROMOTER

4 × 4 × 4 = 64 Rules.

This results in 64 rules which imply the occurrence of a promoter. Each of these 64

rules can be represented as a constraint set {x|Bix ≤ bi} for i = 1, . . . , 64, which define

part of the promoter region in R228.

Numerical Comparisons

The performance in terms of generalization ability of our proposed algorithm, is com-

pared to six other learning algorithms using the same promoter dataset. These algorithms

are:

75

1. KBANN: Knowledge Based Artificial Neural Networks

A hybrid learning system that maps problem specific prior knowledge, represented

in propositional logic into neural networks and then, refines this reformulated

knowledge using back propagation [100].

2. BP: Standard Back Propagation

Neural networks with a simple connected layer of hidden units [90].

3. O’Neill’s Method

An empirical method suggested by a biologist based in a collection of “filters” to

be used for promoter recognition [80].

4. NN: Nearest Neighbor Algorithm

PEBLS Nearest algorithm [20] with k = 3.

5. ID3: Decision Tree

Quinlan’s decision tree builder [86].

6. SVM1: 1-norm SVM

Standard 1-norm support vector machine [9].

Following the methodology used in prior work [100], we tested our algorithm on this

dataset using a “leave-one-out” cross validation methodology in which the entire training

set of 106 elements is repeatedly divided into a training set of size 105 and a test set of

size 1, in all 106 possible ways. The values of ν and µ associated with both KSVM and

SVM1 where obtained by a tuning procedure. The tuning procedure consists of removing

a subset of the training data, solving (3.15) for various various values of ν and µ and

choosing values of these parameters based on best accuracy on the removed “tuning” set.

76

The number of times that a test element is misclassified for each method is counted as

an error and reported in Table 3.1.2.

Method Number of Errors (out of 106)

KBANN∗ 4
KSVM 5
BP∗ 8

SVM1 9
O’Neill∗ 12

NN∗ 13
ID3∗ 19

Table 3.1: Comparison of KSVM leave-one-out total error with various classification
algorithms.

∗ Results reported in [100].

Note that our proposed KSVM is second best among all tested methods with 5 mis-

classification while KBANN is best with 4 misclassification even though our classifier is a

simple linear classifier, sign(x′w−γ), while a neural network classifier is a more complex

nonlinear classifier. Furthermore, we note that KSVM is relatively simpler to implement

than KBANN and requires merely a commonly available linear programming solver. In

addition, KSVM which is a linear support vector machine classifier, improves by 44.4%

the error of an ordinary linear 1-norm SVM classifier that does not use knowledge sets.

Wisconsin Breast Cancer Prognosis Dataset

Description of the Data

The second dataset used in our numerical tests was the Wisconsin breast cancer prog-

nosis dataset. Each data point consists of 30 nuclear features plus the diameter of the

77

excised tumor and the number of metastasized lymph nodes. There are 110 instances

corresponding to 41 patients whose cancer had recurred (RECUR) in less than 60 months

and 69 patients whose cancer had not recurred (NONRECUR) in less than 60 months.

We tested our algorithm on this dataset using a ten-fold cross validation methodology in

which the entire training set of 110 elements is divided ten times into a training set of

size 99 and a test set of size 11. The testing correctness reported is an average taken over

the testing correctness obtained in each fold. The parameters ν and µ associated with

both KSVM and SVM1 where obtained by a tuning procedure similar to that of Section

3.1.2.

The Prior Knowledge

The prior knowledge we used in this experiment are rules used by doctors [55]. These

rules are related to two of the features of the dataset: tumor size (feature 31), that is the

diameter of the excised tumor in centimeters and lymph node status which refers to the

number of metastasized axillary lymph nodes (feature 32). The rules are:

RECUR Rule:

(LY MPH ≥ 5) ∧ (TUMOR ≥ 4) =⇒ RECUR

NONRECUR rule:

(LY MPH = 0) ∧ (TUMOR ≤ 1.9) =⇒ NONRECUR

78

Experimental Results

It is important to note that the rules described above can be applied directly to classify

only 32 of the given 110 given points of the training dataset and correctly classify 22 of

these 32 points. The remaining 78 points are not classifiable by the above rules. Hence,

if the rules are applied as a classifier by themselves the classification accuracy would be

20%. As such, these rules are not very useful by themselves and doctors use them in

conjunction with other rules [55]. However, using our approach the rules were converted

to linear inequalities and used in our KSVM algorithm without any use of the data, i.e.

ν = 0 in the linear program (3.15). The resulting linear classifier achieved 66.4% accu-

racy. Similar results were obtained using both the data and the rules in our formulation.

The correctness achieved by standard SVM using all the data is 66.2% [9]. This result is

remarkable because our knowledge-based formulation can be applied to problems where

training data may not be available whereas expert knowledge may be readily available

in the form of knowledge sets. This fact makes this method considerably different from

previous hybrid methods like KBANN where training examples are needed in order to

refine prior knowledge.

79

3.2 Knowledge-Based Nonlinear Kernel Classifiers

In this section we extend the previous work shown in the previous section of incorporating

multiple polyhedral sets as prior knowledge for a linear classifier to nonlinear kernel-based

classifiers. This extension is not an obvious one, since it depends critically on the theory of

linear inequalities and cannot be incorporated directly into a nonlinear kernel classifier.

However, if the “kernel trick” is employed after one uses a theorem of the alternative

for linear inequalities [59, Chapter 2], then incorporation of polyhedral knowledge sets

into a nonlinear kernel classifier can be achieved. We note that conventional datasets

are not essential to our formulation and can be surrogated by samples taken from the

knowledge sets. We tested our formulation on standard type test problems. The first

test problem is the exclusive-or (XOR) problem consisting of four points in 2-dimensional

input space plus four polyhedral knowledge sets, all of which get classified perfectly by a

Gaussian kernel knowledge-based classifier. The second test problem is the checkerboard

problem consisting of 16 two-colored squares. Typically this problem is classified based

on 1000 points. Here, by using only 16 points plus prior knowledge, our knowledge-based

nonlinear kernel classifier, generates a sharp classifier that is as good as that obtained by

using 1000 points.

3.2.1 Prior Knowledge in a Nonlinear Kernel Classifier

We turn now to the incorporation of prior knowledge in the form of a polyhedral set

into a nonlinear kernel classifier. But first, we show that a routine incorporation of such

knowledge leads to a nonlinear system of nonconvex inequalities that are not very useful.

Suppose that the polyhedral {x | Bx ≤ b} where B ∈ Rℓ×n and b ∈ Rℓ, must lie in

the halfspace {x | x′w ≥ γ + 1} for some given w ∈ Rn and γ ∈ R. We thus have the

80

implication:

Bx ≤ b =⇒ x′w ≥ γ + 1. (3.18)

By letting w take on its dual representation w = A′Du [53, 65], the implication (3.18)

becomes:

Bx ≤ b =⇒ x′A′Du ≥ γ + 1. (3.19)

If we now “kernelize” this implication by letting x′A′ −→ K(x′, A′), where K is some

nonlinear kernel as defined in the Introduction, we then have the implication, for a given

A, D, u and γ, that:

Bx ≤ b =⇒ K(x′, A′)Du ≥ γ + 1. (3.20)

This is equivalent to the following nonlinear, and generally nonconvex, system of inequal-

ities not having a solution x for a given A, D, u and γ:

Bx ≤ b, K(x′, A′)Du < γ + 1. (3.21)

Unfortunately, the nonlinearity and nonconvexity of the system (3.21) precludes the use

of any theorem of the alternative for either linear or convex inequalities [59]. We thus

have to backtrack to the implication (3.19) and rewrite it equivalently as the following

system of homogeneous linear inequalities not having a solution (x, ζ) ∈ Rn+1 for a given

fixed u and γ:

Bx −bζ ≤ 0,

u′DAx −(γ + 1)ζ < 0,

−ζ < 0.

(3.22)

81

Here, the positive variable ζ is introduced in order to make the inequalities (3.22) ho-

mogeneous in (x, ζ), thus enabling us to use a desired theorem of the alternative [59] for

such linear inequalities. It follows by Motzkin’s Theorem of the Alternative [59], that

(3.22) is equivalent to the following system of linear inequalities having a solution in

(v, η, τ) ∈ Rℓ+1+1 for a given fixed u and γ:

B′v +(A′Du)η = 0,

−b′v −(γ + 1)η −τ = 0,

v ≥ 0,

0 6= (η, τ) ≥ 0.

(3.23)

If η = 0, then τ > 0. Dividing by τ and redefining v as v
τ
, it follows from (3.23) that

there exists a v such that: B′v = 0, −b′v > 0, v ≥ 0, which contradicts the natural

assumption that the knowledge set {x | Bx ≤ b} is nonempty. Otherwise, we have the

contradiction:

0 = v′Bx ≤ b′v < 0. (3.24)

Hence η > 0 and τ ≥ 0. Dividing the inequalities of (3.23) by η and redefining v as v
η
,

we have from (3.23) that the following system of linear equalities has a solution v for a

given u and γ:

B′v +A′Du = 0,

b′v +γ + 1 ≤ 0,

v ≥ 0.

(3.25)

Under the rather natural assumption that A has linearly independent columns, this in

turn is equivalent to following system of linear equalities having a solution v for a given

82

u and γ:

AB′v +AA′Du = 0,

b′v +γ + 1 ≤ 0,

v ≥ 0.

(3.26)

Note that the linear independence is needed only for (3.26) to imply (3.25). Replacing the

the linear kernels AB′ and AA′ by the general nonlinear kernels K(A,B′) and K(A,A′),

we obtain that the following system of linear equalities has a solution v for a given u and

γ:

K(A,B′)v +K(A,A′)Du = 0,

b′v +γ + 1 ≤ 0,

v ≥ 0.

(3.27)

This is the set of constraints that we shall impose on our nonlinear classification formula-

tion as a surrogate for the implication (3.20). Since the derivation of the conditions were

not directly obtained from (3.20), it is useful to state precisely what the conditions (3.27)

are equivalent to. By using a similar reasoning that employs theorems of the alternative

as we did above, we can derive the following equivalence result which we state without

giving its explicit proof. The proof is very similar to the arguments used above.

Proposition 3.2.1 Knowledge Set Classification Let

{y | K(B,A′)y ≤ b} 6= ∅. (3.28)

Then the system (3.27) having a solution v, for a given u and γ, is equivalent to the

implication:

K(B,A′)y ≤ b =⇒ u′DK(A,A′)y ≥ γ + 1. (3.29)

83

We note that the implication is not precisely the implication (3.20) that we started with,

but can be thought of as a kernelized version of it. To see this we state a corollary to the

above proposition which shows what the implication means for a linear kernel AA′.

Corollary 3.2.2 Linear Knowledge Set Classification

Let

{y | Bx ≤ b, x = A′y} 6= ∅. (3.30)

For a linear kernel K(A,A′) = AA′, the system (3.27) having a solution v, for a given u

and γ, is equivalent to the implication:

Bx ≤ b, x = A′y =⇒ w′x ≥ γ + 1, w = A′Du, x = A′y. (3.31)

We immediately note that the implication (3.31) is equivalent to the desired implication

(3.18) for linear knowledge sets, under the rather unrestrictive assumption that A has

linearly independent columns. That the columns of A are linearly independent is equiv-

alent to assuming that in the input space, features are not linearly dependent on each

other. If they were, then linearly dependent features could be easily removed from the

problem.

We turn now to a linear programming formulation of a nonlinear kernel classifier that

incorporates prior knowledge in the form of multiple polyhedral sets.

84

3.2.2 Knowledge-Based Linear Programming Formulation of Non-

linear Kernel Classifiers

A standard [9, 65] linear programming formulation of a nonlinear kernel classifier is given

by:

min
u,γ,r,y

νe′y + e′r

s.t. D(K(A,A′)Du − eγ) + y ≥ e,

−r ≤ u ≤ r,

y ≥ 0.

(3.32)

The (u, γ) taken from a solution (u, γ, r, y) of (3.32) generates the nonlinear separating

surface K(x′, A′)Du = γ. Suppose now that we are given the following knowledge sets:

p sets belonging to A+ : {x | Bix ≤ bi}, i = 1, . . . , p,

q sets belonging to A− : {x | C ix ≤ ci}, i = 1, . . . , q.
(3.33)

It follows from the implication (3.20) for B = Bi and b = bi for i = 1, . . . , p and its

consequence, the existence of a solution to (3.27), and a similar implication for the sets

{x | Cix ≤ ci}, i = 1, . . . , q, that the following holds:

There exist si, i = 1, . . . , p, tj, j = 1, . . . , q, such that:

K(A,Bi′)si + K(A,A′)Du = 0, bi′si + γ + 1 ≤ 0, si ≥ 0, i = 1, . . . , p,

K(A,Cj ′)tj − K(A,A′)Du = 0, cj ′tj − γ + 1 ≤ 0, tj ≥ 0, j = 1, . . . , q.

(3.34)

85

We now incorporate the knowledge sets (3.33) into the nonlinear kernel classifier linear

program (3.32) by adding conditions (3.34) as constraints to (3.32) as follows:

min
u,γ,r,(y,si,tj)≥0

νe′y + e′r

s.t. D(K(A,A′)Du − eγ) + y ≥ e,

−r ≤ u ≤ r,

K(A,Bi′)si + K(A,A′)Du = 0,

bi′si + γ + 1 ≤ 0, i = 1, . . . , p,

K(A,Cj ′)tj − K(A,A′)Du = 0,

cj ′tj − γ + 1 ≤ 0, j = 1, . . . , q.

(3.35)

This linear programming formulation incorporates the knowledge sets (3.33) into the

appropriate halfspaces in the higher dimensional feature space. However since there is no

guarantee that we are able to place each knowledge set in the appropriate halfspace, we

need to introduce error variables zi
1, ζ

i
1, i = 1, . . . , p, zj

2, ζ
j
2 , j = 1, . . . , q, just like the error

variable y of the SVM formulation (3.32), and attempt to drive these error variables to

zero by modifying our last formulation above as follows:

min
u,γ,r,zi

1
,z

j
2
,(y,si,tj ,ζi

1
,ζ

j
2
)≥0

νe′y + e′r + µ(

p
∑

i=1

(e′zi
1 + ζ i

1) +

q
∑

j=1

(e′zj
2 + ζj))

s.t. D(K(A,A′)Du − eγ) + y ≥ e,

−r ≤ u ≤ r,

−zi
1 ≤ K(A,Bi′)si + K(A,A′)Du ≤ zi

1,

bi′si + γ + 1 ≤ ζ i
1, i = 1, . . . , p,

−zj
2 ≤ K(A,Cj ′)tj − K(A,A′)Du ≤ zj

2,

cj ′tj − γ + 1 ≤ ζj
2 , j = 1, . . . , q.

(3.36)

This is our final knowledge-based linear programming formulation which incorporates

the knowledge sets (3.33) into the linear classifier with weight µ, while the (empirical)

86

error term e′y is given weight ν. As usual, the value of these two parameters, ν, µ, are

chosen by means of a tuning set extracted from the training set.

Remark 3.2.3 Data-Based and Knowledge-Based Classifiers If we set µ = 0,

then the linear program (3.36) degenerates to (3.32), the linear program associated with

an ordinary data-based nonlinear kernel SVM. We can also make the linear program

(3.36), which generates a nonlinear classifier, to be only knowledge-based and not

dependent on any specific training data if we replace the matrix A appearing everywhere

in (3.36) by a random sample of points taken from the knowledge sets (3.33) together

with the associated diagonal matrix D. This might be a useful paradigm for situations

where training datasets are not easily available, but expert knowledge, such as doctors’

experience in diagnosing certain diseases, is readily available. In fact, using this idea

of making A and D random samples drawn from the knowledge sets (3.33), the linear

programming formulation (3.36) as is can be made totally dependent on prior knowledge

only.

We turn now to our numerical experiments.

3.2.3 Numerical Experience

The focus of this section is rather theoretical. However, in order to illustrate the power of

the proposed formulation, we tested our algorithm on two synthetic examples for which

most or all the data is constituted of knowledge sets. Experiments involving real world

knowledge sets will be utilized in future work.

87

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3.6: Totally or partially knowledge-based XOR classification problem. The nonlin-
ear classifier obtained by using a Gaussian kernel in our linear programming formulation
(3.36), completely separates the two pairs of prior knowledge sets as well the two pairs
of points. The points can be treated either as samples taken from the knowledge sets or
given independently of them.

88

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3.7: Another XOR classification problem where only one of the points is contained
in a knowledge set. The nonlinear classifier obtained by using a Gaussian kernel in
our linear programming formulation (3.36), completely separates the two pairs of prior
knowledge sets as well the two pairs of points. Note the the resulting separating surface
is strongly influenced by the knowledge sets in that the separating surface is constrained
by a knowledge set, and in fact it is tangent to it.

89

Exclusive-Or (XOR) Knowledge Sets

This example generalizes the well known XOR example which consists of the four vertices

of a rectangle in 2-dimensions, with the pair of vertices on the end of one diagonal

belonging to one class (crosses) while the other pair belongs to another class (stars).

Figure 3.2.2 depicts two such pairs of vertices symmetrically placed around the origin.

It also depicts two pairs of knowledge sets with each pair belonging to one class (two

triangles and two parallelograms respectively).

The given points in this XOR example can be considered in two different ways. We

note that in line with Remark 3.2.3, this classifier can be considered either partially or

totally dependent on prior knowledge, depending on whether the four data points are

given independently of the knowledge sets or as points contained in them. Our knowledge-

based linear programming classifier (3.36) with a Gaussian kernel yielded the depicted

nonlinear separating surface that classified all given points and sets correctly.

Another realization of the XOR example is depicted in Figure 3.2.2. Here the data

points are not positioned symmetrically with respect to the origin and only one of them

is contained in a knowledge set. The resulting nonlinear separating surface for this XOR

example is constrained by one of the knowledge sets, in fact it is tangent to one of the

diamond-shaped knowledge sets.

Checkerboard

Our second example is the classical checkerboard dataset [44, 45, 52, 53] which consists

of 1000 points taken from a 16-square checkerboard. The following experiment on this

90

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.8: A poor nonlinear classifier based on 16 points taken from each of the 16
squares of a checkerboard. The nonlinear classifier was obtained by using a Gaussian
kernel in a conventional linear programming formulation (3.32).

91

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.9: Totally or partially knowledge-based checkerboard classification problem.
The nonlinear classifier was obtained by using a Gaussian kernel in our linear program-
ming formulation (3.36) together with 16 points given either as a separate dataset or
chosen from each of the 16 prior knowledge sets.

92

dataset shows the strong influence of knowledge sets on the separating surface.

We first took a subset of 16 points only, each one is the “center” of one of the

16 squares. Since we are using a nonlinear Gaussian kernel to model the separating

surface, this particular choice of the training set is very appropriate for the checkerboard

dataset. However, due to the nature of the Gaussian function it is hard for it to learn

the “sharpness” of the checkerboard by using only a 16-point Gaussian kernel basis. We

thus obtain a fairly poor Gaussian-based representation of the checkerboard depicted

in Figure 3.2.3 with correctness of only 89.66% on a testing set of uniformly randomly

generated 39601 points labeled according to the true checkerboard pattern.

On the other hand, if we use these same 16 points in the linear program (3.36) either

as a distinct dataset in conjunction with prior knowledge in the form of only two of the

16 squares, one in each class, we obtain the sharply defined checkerboard depicted in

Figure 3.2.3, with a correctness of 98.50% on the 39601-point testing set.

Note that increasing both the number and the size of the prior knowledge squares

does not appear to improve correctness in a significant way. This is probably due to

the fact that the checkerboard shape is “periodic” and the square pattern repeats itself.

This means that the SVM “learns” the pattern with only two of the squares regarding

of the square sizes once they are big enough. A centered square of 25% the original area

is sufficient for this task.

It is interesting to note that our linear programming formulation (3.36) is capable of

transforming complex prior knowledge, made up here of the union of 8 squares for each

class, into a single nonlinear classifier equation given by K(x′, A′)Du = γ.

93

Chapter 4

Sparse Classifiers: Data and Feature

Selection

4.1 Data Selection for Support Vector Machine Clas-

sifiers

When applying support vector machines, the separating surface that is obtained, depends

only on a subset of the original data. This subset of data, which is all that is needed to

generate the separating surface, constitutes the set of support vectors. In this section we

give a method for selecting as small a set of support vectors as possible which completely

determines a separating plane classifier. We term such a set of support vectors minimal,

and the corresponding classifier, a minimal support vector machine. Such a classifier turns

out to have improved testing set accuracy over one chosen by a standard support vector

machine. Mathematically, support vectors are data points corresponding to constraints

with positive multipliers in a constrained optimization formulation of a support vector

machine. Computationally, the problem of determining a minimal set of support vectors

does not appear to have been addressed before as proposed here. This is an important

problem in applications such as fraud detection where the dataset may contain millions of

data points. To make support vector machines viable for such applications, it is important

94

to identify a minimal set of support vectors, often an order of magnitude smaller than

the original dataset, which determines the separating surface and allows the removal of

redundant data. This dependence on a small subset of a given dataset, which often leads

to an improved classifier, can be utilized in an incremental approach such as chunking

[10, 70] where a small fraction of the data is maintained before merging and processing it

with new incoming data. For the sake of simplicity and getting basic ideas across we will

confine ourselves here to linear separating surfaces. The nonlinear case will be considered

in detail in a subsequent section.

Figure 4.1: The linear programming support vector machine and the support vectors

95

4.1.1 MSVM: A Minimal Linear Support Vector Machine

Support vectors, which constitute the complement of the strictly separated points by

the bounding planes (2.2), completely determine the separating surface. Minimizing the

number of such exceptional points can lead to a minimum length description model [76,

p. 66],[7] that depends on much fewer data points. Computational results indicate that

such lean models generalize as well or better than models that depend on many more

data points. We give in the next section of the paper an algorithm that minimizes the

number of support vectors that determine the separating plane as well as the number of

input space features.

In order to make use of a faster linear programming based approach, instead of the

standard quadratic programming formulation (2.1), we will consider the linear program-

ing formulation (3.1).

This SVM‖ · ‖1 reformulation in effect maximizes the margin, the distance between

the two bounding planes of Figure 2.1, using a different norm, the ∞-norm, and results

with a margin in terms of the 1-norm, 2
‖w‖1

, instead of 2
‖w‖2

[63].

We will modify this linear program so as to generate an SVM with as few support

vectors as possible by adding an error term e′y∗ to the objective function, where ∗ denotes

the step function as defined in Chapter 1, this is x∗ denotes the vector in Rn with

components (x∗)i equal 1 if xi > 0 and 0 otherwise. The term e′y∗ suppresses misclassified

points and results in our minimal support vector machine MSVM:

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v + µe′y∗

s.t. D(Aw − eγ) + y ≥ e

v ≥ w ≥ −v

y ≥ 0.

(4.1)

96

Note that when the error vector y is zero all the points have been strictly separated by

the plane x′w = γ. Thus, the separation error term in the objective function of (4.1)

results in:

e′y∗ =
m
∑

i=1

yi∗ = m̄, (4.2)

where m̄ is the number of positive components of yi, or equivalently the number of

misclassified points by the bounding planes x′w = γ± 1. This number is directly related

to the number of support vectors as shown below following equation (4.5). The positive

parameter µ, chosen by a tuning set, multiplies the term e′y∗ which eliminates positive

components of the error variable y. The justification for eliminating components of the

error vector y, other than the intuitive idea of having a separating surface with as few

misclassified points as possible, is as follows. If we define nonnegative multipliers u ∈ Rm

associated with the first set of constraints of the linear program (3.2), and multipliers

(r, s) ∈ Rn+n for the second set of constraints of (3.2), then the dual linear program [23]

associated with the linear SVM formulation (3.2) is the following:

max
(u,r,s)∈Rm+n+n

e′u

s.t. A′Du − r + s = 0

−e′Du = 0

u ≤ νe

r + s = e

u, r, s ≥ 0.

(4.3)

Equality of the primal objective function of (3.2) and the dual objective function of (4.3)

imply the (equality) complementarity conditions of the following Karush-Kuhn-Tucker

97

optimality conditions [59, p. 94] for (3.2):

u′(D(Aw − eγ) + y − e) = 0

u ≥ 0

D(Aw − eγ) + y − e ≥ 0

y′(νe − u) = 0

y ≥ 0

νe − u ≥ 0.

(4.4)

These optimality conditions lead to the following implications for i = 1, . . . ,m:

yi > 0

=⇒ ui = ν > 0

=⇒ Dii(Aiw − γ) − 1 = −yi < 0.

(4.5)

Thus, a positive yi implies a positive multiplier ui = ν > 0 and a corresponding support

vector Ai that violates (2.3). Consequently eliminating positive components of y tends

to minimize the number of multipliers at the upper bound ν as well as data points Ai

that violate (2.3), that is, points that lie on the wrong sides of the bounding planes

(2.2). Minimizing e′y∗ works remarkably well computationally in eliminating positive

components of the multiplier u and consequently the number of misclassified points.

Even though the discontinuity of the step function term e′y∗ in (4.1) can be handled

directly by an algorithm such as that of [62, Algorithm 1 SLA], we prefer to approximate

it here by a smooth concave exponential on the nonnegative real line [61] as was done in

the feature selection approach of [9] because of the proven track record of the smoothing

approach in machine learning applications. For y ≥ 0, the approximation of the step

vector y∗ of (4.1) by the concave exponential, yi∗ ≈ 1 − ε−αyi, i = 1, . . . ,m, that is:

y∗ ≈ e − ε−αy, α > 0, (4.6)

98

where ε is the base of natural logarithms, leads to the following smooth reformulation of

problem (4.1), the smooth MSVM:

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v + µe′(e − ε−αy)

s.t. D(Aw − eγ) + y ≥ e

v ≥ w ≥ −v

y ≥ 0.

(4.7)

Note that:

e′(e − ε−αy) = m −
m
∑

i=1

ε−αyi. (4.8)

It can be shown [11, Theorem 2.1] that, for a finite value of the parameter α (appearing

in the concave exponential), the smooth problem (4.7) generates an exact solution of the

nonsmooth problem (4.1). We note that this problem is the minimization of a concave

objective function over a polyhedral set. Even though it is difficult to find a global

solution to this problem, a fast successive linear approximation (SLA) algorithm [13,

Algorithm 2.1] terminates finitely (usually in 4 to 7 steps) at a stationary point which

satisfies the minimum principle necessary optimality condition for problem (4.7) [13,

Theorem 2.2] and leads to a locally minimal number of support vectors, that is, a minimal

number of data points Ai with positive multipliers ui that completely determine the

separating surface.

Algorithm 4.1.1 Successive Linearization Algorithm (SLA) for (4.7). Choose

ν, µ, α > 0. Start with some (w0, γ0, y0, v0). Having (wi, γi, yi, vi) determine the next

iterate by solving the linear program:

99

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v + µα(ε−αyi

)′(y − yi)

s.t. D(Aw − eγ) + y ≥ e

v ≥ w ≥ −v

y ≥ 0.

(4.9)

Stop when:

νe′(y − yi) + e′(v − vi) + µα(ε−αyi

)′(y − yi) = 0. (4.10)

Comment: The parameter α was set to 5. The parameters ν and µ were chosen with

the help of a tuning set surrogate for a testing set to simultaneously minimize the number

of support vectors, number of input space features and tuning set error.

We turn our attention now to numerical implementation and testing.

4.1.2 Numerical Implementation and Comparisons

Before applying Algorithm 4.1.1, which typically consists of solving 4 to 7 linear programs,

the dimensionality of w ∈ Rn was reduced by solving the 1-norm SVM (3.1), as a single

linear program, with weight ν ∈ [0.01, 0.1] and discarding components of w less than

10−8 in magnitude. The reason for this dimensionality reduction, described more fully in

[9], is the presence of the term ‖w‖1 in (3.1), which suppresses components of w.

The remaining components of w with the corresponding values of γ, y and v were used

as the initial starting point (w0, γ0, y0, v0) in Algorithm 4.1.1. After the termination of

Algorithm 4.1.1, only support vectors were kept, that is Ai for which the multiplier

ui > 10−8. This small set of support vectors generated the same stationary point for

100

problem (4.7) as that generated by the entire dataset. Such stationary points, which

satisfy necessary optimality conditions, are typically good candidates to being a global

solution to optimization problems of the type considered here.

The smooth minimal support vector machine (MSVM) (4.7) which generates a linear

separating surface (2.3) by using a minimum number of data points was compared with

the 1-norm support vector machine SVM ‖ · ‖1 (3.1) as well as the the 1-norm support

vector machine with feature selection FSV [9] which is problem (3.1) with the added

feature-suppression term µe′|w|∗ in the objective function and smoothed to:

µe′(e − ε−α|w|) = µ
n
∑

i=1

(1 − ε−α|wi|). (4.11)

This smoothing, similar to that of (4.7)-(4.8) except that it is applied here to |w| instead

of y, leads to a selection of n̄(< n) input space features. The three classifiers MSVM

(4.7), SVM‖ · ‖1 (3.1) and FSV [9, Eqn. (8)] were tested on seven datasets, the first five

of which, WPBC, Ionosphere, Cleveland Heart, Pima Indians, and BUPA Liver are from

the Irvine Machine Learning Repository [77], while the Galaxy Dim dataset is from [79],

and the Census dataset is a version of the US Census Bureau “Adult” dataset, which

is publicly available from Silicon Graphics’ website [16]. For WPBC(60), 110 breast

cancer patients were classified into those who had a recurrence of the disease within 60

months and those who had not. For the Census dataset, ten features were used to predict

whether the income of a person was greater or equal to the mean income or below it.

Our computational results are summarized in Table 4.1.2. for the three classifiers. We

make the following observations based on numerical results:

1. For all test problems MSVM had the least number of support vectors. This trans-

lates into the least number of data points selected for determining the separating

101

surface and may be interpreted as a minimum description length model [76, p.

66],[7].

2. For the Ionosphere problem, the reduction in the number of support vectors of

MSVM over SVM ‖ · ‖1 is 81% with a corresponding increase of tenfold test set

correctness of 5.6% with associated p value of 0.0003. (The p value measures the

probability that two test results are the same, with sameness typically rejected if

p ≤ 0.05 [76]). For the seven datasets, the average reduction in the number of

support vectors of MSVM over SVM ‖ · ‖1 is 65.8%.

3. Tenfold testing set correctness of MSVM was as good or better on all seven datasets.

4. Computing times were higher for MSVM than those for SVM‖ · ‖1 and FSV. For

example, one fold testing for the Galaxy Dim problem took 43.7 seconds on a

400 MHz Pentium II using MATLAB [75], while the corresponding times were

11.2 seconds for SVM‖ · ‖1 and 16.0 seconds for FSV. One justification of the

additional time taken by MSVM is that it trades support vector storage space

needed to generate a separating surface, with a one-time additional computational

time expense.

102

Data Set MSVM (Eqn. (4.7)) SVM ‖ · ‖1 (Eqn. (3.1)) FSV [9, Eqn. (8)]

m × n Train Train Train

Test Test Test

#Features #Features #Features

#SV #SV #SV

WPBC (60 mo.) 76.4% 69.5% 69.5%
110 × 32 68.3% 62.1% 62.1%

5.0 4.3 2.6
29.6 69.4 69.1

Ionosphere 91.4% 84.6% 91.2%
351 × 34 88.9% 84.2% 86.5%

7.0 7.2 8.1
34.2 179.9 80.8

Cleveland Heart 89.5% 86.8% 87.0%
297 × 13 86.9% 85.8% 85.2%

9.2 8.8 8.9
38.5 109.8 92.4

Pima Indians 76.6% 77.1% 76.9%
768 × 8 79.6% 76.5% 75.9%

7.5 6.8 5.0
150.1 374.8 396.3

BUPA Liver 72.7% 71.3% 70.0%
345 × 6 70.0% 69.9% 67.3%

6.0 6.0 4.5
91.9 236.8 236.7

Galaxy Dim 95.0% 94.4% 94.9%
4192 × 14 94.7% 94.4% 94.7%

5.0 5.0 4.9
193.0 774.0 541.0

Census 94.0% 93.9% 94.0%
20, 000 × 10 94.1% 94.0% 93.8%

9.3 9.8 7.0
1065.0 2745.5 2783.2

Table 4.1: Tenfold training and testing correctness, number of features (#Features) and
number of support vectors (#SV) used in seven public datasets by an MSVM classifier,
and by a 1-norm SVM classifier without feature selection SVM ‖ · ‖1 and with feature
selection (FSV).

103

4.2 Minimal Kernel Classifiers

One of the main difficulties that confront large data classification by a nonlinear kernel

is the possible dependence of the nonlinear separating surface on the entire dataset. This

creates unwieldy storage and computational problems that may preclude the direct use

of nonlinear kernels for large datasets or in applications where a very fast classifier is

required such as in on-line credit card fraud detection.

For example, let A ∈ R1000×10 represent a thousand-point dataset with 10 features

characterizing each point. Then the above two difficulties translate into a nonlinear ker-

nel matrix of size 1000 × 1000 with a million entries that leads to a dense nontrivial

mathematical program. Even after solving this problem, the resulting nonlinear separat-

ing surface can potentially depend on most of the 1000 points that need to be stored and

used in each classification of a new point.

In this section we propose a minimal kernel classifier method completely that ad-

dresses this difficulty by generating a nonlinear kernel-based classifier that reduces the

classifier’s data dependence by as much as 98.8%, compared to a conventional support

vector machine classifier. In other words, the classifier depends on a very small number

of kernel functions.

Such “minimum description length” models [87],[76, p. 66],[7] that depend on much

fewer data points, often generalize as well or better than models that depend on many

more data points, and are useful for incremental and chunking algorithms [10, 72] for

massive datasets. In order to address the problem of solving huge mathematical pro-

grams, we use RSVM [52] to generate an initial reduced rectangular kernel that reduces

dramatically the size of the problems to be solved while preserving and often, improving

training and testing set correctness.

104

In this section we will consider the linear programming formulation for nonlinear

kernels as described in chapter 3, equation 3.32.

The dual [59, p. 130] of this linear program is:

max
(t,r,s)∈Rm+n+n

e′t

s.t. DK(A,A′)′Dt −r +s = 0

−e′Dt = 0

t ≤ νe

r +s = e

t, r, s ≥ 0

(4.12)

Note that, for any standard simplex algorithm [23], solution of either of the dual linear

programs (3.32) or (4.12), automatically generates a solution of the other program at the

termination of the algorithm.

We next derive our leave-one-out-correctness and leave-one-out-error bounds in terms

of a solution to the above linear programs. Note that solving a single linear program

(3.32) yields these bounds.

4.2.1 Leave-One-Out-Correctness (looc) and

Leave-One-Out-Error (looe) Bounds

In this section we derive a lower bound on the leave-one-out-correctness (looc) of a solution

to a support vector machine with a nonlinear kernel as well as an upper bound on

the leave-one-out-error (looe), where looc + looe = 1. Our bounds, similar to those of

[49, 81, 104, 105], are however easily and directly computable from a solution of the linear-

programming-based formulation of the support vector machine formulation (3.32) above

and are used as a justification for our concave minimization algorithm for a minimal

105

kernel classifier.

Proposition 4.2.1 Leave-One-Out-Correctness (looc) & Leave-One-Out-Error

(looe) Bounds Let (u, γ, y, v) be a solution of the linear program (3.32) and let (t, r, s) be

a corresponding solution of its dual (4.12). The leave-one-out-correctness looc is bounded

below as follows:

looc ≥
card((t ∧ u)0)

m
(4.13)

and the leave-one-out-error looe is bounded above as follows:

looe ≤
card((t ∨ u)+)

m
, (4.14)

where card((t ∧ u)0) denotes the cardinality of the set {i | ti = 0 and ui = 0}, while

card((t ∨ u)+) denotes the cardinality of the set {i | ti > 0 or ui 6= 0}.

Proof By the Karush-Kuhn-Tucker optimality conditions for (3.32) [59, p. 94] we

have that:

t′(D(K(A,A′)Du − eγ) + y − e) = 0

t ≥ 0

D(K(A,A′)Du − eγ) + y − e ≥ 0

y′(νe − t) = 0

y ≥ 0

νe − t ≥ 0.

(4.15)

These optimality conditions lead to the following implications for i = 1, . . . ,m:

yi > 0

=⇒ ti = ν > 0

=⇒ Dii(K(Ai, A
′)Du − γ) − 1 = −yi < 0.

(4.16)

106

Thus, a positive yi implies a positive multiplier ti = ν > 0 and a corresponding support

vector Ai . Hence the number of support vectors equals or exceeds card(y+), the number

of positive components of y.

To establish (4.13) we observe that all data points Ai for which both the corresponding

ti = 0 (i.e. Ai is not a support vector) and ui = 0 (i.e. K(A,A′
i)Diiui = K(A,A′

i)Dii ·0 =

0), can be thrown out of the linear program (3.32) without changing the solution. For all

such Ai we have by (4.15) that yi = 0 and hence these Ai are correctly classified points,

and if they were left out of the linear program (3.32) they would be correctly classified

by the linear programming solution. Hence the leave-one-out correctness can be bounded

below (because there could be other correctly classified Ai that could be thrown out also

without changing the solution) by the cardinality of Ai for which both ti = 0 and ui = 0,

that is:

looc ≥
card((t ∧ u)0)

m
, (4.17)

which is the bound (4.13). Since looc + looe = 1 and

card((t ∧ u)0) + card((t ∨ u)+) = m,

it follows from (4.17) that

1 − looe ≥
card((t ∧ u)0)

m
=

m − card((t ∨ u)+)

m
= 1 −

card((t ∨ u)+)

m
,

from which follows the bound (4.14).� Motivated by the above bound (4.14) on the

looe and by linear programming perturbation theory [67], we present a minimal kernel

algorithm that can obtain striking test set correctness results with a minimal use of data

points as well as kernel components.

107

4.2.2 The Minimal Kernel Problem Formulation & Algorithm

By using an argument based on a finite perturbation of the objective function of a linear

program, we look for solutions of the linear program (3.32), which in general has multiple

solutions, that in addition suppress simultaneously as many components of the error of

the primal variable u as well as the dual variable t. Empirical evidence [9] indicates that

linear-programming-based classification problems are amenable to feature suppression.

Since we do not want to solve both the primal and dual problems explicitly, which would

be prohibitively costly for very large problems, we propose suppressing components of

the error vector y as a reasonable surrogate for suppressing multiplier components t. The

justification for this is that from the implication (4.16) we have that:

{i | yi > 0} ⊆ {i | ti > 0}.

Hence:

card((t ∨ u)+)

m
≥

card((y ∨ u)+)

m
=

card((y ∨ v)+)

m
, (4.18)

where card((y∨u)+) denotes the cardinality of the set {i | yi > 0 or ui 6= 0}, card((y∨v)+)

denotes the cardinality of the set {i | yi > 0 or vi > 0}, and the equality above follows

from the fact that v = |u| at a solution of the linear program (3.32). We propose to

minimize the last term in (4.18) above instead of the actual upper bound on the looe

given by the first term in (4.18). This works remarkably well in reducing both data points

needed and kernel size. Consequently, we perturb the objective function of (3.32) by a

step function (·)∗ of y and of v = |u|, thus suppressing as many components of these

variables as possible. This leads to the following minimization problem with a concave

objective function on its feasible region:

108

min
(u,γ,y,v)∈Rm+1+m+m

νe′y + e′v + µ(νe′y∗ + e′v∗) = νe′y# + e′v#

s.t. D(K(A,A′)Du − eγ) + y ≥ e

v ≥ u ≥ −v

y ≥ 0.

(4.19)

Here, the “pound” function (·)# is defined as the following loss function in terms of the

step function (·)∗:

x# = |x| + µ|x|∗, for some µ > 0. (4.20)

Figure 4.2 depicts the shape of this loss function x#, which not only penalizes the amount

of deviation from zero, but also any deviation from zero no matter how small by an initial

penalty of µ which progresses linearly with the amount of deviation thereafter. Using

linear programming perturbation theory we can state the following result that justifies

our minimal kernel classifier algorithm.

Proposition 4.2.2 Minimal Kernel as Perturbed LP For a given ν > 0 there exist

µ̄ > 0, such that for all µ ∈ (0, µ̄], each solution of (4.19) is a solution of the linear

programming kernel problem (3.32) with a minimal number of nonzero components of y

and u among all its solutions.

Proof Without loss of generality we assume that the feasible region of the linear program

has no lines going to infinity in both directions and forgo the change of variables w =

w̃ − eζ, γ = γ̃ − ζ, (w̃, γ̃, ζ) ≥ 0. If we make this transformation then there are no

lines in the feasible region that go to infinity in both directions, because all the variables

would be nonnegative then.

109

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

µ

x
#
=|x|+µ |x|

*

x+µ(1−e−α x)

Figure 4.2: The loss function x#

Since the objective function of the problem (4.19) is concave on the feasible region

and bounded below by zero it must have a vertex solution [88, Corollaries 32.3.3 and

32.3.4] for all nonnegative values of ν and µ.

Fix ν at some positive value and, to simplify notation and get the basic ideas across

with as little detail as possible, let the concave program (4.19) be represented as follows:

min
z∈S

f(z) + µg(z), (4.21)

where z = (u, γ, y, v), S is the polyhedral feasible region of (4.19), f is linear and g is

concave on S, that is:

f(z) := νe′y + e′v, g(z) := νe′y∗ + e′v∗.

Since the S has a finite number of vertices, for some decreasing sequence of positive

numbers {µ0, µ1, . . . , } ↓ 0, some fixed vertex z̄ of S will repeatedly solve the concave

minimization problem (4.19). Hence for any µ ∈ (0, µ0], z̄ is also a solution of (4.19),

110

because:

µ = (1 − λ)µi + λµi+1, for some i and some λ ∈ [0, 1],

and

f(z̄) + µg(z̄) = (1 − λ)(f(z̄) + µig(z̄)) + λ(f(z̄) + µi+1g(z̄)).

Hence z̄ solves (4.21) for µ ∈ (0, µ0]. We will now show that z̄ also solves:

min
z∈S

f(z), (4.22)

which is equivalent to the linear program (3.32). Define

f̄ := min
z∈S

f(z) ≥ 0.

Suppose now that f(z̄) > f̄ and exhibit a contradiction. This will establish that z̄ solves

(4.22). Let

ǫ :=
f(z̄) − f̄

4
> 0 and z ∈ S with f(z) < f̄ + ǫ, (4.23)

and choose µ such that

1

µ
> max{

g(z) − g(z̄)

f(z̄) − f̄ − 2ǫ
,

1

µ0

}. (4.24)

We then have the following contradiction:

µg(z) + f̄ + ǫ > µg(z) + f(z) ≥ µg(z̄) + f(z̄) > µg(z) + f̄ + 2ǫ,

where the first inequality follows from the last inequality of (4.23), the second inequality

from the fact that z̄ is a solution of (4.21), and the last inequality from (4.24). Hence z̄

solves (4.22) which is equivalent to the linear program (3.32).

111

It remains to show that z̄ also minimizes g(z) as well over the set of minimizers of f

on S. That is, we have picked among all solutions of the linear program (3.32) that one

with a minimal number of nonzero components of y and u.

Let z be any solution of (4.22), that is z ∈ S and f(z) = f(z̄). Then,

µ0g(z) = µ0g(z) + f(z) − f(z) ≥ f(z) + µ0g(z) − f(z̄) ≥ f(z̄) + µ0g(z̄) − f(z̄) = µ0g(z̄).

Hence,

z̄ ∈ arg min
z∈S

{g(z) | f(z) ≤ f(z̄) = min
z∈S

f(z)}.�
Because of the discontinuity of the term e′y#, we approximate it by a concave ex-

ponential on the nonnegative real line. For x ≥ 0, we approximate x# of (4.20) by the

concave exponential depicted in Figure 4.3. Thus for a vector y ≥ 0:

y# ≈ y + µ(e − ε−αy), α > 0, (4.25)

where ε is the base of natural logarithms. This leads to the following smooth reformula-

tion of problem (4.19):

min
(u,γ,y,v)∈Rm+1+m+m

νe′(y + µ(e − ε−αy)) + e′(v + µ(e − ε−αv))

s.t. D(K(A,A′)Du − eγ) + y ≥ e

v ≥ u ≥ −v

y ≥ 0.

(4.26)

It can be shown [11, Theorem 2.1] that an exact solution to the original discontinuous

problem (4.19) can be obtained by solving the above smooth problem (4.25) for any

sufficiently large value of α, which is typically set to 5 in our numerical computations.

We now prescribe the highly effective and finite successive linearization algorithm

(SLA) [11–13, 61, 64] for solving the above problem.

112

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

µ

x
#
=|x|+µ |x|

*

x+µ(1−e−α x)

Figure 4.3: Loss function x# approximation by x + µ(1 − εαx) on x ≥ 0.

Algorithm 4.2.3 Minimal Kernel Algorithm Start with an arbitrary (u0, γ0, y0, v0).

Having (ui, γi, yi, vi) determine the next iterate (ui+1, γi+1, yi+1, vi+1) by solving the fol-

lowing linear program:

min
(u,γ,y,v)∈Rm+1+m+m

ν(e + µαε−αyi

)′(y − yi) + (e + µαε−αvi

)′(v − vi)

s.t. D(K(A,A′)Du − eγ) + y ≥ e

v ≥ u ≥ −v

y ≥ 0.

(4.27)

Stop when:

ν(e + µαε−αyi

)′(yi+1 − yi) + (e + ναε−αvi

)′(vi+1 − vi) = 0. (4.28)

It can be shown [61] that this algorithm, which is essentially the repeated solution of the

linear program (3.32), terminates in a finite number of steps (typically 5 to 8) at a point

that satisfies the necessary optimality condition that the current iterate is a fixed point

of the linearized problem.

113

Remark 4.2.4 When K(A,A′) is large, for example where m > 500, it is convenient to

use RSVM [52] in order to utilize a smaller reduced kernel K(A, Ā′) where Ā′ ∈ Rm̄×n

and m̄ is 5%-20% of m. In all cases, however, the initial (u0, γ0, y0, v0) were obtained

using the 1-norm formulation (3.32).

Remark 4.2.5 The Minimal Kernel Algorithm 4.2.3 terminates at a primal solution

(u, v, y, γ) and a corresponding solution (t̃, r̃, s̃) to the dual of the last linearized problem

(4.27). The reduced m1 × m2 rectangular kernel K(Ām1
, Ām2

) for this last linearized

problem has dimensions corresponding to:

m1 = card(t̃+), m2 = card(u+), (4.29)

where:

Ām1
:= {Ai | t̃i > 0} and Ām2

:= {Ai | |u|i > 0}. (4.30)

Typically, m1 and m2 are considerably smaller than m. The number m1 is the number of

the first m constraints of the linear program (4.27) with positive dual multipliers at the

solution of the last linear program solved by Algorithm 4.2.3. The number m2 determines

the number of data points that the classifier:

K(x′, Ā′
m2

)Dum2
− γ = 0, (4.31)

depends on. We refer to m2 as the number of kernel support vectors. For a standard

nonlinear quadratic programming support vector machine (2.1), m1 = m2. If the final

linearization of (4.27) is re-solved with the smaller kernel K(Ām1
, Ām2

), the solution is

the same as that obtained by Algorithm 4.2.3. However, if the standard 1-norm SVM

formulation (3.32) is solved directly with the reduced kernel K(Ām1
, Ā′

m2
), then a result

close to but not identical to that of Algorithm 4.2.3 is obtained because the objective

function of (3.32) does not contain the linearization of the pound function.

114

4.2.3 Computational Results

We tested Algorithm 4.2.3 on eight publicly available datasets in order to demonstrate

that the algorithm gives equally correct test set results by using a drastically reduced

kernel size compared to a kernel that uses the full dataset. A Gaussian kernel [19, 103]

was used throughout the numerical tests:

K(Ai, A
′
j) = ε−σ‖Ai−Aj‖

2
2,

where σ is a positive parameter determined by using a tuning set for each dataset.

4.2.4 Results for the Checkerboard

The first dataset used was the Checkerboard [44, 45] consisting of 486 black points and

514 white points taken from a 16-square checkerboard. These 1000 points constituted

the training dataset while the test set consisted of 39,601 points taken from a uniform

199 × 199 grid of points. This example was picked in order to demonstrate visually how

a small subset of the original data can achieve an accurate separation.

4.2.5 Results on the USPS Dataset

Figure 4.4 depicts the separation obtained using a reduced kernel K(Am1
, Am2

) with

m1 = 30 and m2 = 27. The 30 points constituting Am1
and the 27 points constituting

Am2
are depicted in Figure 4.4 as circles and stars respectively. The total of these points

is 5.7% of the original data and the rather accurate separating surface (4.31) depends

merely on 27 points, that is 2.7% of the original data.

Although our algorithm is primarily intended for two-class problems, we have also

applied it to the ten-category USPS (US Postal Service) dataset of hand-written numbers

115

[8, 103]. This well-known dataset consists of 7291 training patterns and 2007 testing

patterns, collected from real-life zip codes. Each pattern consists of one of the ten

numbers 0 to 9 and is represented by a digital image consisting of 16 × 16 pixels, which

results in a 256-dimensional input space. In our tests here we used a one-from-the-rest

approach, which led to the construction of 10 classifiers, each separating one class from

the rest. The final classification was done by selecting the class corresponding to the

classifier with the largest output value. The number of kernel support vectors reported

in Table 1 is the total over the ten classifiers. We compare our algorithm with other kernel

reducing methods such as the Sparse Greedy Matrix Approximation (SGMA) [93] and

the Relevance Vector Machine (RVM) [99] as well as with the standard Support Vector

Machine (SVM) [103]. In all the experiments in this section a Gaussian kernel was used.

Table 1 compares the number of kernel support vectors for all these methods as well as

the test set error. We note that our error rate is somewhat higher than that of the other

methods. However, our number of kernel support vectors is the second smallest, in line

with objectives of the paper. The average time to compute each of the ten classifiers for

the USPS dataset was 24.6 minutes on our Pentium II 400MHz machine.

Method No. of Kernel Support Vectors Test Error %
MKC 376 6.7%

SVM [103] 1727 4.1%
SGMA [93] 590 *
RVM [99] 316 5.1%

Table 4.2: Comparison of total number of kernel support vectors (in ten classifiers) and
test set error for 4 methods: Minimal Kernel Classifier (MKC), standard Support Vector
Machine (SVM), Sparse Greedy Matrix Approximation (SGMA) and Relevance Vector
Machine (RVM).
∗ No test error is reported in [93].

116

4.2.6 Results on Six Public Datasets

The next set of problems were from the University of California Irvine Repository [77]

and varied in size between 297 to 8124 points, with input space dimensionality between

6 to 34. The purpose of the experiments was to show that the proposed Minimal Kernel

Algorithm 4.2.3 can achieve three objectives:

(i) It can generate a nonlinear separating surface with less than 10% of the original

data. This is a key property for incremental algorithms [35] where obsolete old

data is retired before merging it with new incoming data.

(ii) Accuracy of ten-fold cross validation is as good or better than that of a nonlinear

classifier that depends on a much bigger subset of the original training set.

(iii) Since the reduced kernel classifier depends on a very small subset of the original

data, classification of a new point is done very quickly. This makes this method

very attractive for applications where there are time constraints on the testing

procedure or where there are storage constraints on the classifier.

The above and other results are given in Table 2 averaged over ten-fold runs for each

dataset.

117

Data Set Reduced MKC SVM Ten-fold Kernel Support Testing

rectangular Ten-fold test set test set vector time

m × n kernel correctness % correctness % reduction ∗∗ % reduction †%

m1 × m2 (Ten-fold time sec.) (SV)∗ (SVM-MKC time sec.)

Ionosphere 30.2 × 15.7 94.9% 92.9% 94.6% 94.9%
351 × 34 (172.3) (288.2) (3.05-0.16)

Cleveland Heart 64.6 × 7.6 85.8% 85.5 % 96.9 % 96.3 %
297 × 13 (147.2) (241.0) (0.84-0.03)
Pima Indians 263.1 × 7.8∗∗∗ 77.7 % 76.6 % 98.8% 98.8 %
768 × 8 (303.3) (637.3) (3.95-0.05)

BUPA Liver 144.4 × 10.5 75.0 % 72.7 % 96.6% 97.5 %
345 × 6 (285.9) (310.5) (0.59-0.02)

Tic-Tac-Toe 31.3 × 14.3∗∗∗ 98.4 % 98.3 % 98.3% 98.2 %
958 × 9 (150.4) (861.4) (6.97-0.13)
Mushroom 933.8 × 47.9∗∗∗ 89.3 % oom NA NA

8124 × 22 (2763.5) (NA)

Table 4.3: Results for six UC Irvine datasets showing the percentage of reduction achieved
over ten-fold runs. The last column gives testing time reduction resulting from using our
minimal kernel classifier (MKC) instead of a regular full kernel classifier. The numbers
m1 and m2 are averages over ten folds and refer to the dimensionality of the reduced
kernel K(Ām1

, Ām1
) as explained in Remark 4.2.5. All linear programs were solved using

CPLEX 6.5 [21]. NA denotes “Not Available”, while oom denotes “out of memory”.

* Number of support vectors obtained using a standard quadratic programming non-
linear support vector machine (2.1).

** Comparison between the number of MKC kernel support vectors m2 defined by (4.29)
and the number of support vectors (SV) using the standard quadratic programming
nonlinear support vector machine (2.1).

*** RSVM [52] was used here in order to obtain a smaller initial kernel for each of the
Pima Indians dataset (768×150 instead of 768×768), the Tic-Tac-Toe dataset (958×96
instead of 958 × 958) and the Mushroom dataset (8124 × 400 instead of 8124 × 8124).

† If Tsvm is the average single fold time over ten folds testing for the standard SVM
classifier that depends on SV data points, and Tr is the average single fold time over
ten folds testing using an MKC classifier that depends only on m2 data points, then
this percentage is given by: 100 × (1 − Tsvm

Tr

)

118

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.4: The checkerboard classifier depends on only 2.7% of the original data depicted
as 27 stars, and is trained on only 3.0% of the original data depicted as 30 circles. The
reduced kernel here is 30 × 27 compared to an original kernel for the full dataset of size
1, 000 × 1, 000. Running times were 109.9 seconds for the full kernel and 0.1 seconds for
the reduced kernel.

119

4.3 A Feature Selection Newton Method for Support

Vector Machine Classification

By minimizing an exterior penalty function of the dual of a linear programming for-

mulation of a support vector machine (SVM) [9, 65], for a finite value of the penalty

parameter, an exact least 2-norm solution to the SVM classifier is obtained. Our ap-

proach is based on a 1-norm SVM formulation that is known [9] to generate very sparse

solutions. When a linear classifier is used, solution sparsity implies that the separating

hyperplane depends on very few input features. This fact, makes this algorithm a very

effective tool for feature selection for classification problems. On the other hand, when a

nonlinear classifier is used, a sparse solution implies that few kernel functions determine

the classifier. This makes the nonlinear classifier easier to store and faster to evaluate.

The proposed Newton method requires only a linear equation solver and can be given

in a few lines of a MATLAB [75] code. We note that a fast Newton method (NSVM)

was also proposed recently in [34] that is based on a quadratic programming formulation

of support vector machines. NSVM however, does not generate sparse solutions and

hence does not suppress features at all. This contrasts sharply with the strong feature

suppression property of the new algorithm proposed here.

120

4.3.1 Least 2-norm Solution of the Linear Programming SVM

In order to simplify the exterior penalty problem, here we will consider an slightly different

formulation of the 1-norm formulation linear programming problem described in 3.1:

min
(p,q,γ,y)

νe′y + e′(p + q)

s.t. D(A(p − q) − eγ) + y ≥ e

p, q, y ≥ 0,

(4.32)

where the following substitution for w has been made:

w = p − q, p ≥ 0, q ≥ 0, (4.33)

This is a different and a simpler linear program from previous linear programming SVM

formulations [9, 65]. The dual of the linear program (4.32) is the following:

max
u∈Rm

e′u

s.t. −e ≤ A′Du ≤ e,

−e′Du = 0,

u ≤ νe,

u ≥ 0.

(4.34)

The asymptotic exterior penalty problem [6, 30] for this linear program is the following

nonnegatively constrained minimization problem:

min
u≥0

−ǫe′u + 1
2
‖(A′Du − e)+‖

2+

1
2
‖(−A′Du − e)+‖

2 +1
2
‖e′Du‖2 + 1

2
‖(u − νe)+‖

2,

(4.35)

where ǫ is a positive penalty parameter that needs to approach zero for standard penalty

application for solving the dual linear program (4.34). However, in our approach we shall

establish the fact that ǫ will remain finite and we still can obtain an exact solution to

121

our linear programming SVM (4.32). To do that we first write the Karush-Kuhn-Tucker

[59] necessary and sufficient optimality conditions for the penalty problem (4.35).

0 ≤ u ⊥ (−ǫe + DA(A′Du − e)+

−DA(−A′Du − e)+

+Dee′Du + (u − νe)+ ≥ 0,

(4.36)

where, as defined in the Introduction, ⊥ denotes orthogonality. We will now show that

these are also the necessary and sufficient conditions for finding an exact least 2-norm

solution to the linear programming SVM (4.32) without ǫ approaching zero. To do that

we first formulate the least 2-norm problem for (4.32) as follows:

min
(p,q,γ,y)

νe′y + e′(p + q) + ǫ
2
(‖p‖2 + ‖q‖2 + γ2 + ‖y‖2)

s.t. D(A(p − q) − eγ) + y ≥ e

p, q, y ≥ 0,

(4.37)

with Karush-Kuhn-Tucker necessary and sufficient optimality conditions:

0 ≤ ǫp ⊥ e + ǫp − A′Du ≥ 0

0 ≤ ǫq ⊥ e + ǫq + A′Du ≥ 0

ǫγ + e′Du = 0

0 ≤ ǫy ⊥ νe + ǫy − u ≥ 0

0 ≤ u ⊥ DA(p − q) − Deγ + y − e ≥ 0.

(4.38)

It follows, by [58, 67], that for any positive ǫ such that ǫ ∈ (0, ǭ] for some ǭ > 0, any

(p, q, γ, y) satisfying the KKT conditions (4.38) for some u ∈ Rm, is the exact least

2-norm solution to the linear programming SVM (4.32). But, if we set in the KKT

122

conditions (4.36) for the penalty problem (4.35):

p = 1
ǫ
(A′Du − e)+,

q = 1
ǫ
(−A′Du − e)+,

γ = −1
ǫ
e′Du,

y = 1
ǫ
(u − νe)+,

(4.39)

and make use of the simple equivalence:

a = b+ ⇐⇒ 0 ≤ a ⊥ (a − b) ≥ 0, (4.40)

then (4.39) together with the KKT conditions (4.36) for the exterior penalty problem

(4.35), become precisely the KKT necessary and sufficient conditions (4.38) for the least

2-norm linear programming SVM (4.37). We have thus proven the following result.

Proposition 4.1 (Equivalence of Least 2-norm LP SVM to Dual Exterior Penalty

) A solution u to the dual exterior penalty (DEP) problem (4.35) for ǫ ∈ (0, ǭ] for some

ǭ > 0, provides an exact least 2-norm solution to primal linear programming SVM (4.32)

as follows:

w = p − q = = 1
ǫ
((A′Du − e)+ − (−A′Du − e)+),

γ = −1
ǫ
e′Du,

y = 1
ǫ
(u − νe)+.

(4.41)

We turn now to nonlinear kernel classifiers and use the notation of [65]. For A ∈ Rm×n

and B ∈ Rn×ℓ, the kernel K(A,B) maps Rm×n × Rn×ℓ into Rm×ℓ. A typical kernel is

the Gaussian kernel ε−µ‖A′
i−B·j‖

2

, i, j = 1, . . . ,m, ℓ = m, where ε is the base of natural

logarithms, while a linear kernel is K(A,B) = AB. For a column vector x in Rn, K(x′, A′)

is a row vector in Rm, and the linear separating surface (2.4) is replaced by the nonlinear

123

surface:

K(x′, A′)Dv = γ, (4.42)

where v is the solution of the dual problem (4.34). For a linear kernel K(A,A′) = AA′,

we have that w = A′Dv [65] and the primal linear programming SVM (3.1) becomes

upon using w = p − q = A′Dv and the 1-norm of v in the objective instead that of w:

min
(v,γ,y)

νe′y + ‖v‖1

s.t. D(AA′Dv − eγ) + y ≥ e

y ≥ 0,

(4.43)

Setting:

v = r − s, r ≥ 0, s ≥ 0, (4.44)

the linear program (4.43) becomes:

min
(r,s,γ,y)

νe′y + e′(r + s)

s.t. D(AA′D(r − s) − eγ) + y ≥ e

r, s, y ≥ 0,

(4.45)

which is the linear kernel SVM in terms of the dual variable v = r − s. If we replace

the linear kernel AA′ in (4.45) by the nonlinear kernel K(A,A′) we obtain the nonlinear

kernel linear program:

min
(r,s,γ,y)

νe′y + e′(r + s)

s.t. D(K(A,A′)D(r − s) − eγ) + y ≥ e

r, s, y ≥ 0.

(4.46)

We immediately note that the linear program (4.46) is identical to the linear classifier

SVM (4.32) if we let:

A −→ K(A,A′)D, (4.47)

124

in (4.32) and n −→ m. Hence the results outlined in Proposition 4.1 are applicable to a

nonlinear kernel if we make the replacement (4.47) in (4.35) and (4.41) and let p −→ r,

q −→ s, w −→ v in (4.41) and use the nonlinear kernel classifier (4.42). As in the linear

case, the 1-norm formulation (4.47) leads to a very sparse v. Every zero component

vi of v implies non-dependence of the nonlinear kernel classifier on the kernel function

K(x′, A′
i). This is because:

K(x′, A′)Dv =
∑m

i=1 DiiviK(x′, A′
i)

=
∑

{i|vi 6=0} DiiviK(x′, A′
i).

(4.48)

We turn now to our algorithmic implementation of Proposition 4.1.

4.3.2 Newton Method for Linear Programming SVM (NLPSVM)

We shall solve the exterior the dual exterior penalty (4.35) for a finite value of the penalty

parameter ǫ and by incorporating the nonnegativity constraint u ≥ 0 into the objective

function of (4.35) as a penalty term as follows:

min
u

f(u) = −ǫe′u + 1
2
‖(A′Du − e)+‖

2

+1
2
‖(−A′Du − e)+‖

2 + 1
2
‖e′Du‖2

+1
2
‖(u − νe)+‖

2 + α
2
‖(−u)+‖

2.

(4.49)

The gradient of this function is given by:

∇f(u) = −ǫe + DA(A′Du − e)+ − DA(−A′Du − e)+

+Dee′Du + (u − νe)+ − α(−u)+,
(4.50)

and its generalized Hessian as defined by (1.2) in the Introduction:

125

∂2f(u) = DA(diag((A′Du − e)∗ + (−A′Du − e)∗)A
′D

+Dee′D + diag((u − νe)∗ + α(−u)∗)

= DA(diag(|A′Du| − e)∗)A
′D

+Dee′D + diag((u − νe)∗ + α(−u)∗),

(4.51)

where the last equality follows from the equality:

(a − 1)∗ + (−a − 1)∗ = (|a| − 1)∗. (4.52)

We are ready now to state our Newton algorithm.

Algorithm 4.1 Newton Algorithm for (4.35) Let f(u), ∇f(u) and ∂2f(u) be defined

by (4.49)-(4.51). Set the parameter values ν, ǫ, δ, tolerance tol, α and imax (typically:

ǫ = 10−1, tol = 10−3, α = 103, imax = 50, while ν and δ are set by a tuning procedure

described in Section 4.3.3). Start with any u0 ∈ Rm. For i = 0, 1, . . . :

(I) ui+1 = ui − λi(∂
2f(ui) + δI)−1∇f(ui) = ui + λid

i,

where the Armijo stepsize λi = max{1, 1
2
, 1

4
, . . . } is such that:

f(ui) − f(ui + λid
i) ≥ −

λi

4
∇f(ui)′di, (4.53)

and di is the modified Newton direction:

di = −(∂2f(ui) + δI)−1∇f(ui). (4.54)

(II) Stop if ‖ui − ui+1‖ ≤ tol or i = imax. Else, set i = i + 1, α = 2α and go to (I).

(III) Define the least 2-norm solution of the linear programming SVM (4.32) by (4.41)

with u = ui.

126

We state a convergence result for this algorithm now.

Theorem 4.1 Let tol = 0, imax = ∞ and let ǫ > 0 be sufficiently small. Each accumu-

lation point ū of the sequence {ui} generated by Algorithm 4.1 solves the exterior penalty

problem (4.35). The corresponding (w̄, γ̄, ȳ) obtained by setting u to ū in (4.41) is the

exact least 2-norm solution to the primal linear program SVM (4.32).

Proof That each accumulation point ū of the sequence {ui} solves the minimization

problem (4.35) follows from exterior penalty results [6, 30] and standard unconstrained

descent methods such as [60, Theorem 2.1, Examples 2.1(i), 2.2(iv)] and the facts that

the direction choice di of (4.45) satisfies, for some c > 0:

−∇f(ui)′di = ∇f(ui)′(δI + ∂2f(ui))−1∇f(ui)

≥ c‖∇f(ui)‖2,
(4.55)

and that we are using an Armijo stepsize (4.53). The last statement of the theorem

follows from Proposition 4.1.�
Remark 4.3.1 Choice of ǫ Determining the size of ǭ, such that the solution u of the

quadratic program (4.37) for ǫ ∈ (0, ǭ], is the least 2-norm solution of the problem (4.32),

is not an easy problem theoretically. However, computationally this does not seem to

be critical and is effectively addressed as follows. By [56, Corollary 3.2], if for two

successive values of ǫ: ǫ1 > ǫ2, the corresponding solutions of the ǫ-perturbed quadratic

programs (4.37): u1 and u2 are equal, then under certain assumptions, u = u1 = u2 is the

least 2-norm solution of the dual linear program (4.32). This result can be implemented

computationally by using an ǫ, which when decreased by some factor yields the same

solution to (4.32).

We turn now to our computational results.

127

4.3.3 Numerical Experience

In order to show that our algorithm can achieve very significant feature suppression, our

numerical tests and comparisons were carried out on a dataset with the high dimensional

input space and a moderate number of data points. On the other hand, in order to show

that our proposed algorithm has a computational speed comparable to that of other

fast methods, we also performed experiments on more conventional datasets where the

dimensionality of the input space is considerably smaller than the number of data points.

Because of the simplicity of our algorithm, we give below a simple MATLAB im-

plementation of the algorithm without the Armijo stepsize, which does not seem to be

needed in most applications. Although this is merely an empirical observation in the

present case, it considerably simplifies our MATLAB Code 4.1. However, it has also

been shown [66, Theorem 3.6] that under a well conditioned assumption, not generally

satisfied here, the proposed Newton method indeed terminates in a finite number of steps

without an Armijo stepsize. Note that this version of the algorithm is intended for cases

where the number of data point m is smaller that the number of features n, i.e. when

m ≪ n since the speed of the algorithm depends on m in a cubic fashion.

Code 4.1 NLPSVM Code

function [w,gamma]=nlpsvm(A,d,nu,delta)

%NLPSV: linear and nonlinear classification

% without Armijo

%INPUT: A, D, nu, delta. OUTPUT=w, gamma.

%[w,gamma]=nlpsvm(A,d,nu,delta)

128

epsi=10^(-1);alpha=10^3;tol=10^(-3);imax=50;

[m,n]=size(A);en=ones(n,1);em=ones(m,1);

u=ones(m,1);%initial point

iter=0;g=1;

epsi=epsi*em;nu=nu*em;

DA=spdiags(d,0,m,m)*A;

while (norm(g)>tol) & (iter<imax)

iter=iter+1;

du=d.*u;Adu=A’*du;

pp=max(Adu-en,0);np=max(-Adu-en,0);

dd=sum(du)*d;unu=max(u-nu,0);uu=max(-u,0);

g=-epsi+(d.*(A*pp))-(d.*(A*np))+dd+unu-alpha*uu;

E=spdiags(sqrt(sign(np)+sign(pp)),0,n,n);

H=[DA*E d];

F=delta+sign(unu)+alpha*sign(uu);

F=spdiags(F,0,m,m);

di=-((H*H’+F)\g);

u=u+di;

end

du=d.*u;Adu=A’*du;

pp=max(Adu-en,0);np=max(-Adu-en,0);

w=1/epsi(1)*(pp-np);

gamma=-(1/epsi(1))*sum(du);

return

129

We further note that the MATLAB code above not only works for a linear classifier,

but also for a nonlinear classifier as well [65, Equations (1), (10)]. In the nonlinear case,

the matrix K(A,A′)D is used as input instead of A, and the pair (v, γ), is returned

instead of (w, γ). The nonlinear separating surface is then given by (4.37) as:

K(x,A′)Dv − γ = 0. (4.56)

Our first numerical testing and comparisons were carried out on the high dimensional

Multiple Myeloma dataset available at: http://lambertlab.uams.edu/publicdata.htm,

and processed by by David Page and his colleagues [83]. The structure of this dataset

with very large n and (m ≪ n) results from the DNA microarray dataset used. Hence,

feature selection is very desirable in such high dimensional problems. Other tests and

comparisons were also carried out on six moderately dimensioned, publicly available

datasets [77, 79] and are described in Section 4.3.3.

Multiple Myeloma Dataset

Multiple Myeloma is cancer of the plasma cell. The plasma cell normally produces

antibodies that destroy foreign bodies such as bacteria. As a product of the Myeloma

disease the plasma cells get out of control and produce a tumor. These tumors can

grow in several sites, usually in the soft middle part of bone, the bone marrow. When

these tumors appear in multiples sites they are called Multiple Myeloma. A detailed

description of the process used to obtain the data can be found in [83].

130

Description of the Dataset

The data consists of 105 data points, 74 of the points representing newly-diagnosed

multiple Myeloma patients while 31 points represent 31 healthy donors. Each data point

represents measurements taken from 7008 genes using plasma cells samples from the pa-

tients. For each one of the 7008 genes there are two measurements. One measurement

is called Absolute Call (AC) and takes on one of three nominal values: A (Absent), M

(Marginal) or P (Present). The other measurement, the average difference (AD), is a

floating point number that can be either positive or negative. Since each one of the 7008

AC features takes on nominal values from the set {A,M,P}, a real valued representa-

tion is needed to utilize our classifier which requires an input of real numbers. Thus,

each nominal value is mapped into a three dimensional binary vector depending on the

value that is being represented. This simple and widely used “1 of N” mapping scheme

for converting nominal attributes into real-valued attributes is illustrated in Figure 3.4.

Once this simple conversion is applied to the dataset, the AC feature space is transformed

from a 7008-dimensional space with nominal values A,M,P into a 7008×3 = 21024 real-

valued dimensional space. Adding the numerical AD feature for each of the 7008 genes

results in each data point being transformed to a point in R28032, with 21024 coming from

the AC transformation mentioned above and 7008 from the AD values. This makes this

dataset very interesting for our method, since a main objective of this paper is to show

that our proposed algorithm does a remarkable job of suppressing features especially for

datasets in a very high dimensional input space.

Numerical Comparisons

131

Performance of our Newton Linear Programming SVM (NLPSVM) algorithm on

the Myeloma dataset, in terms of feature selection and generalization ability, is first com-

pared with two publicly available SVM solvers: LSVM [71] and NSVM [34]. Reported

times for LSVM here differ from the ones reported in [71] because the calculation time

for the matrix H of (4.35) is considered as input time in [71], whereas here it is counted

as part of the computational time. The other algorithm included in our comparisons,

consists of solving the linear programing formulation (4.46) employing the widely used

commercial solver CPLEX 6.5 [48]. We call this approach CPLEX SVM. Termination

criteria for all methods, with the exception of CPLEX SVM, was set to tol = 0.001,

which is the default for LSVM. For CPLEX SVM the termination criterion used was

the default supplied in the commercial package. We outline some of the results of our

comparative testing.

• All three methods tested: NSVM, NLPSVM and CPLEX SVM obtained 100%

leave-one-out correctness (looc). The following tuning procedure was employed for

each of the 105 folds:

– A random tuning set of the the size of 10% of the training data was chosen

and separated from the training set.

– Several SVMs were trained on the remaining 90% of the training data using

values of ν equal to 2i with i = −12, . . . , 0, . . . , 12. Values of the parameter δ

tried were 10j with j = −3, . . . , 0, . . . , 3. This made the search space for the

pair (ν, δ) a grid of dimension 25 × 7.

– Values of ν and δ that gave the best SVM correctness on the tuning set were

chosen.

132

– A final SVM was trained using the chosen values of ν, δ and all the training

data. The resulting SVM was tested on the testing data.

• The remaining parameters were set to the following values: ǫ = 10−1, α = 103, tol =

10−3, imax = 50

• Our NLPSVM algorithm outperformed all others in the feature selection task, and

it obtained 100% looc using only 7 features out of 28032 original features. The

closest contender was CPLEX SVM which required four times as many features.

This is quite a significant result because using a small number of features is critical

for interpretation of the classification results by biologists.

• The average cpu time required by our algorithm for the leave-one-out correctness

(looc) computations was 75.16 seconds per fold and total time for 105 folds was

7891.80 seconds. This outperformed CPLEX SVM both in cpu time and number

of features used. CPLEX SVM had a cpu time of 108.28 per fold, a total time

of 11369.40 seconds and used 28 features. However, NLPSVM was considerably

slower than the NSVM which had a cpu time of 4.20 seconds average per fold and

total looc time of 441.00 seconds. Also, the NSVM classifier required 6554 features,

more than any classifier obtained by all other methods.

• LSVM failed and reported an out of memory error.

These results are summarized in Table 4.3.3 below.

Tests on Six Other Datasets

In this section we exhibit the effectiveness of NLPSVM in performing feature selection

while maintaining accuracy and cpu time comparable to those of other methods that do

133

Data Set NSVM[34] CPLEX SVM[48] LSVM[71] NLPSVM

m × n looc looc looc looc

(points × dimensions) Time (Sec.) Time (Sec.) Time (Sec.) Time (Sec.)

Features Features Features Features
Myeloma

105 × 28032 100.0% 100.0% oom 100%
441.00 11369.40 oom 7891.80
6554 28 oom 7

Table 4.4: NSVM [34], CPLEX SVM [48], LSVM [71] & NLPSVM : leave-one-out cor-
rectness (looc), total running times and number of features used by a linear classifier for
the Myeloma dataset. Best results are in bold. oom stands for “out of memory”.

not perform feature selection. We tested our algorithm on six publicly available datasets.

Five from the UCI Machine Learning Repository [77]: Ionosphere, Cleveland Heart, Pima

Indians, BUPA Liver and Housing. The sixth dataset is the Galaxy Dim dataset available

at [79]. The dimensionality and size of each dataset is given in Table 4.3.3.

Numerical Comparisons Using a Linear Classifier

In this set of experiments we used a linear classifier to compare our method NLPSVM

with LSVM, NSVM and CPLEX SVM on the six datasets mentioned above. Because

m ≫ n for these datasets, it was preferable to use the Sherman-Morrison-Woodbury

identity [40] to calculate the direction di in the Newton iteration (4.54) and solve an

(n + 1) × (n + 1) linear system of equations instead of an m × m linear system of equa-

tions. For this purpose define:

E2 := diag(|A′Du| − e)∗,

H := D[AE e].

and F := diag((u − νe)∗ + α(−u)∗) + δI.

(4.57)

134

Then, it follows from (4.51) that:

∂2f(u) + δI = HH ′ + F,

which is the matrix whose inverse is needed in the Newton iteration (4.54).

Applying the Sherman-Morrison-Woodbury identity we have:

(HH ′ + F)−1 = F−1 − F−1H(I + H ′F−1H)−1H ′F−1

Note that the inverse F−1 of F is trivial to calculate since F is a diagonal matrix.

This simple but effective algebraic manipulation makes our algorithm very fast even

when m ≫ n but n is relatively small.

The values for the parameters ν and δ were again calculated using the same tuning

procedure given in Section 4.3.3. The values of the remaining parameters were the same as

those used in Section 4.3.3. As shown in Table 4.3.3, the correctness of the four methods

was very similar, the execution time including ten-fold cross validation for NSVM was

less for all the datasets tested. However, all solutions obtained by NSVM depended on

all the original input features. In contrast, NLPSVM performed comparably to LSVM,

was always faster than CPLEX SVM but used the least number of features on all the

datasets compared to all other methods tested.

Numerical Comparisons Using a Nonlinear Classifier

In order to show that our algorithm can also be used to find nonlinear classifiers, we

chose three datasets from the UCI Machine Learning Repository for which it is known

that a nonlinear classifier performs better that a linear classifier. We used NSVM, LSVM ,

CPLEX SVM and our proposed algorithm NLPSVM in order to find a nonlinear classifier

based on the Gaussian kernel:

135

(K(A,B))ij = ε−µ‖Ai
′−B·j‖

2

,

i = 1, . . . ,m, j = 1, . . . , k.
(4.58)

where A ∈ Rm×n, B ∈ Rn×k and µ is a positive constant. The value of µ in the Gaussian

kernel and the value of ν in all the algorithms were chosen by tuning on the values 2i

with i an integer ranging from −12 to 12 following the same procedure described in

Section 4.3.3. The value of δ in NLPSVM was obtained also by tuning on the values 10j

with j = −3, . . . , 0, . . . , 3. The value of the parameter ǫ in this case was set to 10−1.

The values of the remaining parameters were the same as in Section 4.3.3. Because the

nonlinear kernel matrix is square and since NLPSVM, NSVM and LSVM perform better

on rectangular matrices, we also used a rectangular kernel formulation as described in

the Reduced SVM (RSVM) [52]. This resulted in as good or better correctness and much

faster running times. The size of the random sample used to calculate the rectangular

kernel was 10% of the size of the original dataset in all cases. We refer to these variations

of NSVM,LSVM, CPLEX SVM and NLPSVM as Reduced NSVM, Reduced LSVM,

Reduced CPLEX SVM and Reduced NLPSVM respectively. The results are summarized

in Table 4.3.3 for these nonlinear classifiers.

Again, as in the linear case the correctness of the four methods was similar on all the

datasets, the execution time including ten-fold cross validation for NSVM was less for

all the datasets tested, but with non-sparse solutions. NLPSVM performance was fast

when a reduced rectangular kernel was used and it obtained very sparse solutions that

resulted in nonlinear kernel classifiers that are easier to store and to evaluate.

136

Data Set NSVM CPLEX SVM LSVM NLPSVM
m × n Train Train Train Train

Test Test Test Test

(points × dimensions) Time (Sec.) Time (Sec.) Time (Sec.) Time (Sec.)

Features Features Features Features

Ionosphere 92.9% 90.9 % 92.9% 90.7%
351 × 34 88.9% 88.3 % 88.9% 88.0%

0.91 3.2 1.49 2.4
34 17.7 34 11.2

BUPA Liver 70.3% 71.2% 70.3% 70.6%
345 × 6 70.2% 69.9% 70.2% 68.8%

0.24 5.17 0.92 1.13
6 6 6 4.8

Pima Indians 77.7% 76.8% 77.7% 76.8%
768 × 8 77.2% 77.0% 77.2% 77.1%

0.55 3.94 2.30 1.07
8 5 8 4.9

Cleveland Heart 87.2% 85.9% 87.2% 86.5%
297 × 13 86.6% 85.5% 86.6% 85.9%

0.14 1.08 0.31 0.55
13 7.5 13 7.1

Housing 87.7% 87.7% 87.7% 87.0%
506 × 13 86.8% 85.0% 86.8% 85.2%

0.69 2.54 1.53 1.91
13 10.9 13 6.5

Galaxy Dim 94.0% 94.7% 94.0% 94.4%
4192 × 14 94.2% 94.7% 94.2% 94.6%

6.67 29.82 71.56 8.90
14 5 14 3.4

Table 4.5: NSVM [34], CPLEX SVM [48], LSVM [71] &
NLPSVM: Training correctness, ten-fold testing correctness,
ten-fold training times and number of features needed using a
LINEAR classifier. All parameters ν, δ chosen by tuning. For
each algorithm a reduced kernel version was also tested. Best
results are in bold. Training and testing correctness and number
of features are all averages over ten folds, while time is the total
time over ten folds.

137

Algorithm Data Set Ionosphere BUPA Liver Cleveland Heart

m × n 351 × 34 345 × 6 297 × 13

(points × dimensions)
NSVM Train 96.1 75.7 87.6

Test 95.0 73.1 86.8
Time (Sec.) 23.27 25.54 17.51

Card(v) 351 345 297
Reduced Train 96.1 76.4 86.8
NSVM Test 94.5 73.9 87.1

Time (Sec.) 0.88 0.67 0.53
Card(v) 35 35 30

LSVM Train 96.1 75.7 87.6
Test 95.0 73.1 86.8

Time (Sec.) 23.76 27.01 12.98
Card(v) 351 345 297

Reduced Train 96.1 75.1 87.1
LSVM Test 94.5 73.1 86.2

Time (Sec.) 2.09 1.81 1.09
Card(v) 35 35 30

NLPSVM Train 94.4 75.4 86.9
Test 93.5 73.9 86.2

Time (Sec.) 195.31 187.91 70.47
Card(v) 22.3 32.7 50.1

Reduced Train 94.4 74.5 85.9
NLPSVM Test 95.1 73.9 86.5

Time (Sec.) 2.65 6.82 5.17
Card(v) 14.6 16.4 12.3

CPLEX SVM Train 99.2 76.4 87.8
Test 96.1 73.6 86.2

Time (Sec.) 34.8 34.48 18.37
Card(v) 36.1 26.2 14.1

Reduced Train 98.7 76.4 87.0
CPLEX SVM Test 95.5 73.9 85.6

Time (Sec.) 3.08 4.42 2.47
Card(v) 26.9 18.7 12.6

Table 4.6: NSVM [34], LSVM [71], NLPSVM, CPLEX SVM
[48] and Reduced [52] NSVM, LSVM, NLPSVM, CPLEX SVM:
Training correctness, ten-fold testing correctness, ten-fold train-
ing times and cardinality of v (Card(v)) using a NONLINEAR
classifier. Best results are in bold. Training and testing cor-
rectness and and cardinality of v are all averages over ten folds,
while time is the total time over ten folds.

138

Chapter 5

Semi-Supervised Support Vector

Machines for Unlabeled Data

Classification

In semi-supervised learning, where only part of the two-class data is labeled, a SVM

algorithm can be also utilized with the exception that the algorithm assigns the unlabeled

data to one of two classes in such a way as to achieve separation by two bounding planes

and maximizing the margin between the planes.

Bennett and Demiriz [3], who treat datasets which are already partially labeled, for-

mulate the semi-supervised support vector machine (S3VM) as a mixed integer program

(MIP). Their formulation requires the introduction of a binary variable for each unla-

beled data point in the training set. This makes the problem difficult to solve for large

unlabeled data. State-of-the-art software does not handle easily problems with much

more than 50 unlabeled data points. To overcome this difficulty we propose here a for-

mulation that can handle large unlabeled datasets (with a thousand points) and solve the

semi-supervised problem in a considerably shorter time. Our new approach consists of

formulating the problem as a concave minimization problem which is solved by a succes-

sive linear approximation algorithm [61]. Such an approach has been successfully used on

a number of machine learning, data mining and other problems [9, 12, 61, 62]. We term

139

our approach a concave semi-supervised support vector machine (VS3VM).

For classifying unlabeled data, which is our principal aim here, we will make use

of the k-median clustering algorithm [12] in combination with the proposed VS3VM as

follows. The k-median algorithm is used to select a small representative percentage, 5%

to 10%, to be labeled by an expert or an oracle in order to be used as labeled data,

together with the remaining part of the data, that remains unlabeled, in VS3VM. Such

an approach which can accommodate large datasets produces an improvement as high

as 20.4% over a randomly chosen set labeled by an expert and used as a training set

in a linear support vector machine. In addition, even if the entire dataset is labeled

by an expert and classified by a linear support vector machine, our clustering concave

minimization approach, using only 5% to 10% of the data as labeled data, can come

within an average of 5.1%, in test set correctness, to an SVM trained on the entire

dataset labeled by an expert.

When a clustering procedure is combined with VS3VM, as described above, we term

the resulting algorithm as clustered VS3VM (CVS3VM).

5.1 Concave Semi-supervised SVM (VS3VM)

We consider here the dataset consisting of m labeled points and p unlabeled points all

in Rn. The m labeled points are represented by the matrix A ∈ Rm×n and p unlabeled

points in Rn represented by the matrix B ∈ Rp×n. The labels for A are given by an m×m

diagonal matrix D of ±1. Bennett and Demiriz [3] formulate the semi-supervised linear

support vector machine for generating the separating plane x′w = γ for this problem as

140

follows:

min
w,γ,y,z,r,s

νe
′

y + e
′

z + µe
′

min {r, s}

s.t. D(Aw − eγ) + y ≥ e

−z ≤ w ≤ z

Bw − eγ + r ≥ e

−Bw + eγ + s ≥ e

y ≥ 0, r ≥ 0, s ≥ 0,

(5.1)

where ν and µ are positive parameters. The first two terms of the objective function

together with the first two constrains and y ≥ 0, correspond to a linear SVM (5.6,

below) [9, Equation (13)] which attempts to classify the labeled part of the dataset

represented by the matrix A. The last term in the objective function together with

the remaining constraints assign each row of the matrix B, representing unlabeled data,

to class +1 or −1, whichever generates a lower misclassification error: min {r, s}. The

parameters µ, ν are positive numbers that weight the different terms of the objective

function and are chosen as described in Section 5.4. Bennett and Demiriz [3] formulate

this problem as a mixed integer program (MIP) by assigning a binary decision variable

to each row of the unlabeled matrix B. However only relatively small unlabeled datasets

(e.g. 50 points [3]) can be handled by this MIP formulation which sometimes fails due

to excessive branching [3]. However, if some local search procedure is combined with the

MIP formulation together with the clustering techniques proposed in this paper, the MIP

approach can conceivably be considerably improved.

We propose here instead a concave minimization procedure, consisting of solving a

finite number (typically 5 to 7) of linear programs, which terminate at a point satisfying

141

a necessary optimality for problem (5.1). The approach is based on the finite succes-

sive linear approximation algorithm for minimizing a concave function on a polyhedral

set [62, Algorithm 1] and is justified by the fact that nonlinear term min {r, s} in the

objective function of (5.1) is concave because it is the minimum of two linear functions.

The algorithm consists of linearizing the nonlinear term min {r, s} around the current

iterate (ri, si) by taking a supporting plane (generalization of a tangent plane for non-

differentiable concave functions) approximation of the function at that point and solving

the resulting linear program. This leads to the following finitely terminating successive

linear approximation algorithm based on [62, Algorithm 1].

Algorithm 5.1.1 VS3VM Successive Linear Approximation for S3VM (5.1) Choose

positive values for the parameters µ, ν. Start with a random (r0, s0) ≥ 0. Having (ri, si)

determine (wi+1, γi+1, yi+1, zi+1, ri+1, si+1) by solving the linear program:

min
w,γ,y,z,r,s

νe
′

y + e
′

z + µ∂(e
′

min {ri, si})







r − ri

s − si







s.t. D(Aw − eγ) + y ≥ e

−z ≤ w ≤ z

Bw − eγ + r ≥ e

−Bw + eγ + s ≥ e

y ≥ 0, r ≥ 0, s ≥ 0.

(5.2)

where the supergradient ∂(e
′

min {ri, si}) of e′ min {r, s} is defined below in (5.4). Stop

142

when the following necessary optimality condition holds:

νe
′

(yi+1 − yi) + e
′

(zi+1 − zi)

+µ∂(e
′

min {ri, si})′







ri+1 − ri

si+1 − si






= 0.

(5.3)

For a concave function f : Rn −→ R the supergradient ∂(f(x)) of f at x is a vector in

Rn satisfying:

f(y) − f(x) ≤ ∂f(x)(y − x),

for all y ∈ Rn. The supergradient reduces to the ordinary gradient ∇f(x), when f

is differentiable at x [85, 88]. The set of all supergradients at a point x is called the

superdifferential.

In our case e
′

min {r, s} : R2p −→ R is a non-differentiable concave function and its

supergradient is given by:

∂(e
′

min {r, s}) =
∑p

j=1





































































































Ij

0p






if rj < sj

(1 − λ)







Ij

0p






+ λ







0p

Ij






if rj = sj







0p

Ij






if rj > sj

(5.4)

143

Here 0p ∈ Rp is a column vector of zeros, Ij ∈ Rp is the jth column of the identity matrix

I, and λ ∈ (0, 1). In all our computations we set λ = 0.5 .

By [62, Theorem 3] Algorithm 5.1.1 terminates after a finite number of linear programs

at a point satisfying the necessary optimality condition (5.3) for problem (5.1).

Our numerical experiments showed that instead of a random starting point (r0, s0) ≥

0, a much better starting point for the Algorithm 2.1 can be obtained by solving the

following linear program:

min
w,γ,y,z,r,s

νe′y + e′z +
µ

2
(e′(r + s))

s.t. D(Aw − eγ) + y ≥ e

−z ≤ w ≤ z

Bw − eγ + r ≥ e

−Bw + eγ + s ≥ e

y ≥ 0, r ≥ 0, s ≥ 0,

(5.5)

which corresponds to the linear program (5.2) with a supergradient of e′ min{r, s} eval-

uated at r = s.

We turn our attention now to a combination of the S3VM with the k-median clustering

algorithm that will enable us to handle unlabeled data.

5.2 Clustering + VS3VM (CVS3VM) for Unlabeled

Data

To handle unlabeled data we make use of the k-median clustering algorithm [12], which

de-emphasizes outliers, in order to form a small training set (5% to 10% of the data) by

144

choosing among the unlabeled data a “representative” subset to be labeled by an expert.

This also constitutes a means for handling large unlabeled datasets such as those that

occur in data mining in which case relatively few points can be labeled through expensive

or time consuming services of an expert. The clustering approach can also be used as part

of an incremental algorithm where only a small percentage of incoming data is chosen by

the k-median algorithm to be labeled.

Our approach here will consist of the following: For a given percentage of the data,

select a “good” subset to label and give the resulting labeled-unlabeled dataset to the

VS3VM Algorithm 5.1.1. We describe now the “selection” procedure of the above ap-

proach, which will be carried out by using the k-median clustering algorithm [12] de-

scribed in the section below.

5.3 The k-median Clustering Algorithm

Consider a set of t data points in Rn represented by a general matrix H ∈ Rt×n. We first

find k cluster centers for the data such that the sum of distances between each point and

the closest cluster center Cl, l = 1, . . . , k is minimized. The idea then is to treat points

within a certain distance from these k cluster centers as representative points of that

cluster, and hence of the overall dataset, and have them labeled by an expert. These

points generate the matrix A of the semi-supervised Algorithm 5.1.1 S3VM. The rest of

the points remain unlabeled for use in S3VM as the matrix B. In order to achieve this

we use the simple and finite k-median clustering algorithm of [12] given below. When

the k-median clustering algorithm is applied as described to select labeled data for the

VS3VM Algorithm 5.1.1, the algorithm is referred to as the CVS3VM Algorithm.

145

Algorithm 5.3.1 k-Median Algorithm Given Cj
1 , . . . , Cj

k at iteration j, compute

Cj+1
1 , . . . , Cj+1

k by the following two steps:

(a) Cluster Assignment: For each H ′
i, i = 1, . . . t, determine ℓ(i) such that Cj

ℓ(i) is

closest to H ′
i in the one norm.

(b) Cluster Center Update: For ℓ = 1, . . . , k choose Cj+1
ℓ as a median of all H ′

i

assigned to Cj
ℓ .

Stop when Cj+1
ℓ = Cj

ℓ .

−100 −50 0 50 100

−100

−50

0

50

100

150

Unlabeled points in class 1
Unlabeld points in class −1
Separating Plane
Points labeled class 1 by expert
Points labeled class −1 by expert

Figure 5.1: CVS3VM for Unlabeled Data: Example showing 10% of a dataset, as solid
points, whose labels, diamonds and circles, are unknown to the k-median algorithm which
selects them to be labeled by an expert and then are used as labeled data in VS3VM
Algorithm 5.1.1. The remaining 90% points are used as unlabeled data by VS3VM.
Resulting separating plane correctly classifies 81% of the data

146

−100 −50 0 50 100

−100

−50

0

50

100

150

Unlabeled points in class 1
Unlabeled points in class −1
Separating Plane
Points labeled class 1 by expert
Points labeled class −1 by expert

Figure 5.2: Cluster + SVM for Unlabeled Data: Example showing 10% of a dataset, as
solid points, whose labels, diamonds and circles, are unknown to the k-median algorithm
which selects them to be labeled by an expert and then are used as labeled data in a
linear SVM (5.6). The resulting separating plane correctly classifies 72% of the data.

The choice of k in the k-median algorithm above depends on the size of the original

dataset and is typically chosen so that a certain desired total percentage, say 5% to 10%,

of the dataset falls within a desired distance from a closest cluster center.

To show that the clustered choice of data labeled by an expert in combination with a

semi-supervised SVM is the most effective way for handling unlabeled data, we compared

CVS3VM with other plausible approaches as follows.

1. Total Set + SVM: Total Set labeled by expert + Linear SVM

We solve here the linear SVM:

147

−100 −50 0 50 100

−100

−50

0

50

100

150

Unlabeled points in class 1
Unlabeled points in class −1
Separating Plane
Randomly selected points in class 1
Randomly selected points in class −1

Figure 5.3: Random + SVM for Unlabeled Data: Example showing 10% of a dataset, as
solid points, which are randomly selected and labeled by an expert, then used as training
set in a linear SVM (5.6). Resulting separating plane correctly classifies 69% of the data.

min
w,γ,y,z

νe′y + e′z

s.t. D(Aw − eγ) + y ≥ e

−z ≤ w ≤ z

y ≥ 0.

(5.6)

Thus training is done here on a completely labeled data set which is equivalent to

(5.1) with an empty B. In contrast, although CS3VM is trained on just a 5% to

10% of the data that is labeled by an expert, its test correctness is close to that

obtained by a linear SVM using all the dataset labeled by an expert as shown by

our numerical tests.

148

2. Random + SVM: Random choice for labeling by expert + Linear SVM

Here, 5%-10% of the data to be labeled is chosen randomly and used as training data

in the linear SVM algorithm. The information on the remaining unlabeled data is

not considered since we are applying a supervised learning approach to the labeled

data only. Because of the random choice of the training data, we performed this

experiment 10 times in order to obtain a more consistent result. As was expected,

this approach gave the worst performance.

3. Clustering + SVM: Clustering choice of data + Linear SVM

In this case no information on the unlabeled data is used. However, since the k-

median clustering algorithm is used to choose the data to be labeled, a “smarter”

choice of the data to be labeled is made. An improvement on test set correctness

over Random + SVM is obtained.

4. CVS3VM: Clustered choice of the data + VS3VM

This is the principal proposed algorithm of this paper. Pick a small percentage of

the unlabeled data by clustering to be labeled, then use this labeled data with the

the remaining unlabeled data in the Concave Semi-supervised SVM (VS3VM).

5. Cluster + S3VM: Clustering choice of data + S3VM (MIP)

This case is similar to CVS3VM except that instead of solving a concave mini-

mization problem we solve here a Mixed Integer problem (MIP) as proposed in

[3].

We now illustrate how CVS3VM works on a simple 2-dimensional example of 100 data

points consisting of diamond and circular shapes depicted in Figure 5.1, created by the

149

NDC (normally distributed clusters) generator [78]. The labels (diamond and circular

shapes) are made known to VS3VM as follows. In Figure 5.1 the solid shapes are the

10% of the original unlabeled dataset that are selected by the k-median algorithm to be

labeled data and given to VS3VM while the remaining 90% of the original data shown as

hollow shapes are treated as unlabeled data by VS3VM. The resulting separating plane

shown in Figure 5.1 correctly classifies 81% of the data. If we now drop the unlabeled

data from the training part of the problem and revert to a linear SVM (5.6) trained on

data chosen by a k-median algorithm, we obtain the separating plane shown in Figure

5.2 which correctly classifies a lower percentage of the data: 72%. Finally, if we use the

SVM (5.6) on a randomly chosen set of points that are labeled and depicted as solid

points, we obtain the separating plane shown in Figure 5.3 with a still lower correctness

of 69%.

5.4 Numerical Testing

Our numerical testing was carried out on five publicly available labeled datasets. Un-

labeled data was simulated by dropping labels from some or all the points in a given

dataset. Four of the datasets are from the UCI Machine Learning Repository [77], and

one of them was created by the NDC (normally distributed clusters) generator [78]. Ta-

ble 5.4 shows the number of points of each dataset and the dimensionality of the space

they are in. All the matrix manipulations were carried out using MATLAB [75]. Linear

programs were solved by calling the state-of-the-art CPLEX solver [21] from MATLAB

and GAMS [15].

Test 5.4.1 The following five experiments were performed:

150

(i) Total Set Linear SVM

Linear SVM (5.6) trained on a completely labeled dataset.

(ii) Random + Linear SVM A linear SVM for which a random 5% to 10% subset

of the data is selected as the training set to be labeled by an expert.

(iii) Cluster + Linear SVM A linear SVM is used together with the k-median Clus-

tering Algorithm 5.3.1 for selection of a 5%-10% subset of data points to be labeled

and used as a training set.

(vi) CVS3VM Algorithm VS3VM 5.1.1 with k-median Clustering Algorithm 5.3.1 for

selection of a 5%-10% subset of data points to be labeled by an expert with the rest

of the data remaining unlabeled in Algorithm VS3VM 5.1.1.

(v) Cluster + S3VM (MIP) Use Algorithm S3VM [3] (MIP formulation) with k-

median Clustering Algorithm 5.3.1 for selection of a 5%-10% subset of data points

to be labeled by an expert with the rest of the data remaining unlabeled.

When the k-median algorithm was used in order to choose the 5% (10%) subset of the

data, the value for k was approximately set to 5% (10%) of the total number of points in

the whole dataset. For example for the Ionosphere dataset of 351 points, we chose 10%

of the data to be labeled, thus k = 35. The labeled training set was chosen as the set

of points within a certain distance from the cluster centers of the k-median algorithm

so as to total to 10% of the original unlabeled dataset. For CVS3VM, we performed a

variation of the standard tenfold cross-validation. Once we obtained our 10% labeled

data to be used as training set, we divided the remaining 90% of data points into 10

folds, so that each fold contained 9% of the original dataset. We then used nine of these

151

10 folds (81% of the original points) as unlabeled training data and the remaining 9% as

a testing set. We repeated this procedure ten times choosing a different fold for testing

and the remaining folds as a unlabeled training data every time. The 10% of the labeled

data was fixed for all the ten problems corresponding to each fold. See Figure 5.4 for a

graphical depiction of this procedure. When comparison with a random choice of labeled

data was made, we repeated the latter process ten times and reported the average.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

������
������
������
������

������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

Labeled Data

10%9%

Unlabeled Data

81%

Set
Testing

Figure 5.4: CVS3VM tenfold Cross Validation

The parameter ν appearing in the formulation of the S3VM problem (5.1) is deter-

mined by a formula proposed in [3]: ν = 103

m+p
, where m is the number of the labeled

points, and p the number of the remaining unlabeled points. The parameter µ in (5.1)

was adjusted by tuning. When the SVM was used on the complete dataset as labeled

data, the parameter ν was also adjusted by tuning.

Table 5.4 gives tenfold testing set correctness for 5 totally unlabeled datasets for the

five algorithms described in Test 5.4.1: Total Set + Linear SVM, Random + Linear SVM,

Cluster + Linear SVM, CVS3VM and Cluster + S3VM (MIP). The improvement and

the p-values shown in the table are relative to the Random + Linear SVM approach.

CVS3VM had the highest test set correctness and the relative improvement, over

Random + Linear SVM, was as high as as 20.4% with a p-value of 0.02. Also, CVS3M

152

test set correctness using as little as 5% to 10% of the data as labeled data, was on

average within 5.1% of that for a linear SVM using all the data as a labeled training

dataset.

When S3VM-MIP terminated before reaching the 10,000-seconds time limit, it was

much slower than CVS3M. For example, in the Heart dataset the total time spent by

S3VM-MIP on tenfold cross validation was 462.2 seconds, while the time used by VS3VM

was 14.9 seconds in total. The corresponding times for the Housing dataset were 1193.2

seconds for S3VM-MIP and 32.9 for VS3VM.

153

Data Set Total Set SVM R + SVM C + SVM CVS3VM C + S3VM(MIP)

points×dim. Test Test Test Test Test

Improvement∗ Improvement∗ Improvement∗

p-value∗ p-value∗ p-value∗

NDC Set 72.6% 58.0% 60.0% 67.0% Failed†

1000 × 32 3.4% 15.5% -
0.38 0.01 -

Heart 83.2% 69.0% 73.3% 76.0% 76.0%
297 × 13 6.2% 10.1% 10.1%

0.01 0.01 0.01
Housing 86.2% 70.0% 73.3% 81.4% 81.0%
506 × 13 4.7% 16.2% 15.7%

0.18 0.05 0.08
Ionosphere 87.1% 78.3% 78.5% 84.2% Failed†

351 × 34 0.25% 7.5% -
0.93 0.05 -

Sonar 77.4% 64.0% 74.6% 77.1% Failed†

208 × 60 16.6% 20.4% -
0.04 0.02 -

Table 5.1: Tenfold test set correctness of the experiments described in Test 5.4.1 on 5
public datasets. Bold figures denote highest test set correctness.

(i) Total Set SVM : Entire dataset labeled by an expert and used by a linear SVM
(5.6).

(ii) R + SVM: Small randomly chosen subset labeled by an expert and used by a
linear SVM (5.6).

(iii) C + SVM: Small subset of the data chosen by clustering, labeled by an expert
and used by a linear SVM (5.6).

(iv) CVS3VM: Small subset of the data chosen by clustering, labeled by an expert and
VS3VM (5.1) solved the concave minimization algorithm, Algorithm 5.1.1.

(v) C + S3VM: Same as 4 except a Mixed Integer Program (MIP) is used instead of
the concave minimization algorithm, Algorithm 5.1.1.

∗ The relative improvement and the the p-value are calculated with respect to Random
+ SVM.
† Failure was declared when total time exceeded 10,000 seconds.

154

Chapter 6

Finite Newton Method for

Lagrangian Support Vector Machine

Classification

In this chapter we establish a finitely terminating Newton method for the unconstrained

minimization of a strongly convex, piecewise quadratic function, which underlies a linear

or nonlinear kernel classifier [19, 22, 65, 92, 103]. Our piecewise quadratic function is the

implicit Lagrangian, first proposed in [74] and utilized in [71] for a highly effective iterative

scheme, the Lagrangian Support Vector Machine (LSVM). In order to handle problems

with very large dimensional input spaces, we use here instead a fast finite Newton method

for finding the unconstrained unique global minimum solution of the implicit Lagrangian

associated with the classification problem. The solution is obtained by solving a system

of linear equations, a finite number of times.

155

6.1 Strongly Convex Quadratic Programming SVM

Formulation

In many essentially equivalent formulations of the classification problem [33, 35, 52, 53],

the square of 2-norm of the slack variable y is minimized with weight ν
2

instead of the

1-norm of y as in (3.1). In addition the distance between the planes (2.2) is measured

in the (n + 1)-dimensional space of (w, γ) ∈ Rn+1, that is 2
‖(w,γ)‖

. Measuring the margin

in this (n + 1)-dimensional space instead of Rn induces strong convexity and has little

or no effect in general on the problem as was shown in [68] experimentally. Thus using

twice the reciprocal squared of the margin instead, yields our modified SVM problem as

follows:

min
(w,γ,y)∈Rn+1+m

ν
2
y′y + 1

2
(w′w + γ2)

s.t. D(Aw − eγ) + y ≥ e

y ≥ 0.

(6.1)

It has been shown computationally [71] that this reformulation (6.1) of the conventional

support vector machine formulation (2.1) often yields similar results to (2.1). The dual

of this problem is [59]:

min
0≤u∈Rm

1

2
u′(

I

ν
+ D(AA′ + ee′)D)u − e′u. (6.2)

The variables (w, γ) of the primal problem which determine the separating surface (2.4)

are recovered directly from the solution of the dual (6.2) above by the relations:

w = A′Du, y =
u

ν
, γ = −e′Du. (6.3)

156

We immediately note that the matrix appearing in the dual objective function is positive

definite. We simplify the formulation of the dual problem (6.2) by defining two matrices

as follows:

H = D[A − e], Q =
I

ν
+ HH ′. (6.4)

With these definitions the dual problem (6.2) becomes

min
0≤u∈Rm

f(u) :=
1

2
u′Qu − e′u. (6.5)

To develop the nonlinear kernel classifier we use again the notation described in the

introduction. As described before in previous chapters, the linear separating surface (2.4)

is replaced by the nonlinear surface:

K(x′, A′)Du = γ, (6.6)

where u is the solution of the dual problem (6.2) with the linear kernel AA′ replaced by

the nonlinear kernel product K(A,A′)K(A,A′)′ [65, Equation (8.10)], that is:

min
0≤u∈Rm

1

2
u′(

I

ν
+ D(K(A,A′)K(A,A′)′ + ee′)D)u − e′u. (6.7)

This leads to a redefinition of the matrix Q of (6.5) as follows:

H = D[K(A,A′) − e], Q =
I

ν
+ HH ′. (6.8)

Note that the nonlinear separating surface (6.6) degenerates to the linear one (2.4) if we

let K(A,A′) = AA′ and make use of (6.3).

We describe now a general framework for generating a fast and effective algorithm

for solving the quadratic program (6.5) by solving a system of linear equations a finite

number of times.

157

6.2 Implicit Lagrangian Formulation

The implicit Lagrangian formulation [71, Equation (17)], [92, Section 10.6.2] consists

of replacing the nonnegativity constrained quadratic minimization problem (6.5) by the

equivalent unconstrained piecewise quadratic minimization of the implicit Lagrangian

L(u):

min
u∈Rm

L(u) = min
u∈Rm

1

2
u′Qu − e′u +

1

2α
(‖(−αu + Qu − e)+‖

2 − ‖Qu − e‖2), (6.9)

where α is a sufficiently large but finite positive parameter, and the plus function (·)+,

defined in the Introduction, replaces negative components of a vector by zeros. Refor-

mulation of the constrained problem (6.5) as an unconstrained problem (6.9) is based

on ideas [74] of converting the optimality conditions of (6.5) to an unconstrained mini-

mization problem as follows. Because the Lagrange multipliers of the constraints u ≥ 0

of (6.5) turn out to be components of the gradient Qu − e of the objective function,

these components of the gradient can be used as Lagrange multipliers in an Augmented

Lagrangian [6, 89] formulation of (6.5) which leads precisely to the unconstrained formu-

lation (6.9). Our finite Newton method consists of applying Newton’s method to this

unconstrained minimization problem and showing that it terminates in a finite number

of steps at the global minimum. The gradient of L(u) is:

∇L(u) = (Qu − e) + 1
α
(Q − αI)((Q − αI)u − e)+ − 1

α
Q(Qu − e)

= (αI−Q)
α

((Qu − e) − ((Q − αI)u − e)+).
(6.10)

In order to apply the Newton method we need the m×m Hessian matrix of second partial

derivatives of L(u), which does not exist in the ordinary sense because its gradient, ∇L(u),

is not differentiable. However, a generalized Hessian of L(u) in the sense of [28, 43, 66]

158

exists and is defined as the following m × m matrix:

∂2L(u) =
(αI − Q)

α
(Q + diag((Q − αI)u − e)∗(αI − Q)), (6.11)

where, as defined in the Introduction, diag(·)∗ denotes a diagonal matrix and (·)∗ denotes

the step function. Our basic Newton step consists of solving the system of m linear

equations:

∇L(ui) + ∂2L(ui)(ui+1 − ui) = 0, (6.12)

for the unknown m × 1 vector ui+1 given a current iterate ui. We will show in the next

section that this iteration coupled with a stepsize, terminates at the global minimum

solution to the problem. For that we need the positive definiteness of ∂2L(u), which

we establish now under the very simple condition that Q is positive definite and that

α > ||Q|| as follows.

Proposition 6.2.1 Positive Definiteness of the Generalized Hessian Let Q be an

arbitrary m × m symmetric positive definite matrix and let α > ||Q||. Then:

(i) The generalized Hessian matrix ∂2L(u), defined by (6.11), is positive definite.

(ii) The generally non-symmetric matrix factor P (u) of ∂2L(u) = (αI−Q)
α

P (u):

P (u) := Q + diag((Q − αI)u − e)∗(αI − Q), (6.13)

is positive definite.

Proof

(i) Since α > ||Q||, it follows that αI − Q is positive definite. Hence the product

(αI − Q)Q of the two positive definite matrices αI − Q and Q is positive definite

159

[82, Theorem 6.2.1]. Define the diagonal matrix:

E(u) := diag((Q − αI)u − e)∗. (6.14)

Since, by the definition of the step function (·)∗, each element of E(u) is in the

interval [0, 1], it follows that:

(αI − Q)E(u)(αI − Q) = (E(u)
1

2 (αI − Q))2 (6.15)

is positive semidefinite. Hence the generalized Hessian:

∂2L(u) =
(αI − Q)

α
Q +

(αI − Q)

α
E(u)(αI − Q), (6.16)

the sum of a positive definite and a positive semidefinite matrix is positive definite.

(ii) Since:

P (u) = α(αI − Q)−1∂2L(u), (6.17)

is the product of two positive definite matrices, it follows again by [82, Theorem

6.2.1] that P (u) is positive definite. �
We note now that, since both ∇L(u) and ∂2L(u) contain the multiplicative factor (αI−Q)

α

which is positive definite, it follows that the Newton iteration (6.12) can be simplified to:

h(ui) + ∂h(ui)(ui+1 − ui) = 0, (6.18)

where

h(u) := (Qu − e) − ((Q − αI)u − e)+ = (
αI − Q

α
)−1∇L(u), (6.19)

and

∂h(u) := Q + E(u)(αI − Q) = P (u) = (
αI − Q

α
)−1∂2L(u). (6.20)

160

The simpler iteration (6.18) will be used in our implementation instead of the equivalent

iteration (6.12).

Another useful tool in our implementation will be the Sherman-Morrison-Woodbury

identity [40] when we are classifying large datasets with a linear classifier. For such prob-

lems we have, with Q defined by (6.4) and E(u) replaced by E for notational simplicity:

∂h(u) = αE + (I − E)Q = αE + I−E
ν

+ (I − E)HH ′

= F + (I − E)HH ′ = F (I + F−1(I − E)HH ′) = F (I + SHH ′),
(6.21)

where F and S are defined as the following positive and nonnegative diagonal matrices

respectively:

F := αE +
I − E

ν
, S := F−1(I − E). (6.22)

By using a special case of the Sherman-Morrison-Woodbury identity [40]:

(I + KH ′)−1 = I − K(I + H ′K)−1H ′, (6.23)

on the last expression of (6.21), with K := SH, we have:

∂h(u)−1 = (I + SHH ′)−1F−1 = (I − SH(I + H ′SH)−1H ′)F−1, (6.24)

where we need to invert the (n+1)×(n+1) matrix (I +H ′SH) instead of the potentially

much larger m × m matrix (I + SHH ′). This will be the case whenever we generate a

linear classifier for problems with m >> n.

We turn now to details of the Newton algorithm and its finite termination properties.

6.3 Finite Newton Classification Method

We first state our Newton algorithm for solving the piecewise quadratic minimization

problem (6.9) for an arbitrary positive definite Q using the simplified iteration (6.18)

161

together with an Armijo stepsize [2, 53] defined below in order to guarantee finite termi-

nation from any starting point.

Algorithm 6.3.1 Newton Algorithm for (6.9) Let h(u) and ∂h(u) be defined by

(6.19) and (6.20). Start with any u0 ∈ Rm. For i = 0, 1, . . . :

(i) Stop if h(ui − ∂h(ui)−1h(ui)) = 0.

(ii) ui+1 = ui − λi∂h(ui)−1h(ui) = ui + λid
i,

where λi = max{1, 1
2
, 1

4
, . . . } is the Armijo stepsize such that:

L(ui) − L(ui + λid
i) ≥ −δλi∇L(ui)′di, (6.25)

for some δ ∈ (0, 1
2
), and di is the Newton direction:

di = −∂h(ui)−1h(ui), (6.26)

obtained by solving (6.18).

(iii) i = i + 1. Go to (i).

We state and prove now our finite termination result for this Newton algorithm. A

possible intuitive justification of the finite termination is that as the iterates converge to

the unique global solution, the correct quadratic surfaces on whose intersection the solu-

tion lies are correctly identified, and hence a single Newton step captures that solution.

Theorem 6.3.2 Finite Termination of Newton Algorithm For the symmetric pos-

itive definite matrix Q defined by (6.4) or (6.8), the sequence {ui} of Algorithm 6.3.1

terminates at the global minimum solution ū of (6.9) and hence that of (6.5) provided

α > ‖Q‖.

162

Proof That the sequence {ui} converges to the global solution ū, for which h(ū) = 0,

follows from standard results (e.g.[60, Theorem 2.1, Example 2.1(ii), Example 2.4(iv)])

of unconstrained minimization of a strongly convex function using a Newton direction

with an Armijo stepsize. This is exactly what is done in our Algorithm 6.3.1 above. We

now establish finite termination of the sequence {ui} at ū. Our Newton iteration (6.18)

can be written as:

(Qui − e) − ((Q − αI)ui − e)+ + (Q + E(ui)(αI − Q))(ui+1 − ui) = 0, (6.27)

which we rewrite by subtracting from it the equality h(ū) = 0 satisfied by the solution ū:

(Qū − e) − ((Q − αI)ū − e)+ = h(ū) = 0. (6.28)

This results in the equivalent iteration:

((Q − αI)ū − e)+ − ((Q − αI)ui − e)+

−E(ui)(Q − αI)(ui+1 − ui) + Q(ui+1 − ū) = 0.
(6.29)

We show now that this Newton iteration is satisfied uniquely (since ∂h(ui) is nonsingular)

by ui+1 = ū when ui is sufficiently close to ū and hence the Newton iteration terminates

at ū at step (i) of Algorithm 6.3.1. Setting ui+1 = ū in (6.29) and canceling the last term

Q(ū − ū) = 0, gives:

((Q − αI)ū − e)+ − ((Q − αI)ui − e)+ − E(ui)(Q − αI)(ū − ui) = 0. (6.30)

We verify now that that this equation is indeed satisfied when ui is sufficiently close to ū

by looking at each component j, j = 1, . . . ,m of the equation (6.30). We consider the the

following nine possible combinations determined by the vector function r(u) appearing

in (6.30) defined as:

rj(u) := ((Q − αI)u − e)j, j = 1, . . . ,m. (6.31)

163

Noting that every element of the diagonal matrix E(u) defined by (6.14), that is Ejj(u) =

(rj(u))∗, j = 1, . . . ,m, is in the interval [0, 1], we have:

(i) rj(ū) > 0, rj(u
i) > 0:

(Qj − αIj)ū − 1 − (Qj − αIj)u
i + 1 − 1 · (Qj − αIj)(ū − ui) = 0

(ii) rj(ū) > 0, rj(u
i) = 0: Cannot occur when ui is sufficiently close to ū.

(iii) rj(ū) > 0, rj(u
i) < 0: Cannot occur when ui is sufficiently close to ū.

(iv) rj(ū) = 0, rj(u
i) > 0:

0 − (Qj − αIj)u
i + 1 − 1 · (Qj − αIj)(ū − ui) = 1 − Qjū + αūj = −rj(ū) = 0

(v) rj(ū) = 0, rj(u
i) = 0:

0 + 0 − [0, 1] · ((Qj − αIj)(ū − ui) − e + e) = [0, 1] · (rj(ū) − rj(u
i)) = 0

(vi) rj(ū) = 0, rj(u
i) < 0:

0 + 0 − 0 · (Qj − αIj)(ū − ui) = 0

(vii) rj(ū) < 0, rj(u
i) > 0: Cannot occur when ui is sufficiently close to ū.

(viii) rj(ū) < 0, rj(u
i) = 0: Cannot occur when ui is sufficiently close to ū.

(ix) rj(ū) < 0, rj(u
i) < 0:

0 + 0 − 0 · (Qj − αIj)(ū − ui) = 0

Consequently for ui is sufficiently close to ū, the Newton iteration is uniquely satisfied

by ū, and hence, terminates at ū. �
We turn now to our computational results.

164

6.4 Numerical Experience

Because of the simplicity of our algorithm, we give below a simple MATLAB implemen-

tation of the algorithm without the Armijo stepsize, which does not seem to be needed in

most applications. Although this is merely an empirical observation in the present case,

it considerably simplifies our MATLAB Code 6.4.1. However, it has also been shown

[66, Theorem 3.6] that under a well conditioned assumption, not generally satisfied here,

the proposed Newton method indeed terminates in a finite number of steps without an

Armijo stepsize.

We further note that the provided MATLAB code 6.4.1 not only works for a linear

classifier, but also for a nonlinear classifier as well [65, Equations (1), (10)]. In the

nonlinear case, the matrix K(A,A′) is used as input instead of A, and the pair (û, γ),

where û = K(A,A′)Du, is returned instead of (w, γ). The nonlinear separating surface

is then given by (6.6) as:

K(x,A′)û − γ = 0. (6.32)

Our numerical testing and comparisons were carried out on the high dimensional

Multiple Myeloma dataset available at:

http : //lambertlab.uams.edu/publicdata.htm,

and processed by David Page and his colleagues [83]. Further tests and comparisons were

also carried out on six moderately dimensioned, publicly available datasets [77, 79].

We describe our tests and comparisons now.

165

Code 6.4.1 NSVM: Finite Newton LSVM Code

function [w,gamma]=nsvm(A,d,nu);

% NSVM:linear and nonlinear classification without Armijo

% INPUT: A, D, nu. OUTPUT: w, gamma

% [w, gamma] = nsvm(A,d,nu);

[m,n]=size(A);iter=0;

u=zeros(m,1);e=ones(m,1);

H=[diag(d)*A -d]; Q=speye(m)/nu+H*H’;

alpha=1.1*((1/nu)+(norm(H’,2)^2));

hu=-max(((Q*u-e)-alpha*u),0)+Q*u-e;

while norm(hu)>10^(-5)

iter=iter+1

star=sign(max(((Q-alpha*eye(m))*u-e),0));

dhu=sparse((eye(m)-diag(star))*Q+alpha*diag(star));

delta=dhu\hu;

unew=u-delta;

u=unew;

hu=-max(((Q*u-e)-alpha*u),0)+Q*u-e;

end

w=A’*(d.*u);gamma=-sum(d.*u);

return

166

6.4.1 Multiple Myeloma Dataset

In this section we performed experiments using the multiple Myeloma dataset that is

described in detail in Section 4.3.3.

As described in 4.3.3 this dataset is transformed in a dataset with 105 points in R28032.

This makes this dataset very interesting for our method, since a main objective of this

paper is to show that our proposed algorithm can quickly classify points in very high

dimensional spaces.

1 0 0

0

0

0 1

10P

A

M

Figure 6.1: Real-valued representation of the AC features set {A,M,P} .

Numerical Comparisons

Performance of our Newton SVM (NSVM) algorithm on the Myeloma dataset, in terms

of speed and generalization ability, is first compared with two publicly available SVM

solvers: LSVM [71] and SVMlight version 5.0 [50]. The comparison with LSVM was

carried out because both LSVM and NSVM minimize the same unconstrained differen-

tiable convex implicit Lagrangian function (6.9) but using entirely different techniques.

Reported times for LSVM here differ from the ones reported in [71] because the calcu-

lation time for the matrix H of (6.4) is considered as input time in [71], whereas here

it is counted as part of the computational time. The other algorithm included in our

comparisons, SVMlight, solves a different optimization problem with a classification error

167

measured using the 1-norm instead of the 2-norm. This solver was included in our ex-

periments because it is widely cited in the literature and is often used as a benchmark

for SVM classification algorithms. Termination criteria for all methods was set to 0.001

which is the default for SVMlight. We outline some of the results of our comparative

testing.

• Both NSVM and SVMlight obtained 100% leave-one-out correctness (looc). How-

ever, we note that SVMlight did not perform as well with the default value of its

parameter C which determines the trade-off between empirical and generalization

errors. In order to find an optimal value for both ν (NSVM and LSVM) and C (

SVMlight) the following tuning procedure was employed on each fold:

– A random tuning set of the the size of 10% of the training data was chosen

and separated from the training set.

– Several SVMs were trained on the remaining 90% of the training data using

values for C or ν equal to 2i where i = −12, . . . , 0, . . . , 12.

– The value of C or ν that gave the best SVM correctness on the tuning set was

chosen.

– A final SVM was trained using the chosen value of C and ν and all the training

data. The resulting SVM was tested on the testing data.

• The average cpu time required by our algorithm for the leave-one-out correctness

(looc) computations was 4.11 seconds per case and total time for all cases was 432.40

seconds. This outperformed the SVMlight cpu times of 27.83 seconds average per

case and total looc time of 2922.15 seconds.

• LSVM failed and reported an out of memory error.

168

These results are summarized in Table 6.4.1 below.

Data Set NSVM SVMlight LSVM

m × n looc looc looc

(points × dimensions) Time (Sec.) Time (Sec.) Time (Sec.)

Myeloma
105 × 28032 100.0% 100.0% oom

432.40 2922.15 oom

Table 6.1: NSVM, SVMlight & LSVM: leave-one-out correctness (looc) and total running
times using a linear classifier for the Myeloma dataset. Best results are in bold. oom
stands for “out of memory”.

6.4.2 Six Publicly Available Datasets

Even though our algorithm is primarily intended for datasets with very high dimensional

input space and a moderate number of points, it also performed very well on more con-

ventional datasets where the opposite is true. To exhibit this fact we tested our algorithm

on six publicly available datasets. Five from the UCI Machine Learning Repository [77]:

Ionosphere, Cleveland Heart, Pima Indians, BUPA Liver and Housing. The sixth dataset

is the Galaxy Dim dataset available at [79]. The dimensionality and size of each dataset

is given in Table 6.4.3.

6.4.3 Numerical Comparisons Using a Linear Classifier

In this set of experiments we used a linear classifier to compare our method NSVM

with LSVM and SVMlight on the six datasets mentioned above. Because m >> n for

these datasets, it was preferable to use (6.24) in solving the Newton iteration (6.18) and

inverting an (n+ 1)× (n+ 1) matrix instead of an m×m matrix. The complexity of the

169

original NSVM for a linear kernel is O(km3)+O(m2n), where k is the number of iterations

of NSVM and the term O(m2n) reflects the time for computing the matrix Q of of (6.4).

By using the Sherman-Morrison-Woodbury formula, the complexity changes to O(kn3)+

O(m2n), which is obviously preferable when m >> n. However, the explicit calculation

of the matrix Q of equation (6.4) which is of the order O(m2n) is very time consuming

when m is large. Hence, instead of explicitly calculating Q and then performing the

matrix-vector product Qu, needed in computing h(u), we calculate:

Qu = (
I

ν
+ HH ′)u =

1

ν
u + H(H ′u), (6.33)

where H ′u is calculated first then H(H ′u) is calculated next. This simple but effective

algebraic manipulation changes the complexity of the algorithm to be linear in m that

is, O(kn3) + O(mn). This makes our algorithm very fast even when m >> n but n is

relatively small.

The values for the parameters C and ν were again calculated using the same tuning

procedure explained in section 6.4.1

As shown in Table 6.4.3, the correctness of the three methods was very similar, but the

execution time including ten-fold cross validation for NSVM was less for all the datasets

tested.

6.4.4 Numerical Comparisons Using a Nonlinear Classifier

In order to show that our algorithm can also be used to find nonlinear classifiers, we

chose three datasets from the UCI Machine Learning Repository for which it is known

that a nonlinear classifier performs better that a linear classifier. We used NSVM, LSVM

and SVMlight in order to find a nonlinear classifier based on the Gaussian kernel 1.1. The

170

Data Set NSVM SVMlight LSVM
m × n Train Train Train

Test Test Test

(points × dimensions) Time (Sec.) Time (Sec.) Time (Sec.)

Ionosphere 93.2% 92.0 % 93.2%
351 × 34 89.8% 88.3 % 89.8%

0.95 2.3 1.49
BUPA Liver 70.3% 70.1% 70.3%

345 × 6 70.2% 69.3% 70.2%
0.19 5.17 0.61

Pima Indians 77.7% 77.4% 77.7%
768 × 8 77.0% 77.1% 77.0%

0.48 3.87 2.04
Cleveland Heart 87.3% 87.1% 87.3%

297 × 13 86.3% 85.9% 86.3%
0.31 0.88 0.83

Housing 87.2% 87.6% 87.2%
506 × 13 86.6% 85.8% 86.6%

0.58 5.57 1.53
Galaxy Dim 95.0% 91.3% 95.0%
4192 × 14 95.3% 91.2% 95.3%

7.16 15.94 76.67

Table 6.2: NSVM, SVMlight & LSVM: Training correctness, ten-fold testing correctness
and ten-fold training times using a LINEAR classifier. NSVM and LSVM parameter ν
and SVMlight parameter C, all chosen by tuning. Best results are in bold.

value of µ in the Gaussian kernel and the value of ν in NSVM and LSVM and C in

SVMlight were chosen all by tuning from the set of values 2i with i an integer ranging

from −12 to 12 following the same procedure described in section 6.4.1. Because the

nonlinear kernel matrix is square and since both NSVM and LSVM perform better on

rectangular matrices, we also used a rectangular kernel formulation as described in the

Reduced SVM (RSVM) [52]. This resulted in as good or better correctness and much

faster running times. The size of the random sample used to calculate the rectangular

kernel was 10% of the size of the original dataset in all cases. We refer to these variations

171

of NSVM and LSVM as Reduced NSVM and Reduced LSVM respectively. The results

are summarized in Table 6.4.4 for these nonlinear classifiers.

Data Set Ionosphere BUPA Liver Cleveland Heart

m × n 351 × 34 345 × 6 297 × 13

(points × dimensions)
NSVM
Train 96.1 75.7 87.6
Test 95.0 73.1 86.8

Time (Sec.) 23.27 25.54 17.51
Reduced NSVM

Train 96.1 76.4 86.8
Test 94.5 73.9 87.1

Time (Sec.) 0.88 0.67 0.53
SVMlight

Train 94.4 77.2 87.1
Test 96.0 74.2 85.9

Time (Sec.) 2.42 2.74 0.74
LSVM
Train 96.1 75.7 87.6
Test 95.0 73.1 86.8

Time (Sec.) 23.76 27.01 12.98
Reduced LSVM

Train 96.1 75.1 87.1
Test 94.5 73.1 86.2

Time (Sec.) 2.09 1.81 1.09

Table 6.3: NSVM, Reduced NSVM, SVMlight, LSVM & Reduced LSVM: Training cor-
rectness, ten-fold testing correctness and ten-fold training times using a NONLINEAR
classifier. Best results are in bold.

172

Chapter 7

Conclusion

7.1 Proximal Support Vector Machine Classification

We have proposed an extremely simple procedure for generating linear and nonlinear

classifiers based on proximity to one of two parallel planes that are pushed as far apart as

possible. This procedure, a proximal support vector machine (PSVM), requires nothing

more sophisticated than solving a simple nonsingular system of linear equations, for

either a linear or nonlinear classifier. In contrast, standard SVM classifiers require a

more costly solution of a linear or quadratic program. For a linear classifier, all that

is needed by PSVM is the inversion of a small matrix of the order of the input space

dimension, typically of the order of 100 or less, even if there are millions of data points

to classify. For a nonlinear classifier, a linear system of equations of the order of the

number of data points needs to be solved. This allows us to easily classify datasets with

as many as a few thousand of points. For larger datasets, data selection and reduction

methods such as [32, 37, 52] can be utilized as indicated by some of our numerical results.

Our computational results demonstrate that PSVM classifiers obtain test set correctness

statistically comparable to that of standard of SVM classifiers at a fraction of the time,

sometimes an order of magnitude less.

Taking advantage of the properties of PSVM, we have proposed a very fast and

simple incremental SVM classifier based on proximity of each class of points to one

173

of two parallel planes that are pushed apart to improve generalization. The principal

features of the proposed algorithm are its ability to retire old data and add new data

very easily, its effectiveness and speed in handling massive datasets incrementally, and

its ability to compress large datasets in a compression ratio of order mn
n2 = m

n
, where m,

the number of points, can be of the order of millions, and n, the input dimension, is of

the order 10 to a 100. These features coupled with its simplicity will hopefully make it

a useful classification tool.

We also extended the PSVM algorithm for use in generating linear and nonlinear

multicategory classifiers. The one-from-the-rest approach is based on proximity of each

class to one of two parallel planes that are pushed as far apart as possible. This procedure,

a multicategory proximal support vector machine (MPSVM) with balancing and Newton

refinement, requires nothing more sophisticated than solving k simple systems of linear

equations, for either a linear or nonlinear classifier, where k is the number of classes. In

contrast, standard one-from-the-rest support vector machine classifiers require the more

costly solution of k linear or quadratic programs. For a linear classifier, all that is needed

by MPSVM is the solution of k nonsingular systems of linear equations of the order of the

input space dimension, typically of 100 or less, even if there are millions of data points

to classify. For a nonlinear classifier, a reduction method using rectangular kernels such

as [52] is utilized and k linear systems of the order of as small as 15% of the data points

are solved. Our computational results demonstrate that MPSVM classifiers obtain test

set correctness comparable to that of standard one-from-the-rest SVM classifiers at a

fraction of the time, often orders of magnitude less.

We have also proposed a novel Newton refinement algorithm that can improve clas-

sification accuracy for any two-class kernel classifier. This refinement is very fast, since

174

it is a minimization problem in only two variables and is easy to implement. Future re-

search plans include applying this refinement to other linear and nonlinear kernel-based

classification algorithms. We have also addressed the problem of unbalanced datasets,

which often occurs in one-from-rest classification approaches, by applying a very simple

balanced version of PSVM together with a Newton refinement.

7.2 Knowledge Based Support Vector Machines

We have proposed an efficient procedure for incorporating prior knowledge in the form

of polyhedral knowledge sets into a linear support vector machine classifier either in

combination with a given dataset or based solely on the knowledge sets. This novel and

promising approach for handling prior knowledge is worthy of further study, with special

focus on ways to handle and simplify the combinatorial nature of incorporating prior

knowledge into linear inequalities.

Potential future applications of this approach are problems where training data may

not be easily available, but expert knowledge may be readily available in the form of

knowledge sets. This would correspond to solving our knowledge based linear program

(3.15) with ν = 0. A typical example of this type is breast cancer prognosis [54, 55]

where knowledge sets by themselves generated a linear classifier as accurate as any clas-

sifier based on data points. This is a new way of incorporating prior knowledge into

powerful support vector machine classifiers. Another important avenue to pursue is that

of knowledge sets characterized by convex but nonpolyhedral sets.

We have also extended knowledge based SVMs to nonlinear kernel classifiers. The

classifier is obtained using a linear programming formulation with any nonlinear symmet-

ric kernel where no positive definiteness (Mercer) condition is assumed. The formulation

175

works equally well with or without conventional datasets. We note that unlike the linear

kernel case with prior knowledge [36], described in Section 3.1, where the absence of con-

ventional datasets was handled by deleting some constraints from a linear programming

formulation, here arbitrary representative points from the knowledge sets are utilized to

play the role of such datasets, that is A and D in (3.36). The issues associated with

sampling the knowledge sets, in situations where there are no conventional data points,

also constitute an interesting topic for future research.

7.3 Sparse Classifiers: Data and Feature Selection

We have proposed a minimal support vector machine that extracts a minimum number

of points from a given dataset in order to define a separating surface that classifies the

dataset into two categories, based on this minimal subset of the data only. This minimal

property, in the spirit of Occam’s Razor [7], is not only useful in classifying very large

datasets using only a fraction of the data, but also maintains or improves generalization

over other classifiers that use a considerably higher number of data points in order to

determine the separating surface.

In Section 4.1, we extended the idea to nonlinear classifiers. We have addressed one of

the serious computational difficulties associated with such problems when we attempt to

use a nonlinear kernel classifier on a large training dataset. Such problems result in the

unwieldy explicit dependence of the nonlinear classifier on almost all the entries of a huge

dataset. By utilizing a leave-one-out error bound, we have proposed an algorithm, based

on solving a few linear programs, that generates an accurate nonlinear kernel classifier

that typically depends on less than 10% of the original data. With the exception of the

multiple class USPS dataset, the nonlinear separator is equally or more accurate than

176

classifiers using the full dataset and is much faster to evaluate, making it suitable for fast

on-line decision making. This allows us to tackle nonlinear classification problems that

up to now were very difficult to solve. The fact that our formulation also reduces the

number of data points needed if we have to re-solve the problem suggests promising new

applications, such as incremental classification of massive datasets where only a small

fraction of the data is kept before merging it into incrementally arriving data.

At the end of this chapter, we presented a fast and finitely terminating Newton

method for feature selection. When nonlinear kernels are used, the algorithm performs

feature selection in a high dimensional space of the dual variable, resulting in a nonlinear

kernel classifier that depends on a small number of kernel functions. This makes the

method an excellent choice for classification when feature selection or a fast nonlinear

kernel classifier is required, as in the case of online decision making such as fraud or

intrusion detection.

The NLPSVM algorithm requires only a linear equation solver, which makes it sim-

ple, fast and easily accessible. In addition, NLPSVM can be applied very effectively to

classification problems in very large dimensional input spaces, which is often the case in

the analysis of gene expression microarray data. NLPSVM can also be used effectively

for classifying large datasets in smaller dimensional input space. As such, NLPSVM is

a versatile, stand-alone algorithm for classification which we hope is a valuable addition

to the tools of data mining and machine learning.

177

7.4 Semi-Supervised Support Vector Machines for

Unlabeled Data Classification

We have proposed a concave formulation for the semi-supervised SVM problem and given

a fast finite linear programming based formulation for its solution. Unlike a mixed in-

teger formulation, our concave minimization Algorithm 5.1.1 can handle large datasets

that are mostly unlabeled. Numerical tests show the potential of the concave semi-

supervised support vector machine algorithm as an efficient and viable tool for handling

large, totally unlabeled datasets. This is carried out by selecting a small portion of the

unlabeled dataset by clustering, labeling it by an expert, and using the concave minimiza-

tion algorithm VS3VM. Future directions include application of VS3VM to incremental

data mining, where a small portion of the dataset is labeled incrementally as new data

becomes available, as well as multi-category unlabeled data classification.

7.5 Finite Newton Method for Lagrangian Support

Vector Machine Classification

We presented a fast, stand-alone and finitely terminating Newton method for solving

classification problems. The method is simple, fast and can be applied to problems

with a very large dimensional input space, which is often the case for problems related

to analysis of gene expression microarray data. Even though the method is intended

to be applied to problems with very large dimensional input space, it showed excellent

performance in other problems as well. Computational testing on a variety of real-world

test problems demonstrate the effectiveness of the proposed method.

178

7.6 Summary

In this thesis, we have applied mathematical programming techniques to propose algo-

rithms that address several support vector machines issues such as the following.

• Speed: We proposed two very fast stand-alone algorithms that require no special-

ized software, proximal SVM (PSVM) and Newton Lagrangian SVM (NSVM).We

also extended the PSVM idea to multiclass problems.

• Scalability: We proposed a variation of PSVM that can handle very large datasets

in an incremental fashion. The proposed incremental PSVM algorithm was used to

classify a synthetic 1-billion points dataset in ten-dimensional input space in about

2 hours and 26 minutes.

• Data dependence and sparse representation: We proposed two concave min-

imization based algorithms, linear MSVM for support vector reduction and nonlin-

ear MSVM for both kernel data dependence reduction and support vector reduction.

We also proposed a Newton approach to solve the 1-norm SVM that leads to very

sparse solutions and does not require specialized software.

• Use of unlabeled data: A concave minimization approach was proposed to solve

a semi-supervised support vector machine. In this formulation, part of the problem

data is unlabeled. Our formulation performed much faster and handled much larger

problems than integer programming formulations that solve the same problem.

• Knowledge incorporation: A novel idea was proposed to incorporate knowl-

edge in the form of polyhedral sets into a linear or nonlinear SVM formulation

which resulted in improved classifiers and the ability to base classifiers partially or

179

completely on prior knowledge.

180

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-

PACK User’s Guide. SIAM, Philadelphia, Pennsylvania, third edition, 1999.

http://www.netlib.org/lapack/.

[2] L. Armijo. Minimization of functions having Lipschitz-continuous first partial

derivatives. Pacific Journal of Mathematics, 16:1–3, 1966.

[3] K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. In M. S.

Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information

Processing Systems -10-, pages 368–374, Cambridge, MA, 1998. MIT Press.

[4] K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination

of two linearly inseparable sets. Optimization Methods and Software, 1:23–34, 1992.

[5] K. P. Bennett and O. L. Mangasarian. Multicategory separation via linear pro-

gramming. Optimization Methods and Software, 3:27–39, 1993.

[6] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second

edition, 1999.

[7] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor.

Information Processing Letters, 24:377–380, 1987.

[8] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun,

U. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier meth-

ods: A case study in handwriting digit recognition. In International Conference on

Pattern Recognition, pages 77–87. IEEE Computer Society Press, 1994.

[9] P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization

and support vector machines. In J. Shavlik, editor, Machine Learning Proceed-

ings of the Fifteenth International Conference(ICML ’98), pages 82–90, San Fran-

cisco, California, 1998. Morgan Kaufmann. ftp://ftp.cs.wisc.edu/math-prog/tech-

reports/98-03.ps.

181

[10] P. S. Bradley and O. L. Mangasarian. Massive data discrimination via linear

support vector machines. Optimization Methods and Software, 13:1–10, 2000.

ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.

[11] P. S. Bradley, O. L. Mangasarian, and J. B. Rosen. Parsimonious least norm

approximation. Computational Optimization and Applications, 11(1):5–21, October

1998. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-03.ps.

[12] P. S. Bradley, O. L. Mangasarian, and W. N. Street. Clustering via concave min-

imization. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in

Neural Information Processing Systems -9-, pages 368–374, Cambridge, MA, 1997.

MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/96-03.ps.

[13] P. S. Bradley, O. L. Mangasarian, and W. N. Street. Feature selection via math-

ematical programming. INFORMS Journal on Computing, 10(2):209–217, 1998.

ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-21.ps.

[14] E. J. Bredensteiner and K. P. Bennett. Multicategory classification by support

vector machines. Computational Optimization and Applications, 12:53–79, 1999.

[15] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A User’s Guide. The Scientific

Press, South San Francisco, CA, 1988.

[16] US Census Bureau. Adult dataset. Publicly available from:

www.sgi.com/Technology/mlc/db/.

[17] C. J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[18] Chunhui Chen and O. L. Mangasarian. Hybrid misclassification mini-

mization. Advances in Computational Mathematics, 5(2):127–136, 1996.

ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-05.ps.

[19] V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods.

John Wiley & Sons, New York, 1998.

[20] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with

symbolic features. Machine Learning, 10:57–58, 1993.

182

[21] CPLEX Optimization Inc., Incline Village, Nevada. Using the CPLEX(TM) Linear

Optimizer and CPLEX(TM) Mixed Integer Optimizer (Version 2.0), 1992.

[22] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.

Cambridge University Press, Cambridge, MA, 2000.

[23] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,

Princeton, New Jersey, 1963.

[24] Sanjoy Dasgupta. Learning mixtures of Gaussians. In IEEE Symposium on Foun-

dations of Computere Science (FOCS) 1999, pages 634–644, 1999.

[25] Sanjoy Dasgupta. Experiments with random projection. In Uncertainty in Artificial

Intelligence: Proceedings of the Sixteenth Conference (UAI-2000), pages 143–151,

San Francisco, CA, 2000. Morgan Kaufmann Publishers.

[26] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector

machines. Advances in Computational Mathematics, 13:1–50, 2000.

[27] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector

machines. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors,

Advances in Large Margin Classifiers, pages 171–203, Cambridge, MA, 2000. MIT

Press.

[28] F. Facchinei. Minimization of SC1 functions and the Maratos effect. Operations

Research Letters, 17:131–137, 1995.

[29] M. C. Ferris and T. S. Munson. Interior point methods for massive support vector

machines. Technical Report 00-05, Computer Sciences Department, University of

Wisconsin, Madison, Wisconsin, May 2000. ftp://ftp.cs.wisc.edu/pub/dmi/tech-

reports/00-05.ps.

[30] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques. John Wiley & Sons, New York, NY, 1968.

[31] S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel represen-

tations. Journal of Machine Learning Research, 2:243–264, 2001.

183

[32] G. Fung and O. L. Mangasarian. Data selection for support vector machine

classification. In R. Ramakrishnan and S. Stolfo, editors, Proceedings KDD-

2000: Knowledge Discovery and Data Mining, August 20-23, 2000, Boston,

MA, pages 64–70, New York, 2000. Asscociation for Computing Machinery.

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-02.ps.

[33] G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In

F. Provost and R. Srikant, editors, Proceedings KDD-2001: Knowledge Discovery

and Data Mining, August 26-29, 2001, San Francisco, CA, pages 77–86, New York,

2001. Asscociation for Computing Machinery. ftp://ftp.cs.wisc.edu/pub/dmi/tech-

reports/01-02.ps.

[34] G. Fung and O. L. Mangasarian. Finite Newton method for Lagrangian support

vector machine classification. Technical Report 02-01, Data Mining Institute, Com-

puter Sciences Department, University of Wisconsin, Madison, Wisconsin, Febru-

ary 2002. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/02-01.ps. Neurocomputing,

to appear.

[35] G. Fung and O. L. Mangasarian. Incremental support vector machine clas-

sification. In H. Mannila R. Grossman and R. Motwani, editors, Proceed-

ings of the Second SIAM International Conference on Data Mining, Arling-

ton, Virginia, April 11-13,2002, pages 247–260, Philadelphia, 2002. SIAM.

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-08.ps.

[36] G. Fung, O. L. Mangasarian, and J. Shavlik. Knowledge-based support vector

machine classifiers. Technical Report 01-09, Data Mining Institute, Computer Sci-

ences Department, University of Wisconsin, Madison, Wisconsin, November 2001.

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-09.ps, NIPS 2002 Proceedings, to

appear.

[37] G. Fung, O. L. Mangasarian, and A. Smola. Minimal kernel classifiers.

Journal of Machine Learning Research, pages 303–321, 2002. University

of Wisconsin Data Mining Institute Technical Report 00-08, November 200,

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-08.ps.

[38] D. Gale. The Theory of Linear Economic Models. McGraw-Hill Book Company,

New York, 1960.

184

[39] T. Van Gestel, J. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vande-

walle. Multiclass ls-svms: moderated outputs and coding-decoding schemes. Neural

Processing Letters. to appear.

[40] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins

University Press, Baltimore, Maryland, 3rd edition, 1996.

[41] F. J. Gonzalez-Castano and R. R. Meyer. Projection support vector machines.

Technical Report 00-05, Computer Sciences Department, University of Wisconsin,

Madison, WI, November 2000.

[42] J. Gracke, M. Griebel, and M. Thess. Data mining with sparse

grids. Technical report, Institut für Angrwandte Mathematik, Uni-

versitaät Bonn, Bonn, Germany, 2000. http://wissrech.iam.uni-

bonn.de/research/projects/garcke/sparsemining.html.

[43] J.-B. Hiriart-Urruty, J. J. Strodiot, and V. H. Nguyen. Generalized hessian ma-

trix and second-order optimality conditions for problems with CL1 data. Applied

Mathematics and Optimization, 11:43–56, 1984.

[44] T. K. Ho and E. M. Kleinberg. Building projectable classifiers of arbi-

trary complexity. In Proceedings of the 13th International Conference on

Pattern Recognition, pages 880–885, Vienna, Austria, 1996. http://cm.bell-

labs.com/who/tkh/pubs.html. Checker dataset at: ftp://ftp.cs.wisc.edu/math-

prog/cpo-dataset/machine-learn/checker.

[45] T. K. Ho and E. M. Kleinberg. Checkerboard dataset, 1996.

http://www.cs.wisc.edu/math-prog/mpml.html.

[46] A. E. Hoerl and R. W. Kennard. Biased estimation for nonorthogonal problems.

Technometrics, 12:55–67, 1952.

[47] C.-W. Hsu and C.-J. Lin. A comparison on methods for Multi-Class support vector

machines, 2001. http://www.csie.ntu.edu.tw/ cjlin/papers.html.

[48] ILOG CPLEX Division, 889 Alder Avenue, Incline Village, Nevada. CPLEX Op-

timizer. http://www.cplex.com/.

185

[49] T. S. Jaakkola and D. Haussler. Probabilistic kernel regression models. In Proceed-

ings of the 1999 Conference on AI and Statistics, San Mateo, CA, 1999. Morgan

Kaufmann.

[50] T. Joachims. Making large-scale support vector machine learning practical. In

B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods

- Support Vector Learning, pages 169–184, Cambridge, MA, 1999. MIT Press.

[51] C. Kanzow, H. Qi, and L. Qi. On the minimum norm solution of linear pro-

grams. Preprint, University of Hamburg, Hamburg, 2001. http://www.math.uni-

hamburg.de/home/kanzow/paper.html. Journal of Optimization Theory and Ap-

plications, to appear.

[52] Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. Tech-

nical Report 00-07, Data Mining Institute, Computer Sciences Department, Uni-

versity of Wisconsin, Madison, Wisconsin, July 2000. Proceedings of the First

SIAM International Conference on Data Mining, Chicago, April 5-7, 2001, CD-

ROM Proceedings. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.ps.

[53] Y.-J. Lee and O. L. Mangasarian. SSVM: A smooth support vec-

tor machine. Computational Optimization and Applications, 20:5–22, 2001.

Data Mining Institute, University of Wisconsin, Technical Report 99-03.

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-03.ps.

[54] Y.-J. Lee, O. L. Mangasarian, and W. H. Wolberg. Breast cancer survival and

chemotherapy: a support vector machine analysis. Technical Report 99-10, Data

Mining Institute, Computer Sciences Department, University of Wisconsin, Madi-

son, Wisconsin, December 1999. DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, American Mathematical Society, Volume 55, 2000,

1-10. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-10.ps.

[55] Y.-J. Lee, O. L. Mangasarian, and W. H. Wolberg. Survival-time classification of

breast cancer patients. Technical Report 01-03, Data Mining Institute, Computer

Sciences Department, University of Wisconsin, Madison, Wisconsin, March 2001.

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-03.ps. Computational Optimization

and Applications 25, 2003, 151-166.

186

[56] S. Lucidi. A new result in the theory and computation of the least-norm solution

of a linear program. Journal of Optimization Theory and Applications, 55:103–117,

1987.

[57] O. L. Mangasarian. Linear and nonlinear separation of patterns by linear program-

ming. Operations Research, 13:444–452, 1965.

[58] O. L. Mangasarian. Normal solutions of linear programs. Mathematical Program-

ming Study, 22:206–216, 1984.

[59] O. L. Mangasarian. Nonlinear Programming. SIAM, Philadelphia, PA, 1994.

[60] O. L. Mangasarian. Parallel gradient distribution in unconstrained optimiza-

tion. SIAM Journal on Control and Optimization, 33(6):1916–1925, 1995.

ftp://ftp.cs.wisc.edu/tech-reports/reports/1993/tr1145.ps.

[61] O. L. Mangasarian. Machine learning via polyhedral concave minimization. In

H. Fischer, B. Riedmueller, and S. Schaeffler, editors, Applied Mathematics and

Parallel Computing - Festschrift for Klaus Ritter, pages 175–188. Physica-Verlag A

Springer-Verlag Company, Heidelberg, 1996. ftp://ftp.cs.wisc.edu/math-prog/tech-

reports/95-20.ps.

[62] O. L. Mangasarian. Solution of general linear complementarity problems via non-

differentiable concave minimization. Acta Mathematica Vietnamica, 22(1):199–205,

1997. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/96-10.ps.

[63] O. L. Mangasarian. Arbitrary-norm separating plane. Operations Research Letters,

24:15–23, 1999. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-07r.ps.

[64] O. L. Mangasarian. Minimum-support solutions of polyhedral concave programs.

Optimization, 45:149–162, 1999. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-

05.ps.

[65] O. L. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett,

B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers,

pages 135–146, Cambridge, MA, 2000. MIT Press. ftp://ftp.cs.wisc.edu/math-

prog/tech-reports/98-14.ps.

187

[66] O. L. Mangasarian. A finite Newton method for classification prob-

lems. Technical Report 01-11, Data Mining Institute, Computer Sci-

ences Department, University of Wisconsin, Madison, Wisconsin, December

2001. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-11.ps.Optimization Methods

and Software 17, 2002, 913-929.

[67] O. L. Mangasarian and R. R. Meyer. Nonlinear perturbation of linear programs.

SIAM Journal on Control and Optimization, 17(6):745–752, November 1979.

[68] O. L. Mangasarian and D. R. Musicant. Successive overrelaxation for support

vector machines. IEEE Transactions on Neural Networks, 10:1032–1037, 1999.

ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-18.ps.

[69] O. L. Mangasarian and D. R. Musicant. Active support vector machine classifica-

tion. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances

in Neural Information Processing Systems 13, pages 577–583, Cambridge, MA,

2001. MIT Press. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-04.ps.

[70] O. L. Mangasarian and D. R. Musicant. Data discrimination via nonlinear gen-

eralized support vector machines. In M. C. Ferris, O. L. Mangasarian, and J.-S.

Pang, editors, Complementarity: Applications, Algorithms and Extensions, pages

233–251, Dordrecht, Netherlands, January 2001. Kluwer Academic Publishers.

ftp://ftp.cs.wisc.edu/math-prog/tech-reports/99-03.ps.

[71] O. L. Mangasarian and D. R. Musicant. Lagrangian support vec-

tor machines. Journal of Machine Learning Research, 1:161–177, 2001.

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-06.ps.

[72] O. L. Mangasarian and D. R. Musicant. Large scale kernel re-

gression via linear programming. Machine Learning, 46:255–269, 2002.

ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-02.ps.

[73] O. L. Mangasarian and T.-H. Shiau. Lipschitz continuity of solutions of linear

inequalities, programs and complementarity problems. SIAM Journal on Control

and Optimization, 25(3):583–595, May 1987.

188

[74] O. L. Mangasarian and M. V. Solodov. Nonlinear complementarity as uncon-

strained and constrained minimization. Mathematical Programming, Series B,

62:277–297, 1993.

[75] MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2001.

http://www.mathworks.com.

[76] T. M. Mitchell. Machine Learning. McGraw-Hill, Boston, 1997.

[77] P. M. Murphy and D. W. Aha. UCI machine learning repository, 1992.

www.ics.uci.edu/∼mlearn/MLRepository.html.

[78] D. R. Musicant. NDC: normally distributed clustered datasets, 1998.

www.cs.wisc.edu/∼musicant/data/ndc/.

[79] S. Odewahn, E. Stockwell, R. Pennington, R. Humphreys, and W. Zumach. Au-

tomated star/galaxy discrimination with neural networks. Astronomical Journal,

103(1):318–331, 1992.

[80] M. C. O’Neill. Escherchia coli promoters: I. concensus as it relates to spacing

class, specificity, repeat substructure, and three dimensional organization. Journal

of Biological Chemistry, 264:5522–5530, 1989.

[81] M. Opper and O. Winther. Gaussian processes and SVM: Mean field and leave-one-

out. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances

in Large Margin Classifiers, pages 311–326, Cambridge, MA, 2000. MIT Press.

[82] J. M. Ortega. Numerical Analysis, A Second Course. Academic Press, New York,

1972.

[83] D. Page, F. Zhan, J. Cussens, M. Waddell, J. Hardin, B. Barlogie, and J. Shaugh-

nessy, Jr. Comparative data mining for microarrays: A case study based on multiple

myeloma. Technical Report 1453, Computer Sciences Department, University of

Wisconsin, November 2002.

[84] J. Platt. Sequential minimal optimization: A fast algorithm for training support

vector machines. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,

Advances in Kernel Methods - Support Vector Learning, pages 185–208. MIT Press,

1999. http://www.research.microsoft.com/∼jplatt/smo.html.

189

[85] B. T. Polyak. Introduction to Optimization. Optimization Software, Inc., Publica-

tions Division, New York, 1987.

[86] J. R. Quinlan. Induction of Decision Trees, volume 1. 1986.

[87] J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080–

1100, 1986.

[88] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New

Jersey, 1970.

[89] R. T. Rockafellar. Augmented Lagrange multiplier functions and duality in non-

convex programming. SIAM Journal on Control, 12:268–285, 1974.

[90] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-

tations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,

Parallel Distributed Processing, pages 318–362, Cambridge, Massachusetts, 1986.

MIT Press.

[91] A. Smola, P. L. Bartlett, B. Schölkopf, and J. Schuurmann (editors). Advances in

Large Margin Classifiers. MIT Press, Cambridge, MA, 2000.

[92] A. Smola and B. Schölkopf. Learning with Kernels. MIT Press, Cambridge, MA,

2002.

[93] A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine

learning. In Proc. 17th International Conf. on Machine Learning, pages 911–918.

Morgan Kaufmann, San Francisco, CA, 2000.

[94] J. A. K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, and J. Vandewalle. Least

squares support vector machine classifiers: a large scale algorithm. In European

Conference on Circuit Theory and Design, ECCTD’99, pages 839–842, Stresa, Italy,

1999.

[95] J. A. K. Suykens, L. Lukas, and J. Vandewalle. Sparse least squares support vector

machine classifiers. In European Symposium on Artificial Neural Networks, pages

37–42, 24 av. L. Mommaerts, B-1140 Evere, Belgium, 2000. D-Facto publications.

http://www.dice.ucl.ac.be/esann/proceedings/index.html.

190

[96] J. A. K. Suykens and J. Vandewalle. Least squares support vector machine classi-

fiers. Neural Processing Letters, 9(3):293–300, 1999.

[97] J. A. K. Suykens and J. Vandewalle. Multiclass least squares support vector ma-

chines. In Proceedings of IJCNN’99, pages CD–ROM, Washington, DC, 1999.

[98] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill–Posed Problems. John Wiley

& Sons, New York, 1977.

[99] M. Tipping. The relevance vector machine. In S. A. Solla, T. K. Leen, and K.-R.

Müller, editors, Advances in Neural Information Processing Systems, volume 12,

pages 652–658, Cambridge, MA, 2000. MIT Press.

[100] G. G. Towell, J. W. Shavlik, and M. Noordewier. Refinement of approximate

domain theories by knowledge-based artificial neural networks. In Proceedings of

the Eighth National Conference on Artificial Intelligence (AAAI-90), pages 861–

866, 1990.

[101] V. Roth V. and V. Steinhage. Nonlinear discriminant analysis using kernel func-

tion. In S.A. Solla, T.K. Leen, and K.-R. Mueller, editors, Advances in Neural

Information Processing Systems–NIPS*99, pages 568–574, 1999.

[102] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,

1995.

[103] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York,

second edition, 2000.

[104] V. N. Vapnik and O. Chapelle. Bounds on expectation for SVM. In A. Smola,

P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin

Classifiers, pages 261–280, Cambridge, MA, 2000. MIT Press.

[105] J. Weston and R. Herbrich. Adaptive margin support vector machines. In A. Smola,

P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin

Classifiers, pages 281–295, Cambridge, MA, 2000. MIT Press.

[106] J. Weston and C. Watkins. Multi-class support vector machines. Technical report

csd-tr-98-04, Royal Holloway, University of London, Surrey, England, 1998.

191

[107] A. Wieland. Twin spiral dataset. http://www-

cgi.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/areas/neural/bench/cmu/0.html.

[108] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann, San Francisco, CA,

1999.

