

CS 540 Introduction to Artificial Intelligence Classification - KNN and Naive Bayes

University of Wisconsin-Madison Spring 2024

Announcements

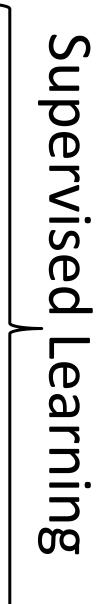
Homework: HW5 due Thursday at 11 AM Midterm 13th of March Midterm course evaluation Class roadmap:

Thursday, Feb.

Tuesday, Mar.

Tuesday, Mar.

27	Machine Learning: kNN& Naive Bayes
o. 29	Machine Learning: Neural Networks I (Perceptron)
5	Machine Learning: Neural Networks II
5	Machine Learning: Neural Networks II



- K-Nearest Neighbors
- Maximum likelihood estimation
- Naive Bayes

Outline

Part I: K-nearest neighbors

WikipediA The Free Encyclopedia

Main page

Article Talk

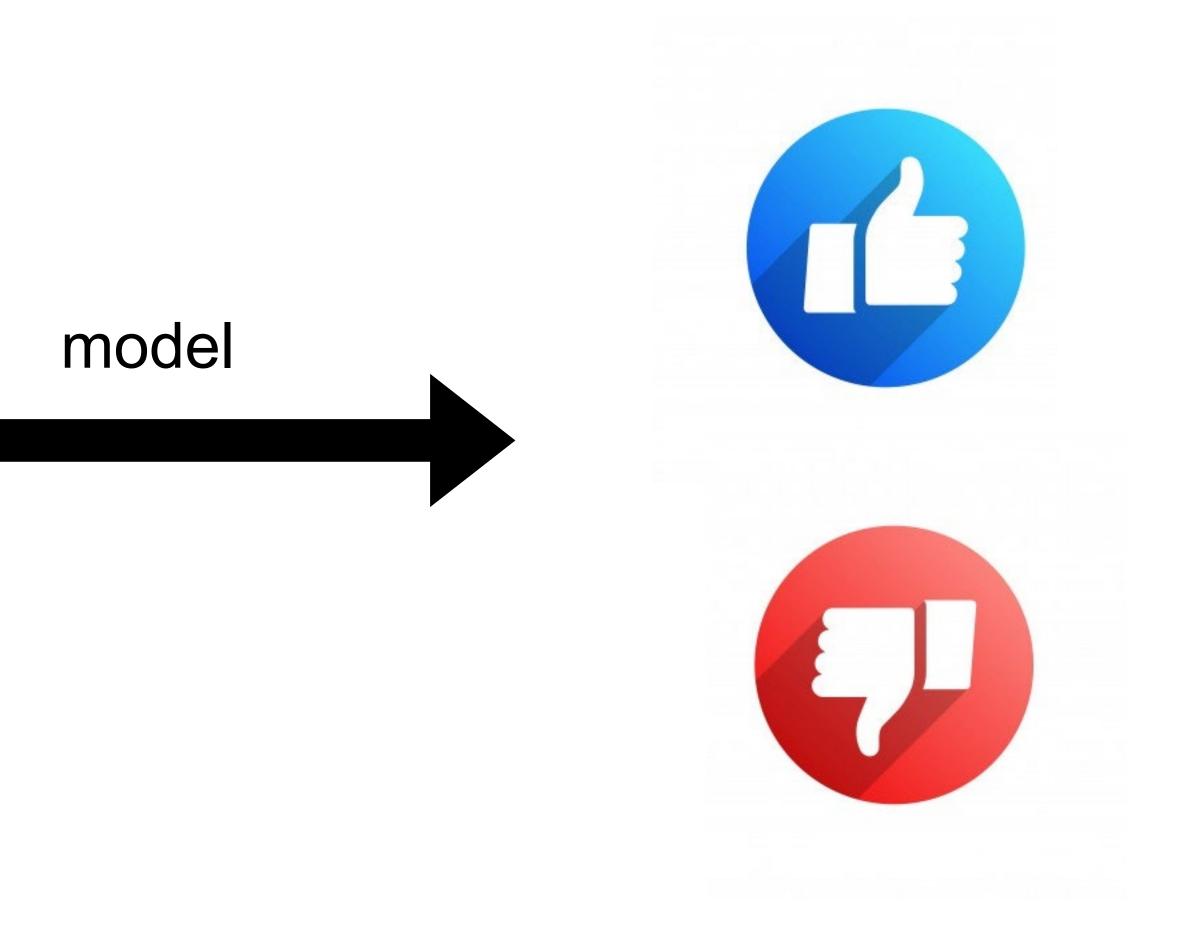
k-nearest neighbors algorithm

From Wikipedia, the free encyclopedia

Not to be confused with k-means clustering.

(source: wiki)

Example 1: Predict if a user likes a song or not



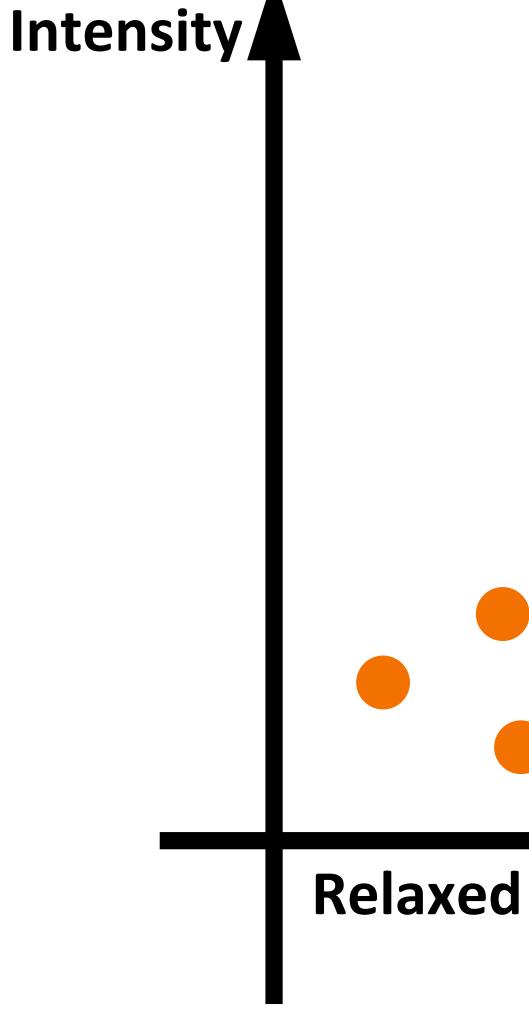
Example 1: Predict if a user likes a song or not

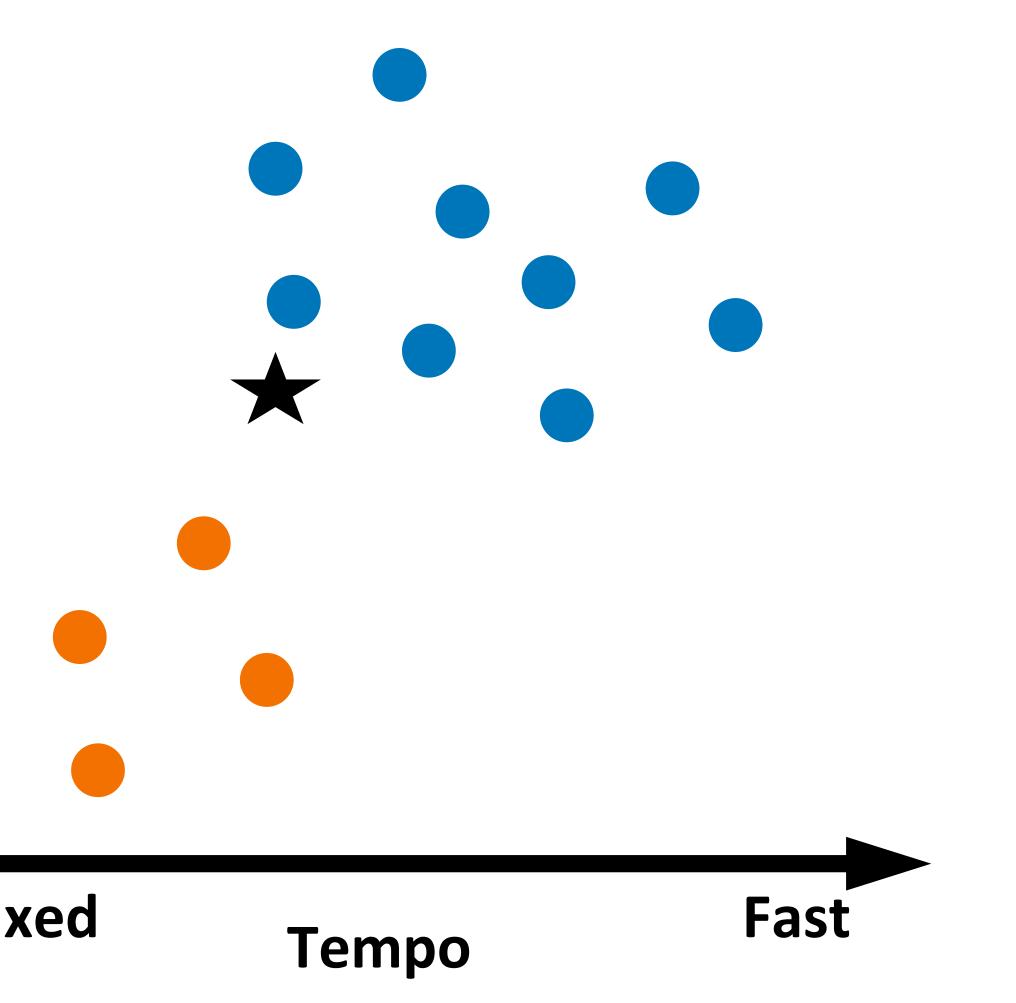
User Sharon

Tempo

Example 1: Predict if a user likes a song or not 1-NN

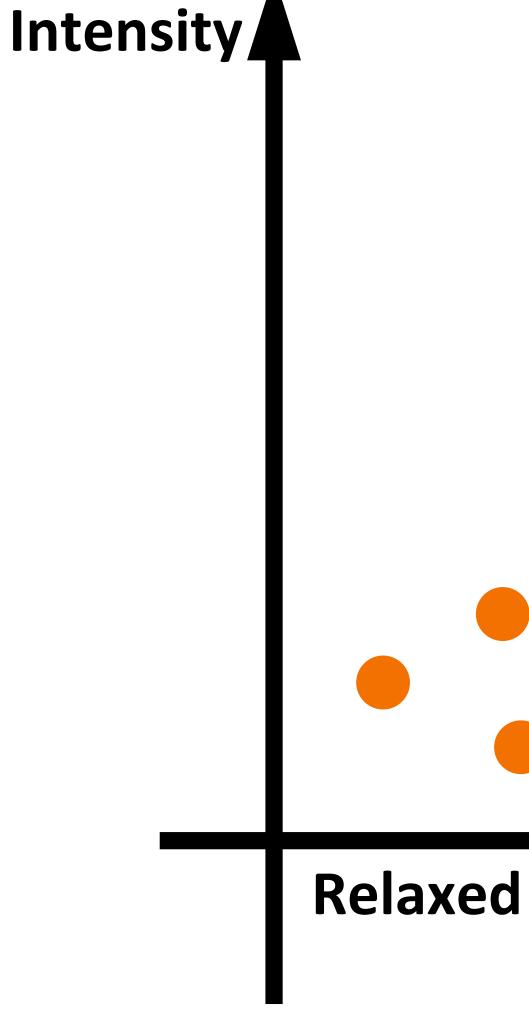
User Sharon

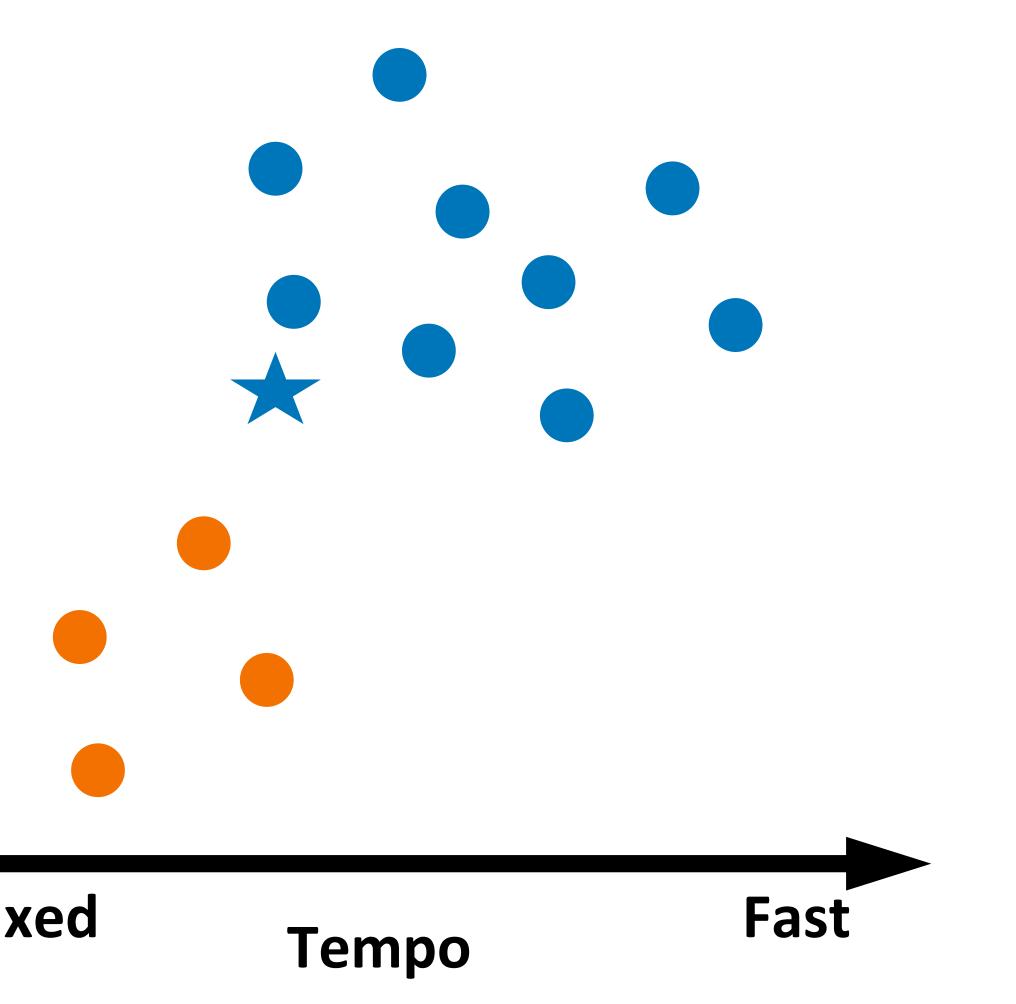




Example 1: Predict if a user likes a song or not 1-NN

User Sharon





K-nearest neighbors for classification

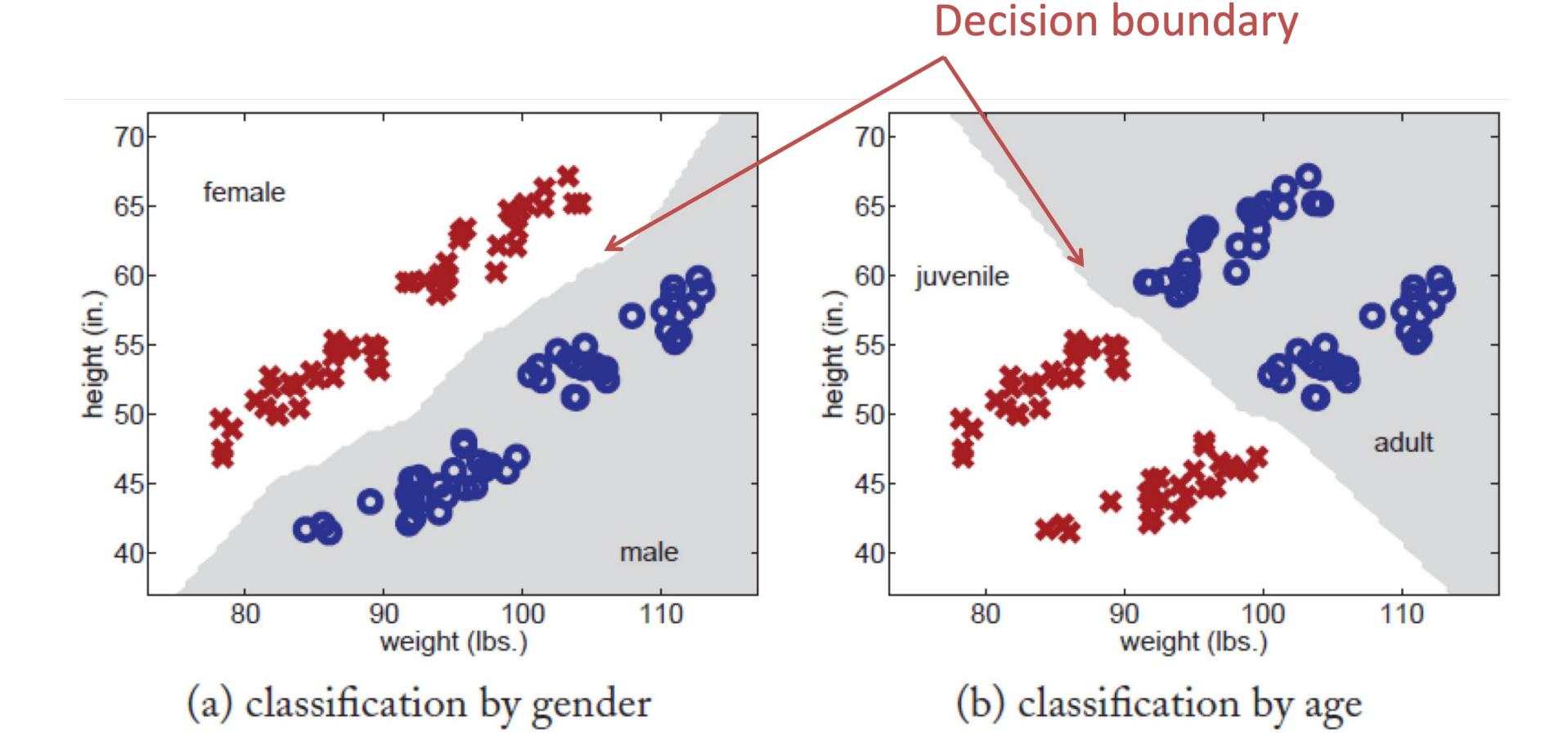
- Input: Training data $(\mathbf{X}_1, y_1), ($
- 2. Output y^* , the majority class of y_{i_1}, \ldots, y_{i_k} . Break ties randomly.

$$(\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

Distance function $d(\mathbf{x}_i, \mathbf{x}_i)$; **number of neighbors** k; **test data** \mathbf{X}^* 1. Find the k training instances $\mathbf{X}_{i_1}, \ldots, \mathbf{X}_{i_k}$ closest to \mathbf{X}^* under $d(\mathbf{X}_i, \mathbf{X}_j)$

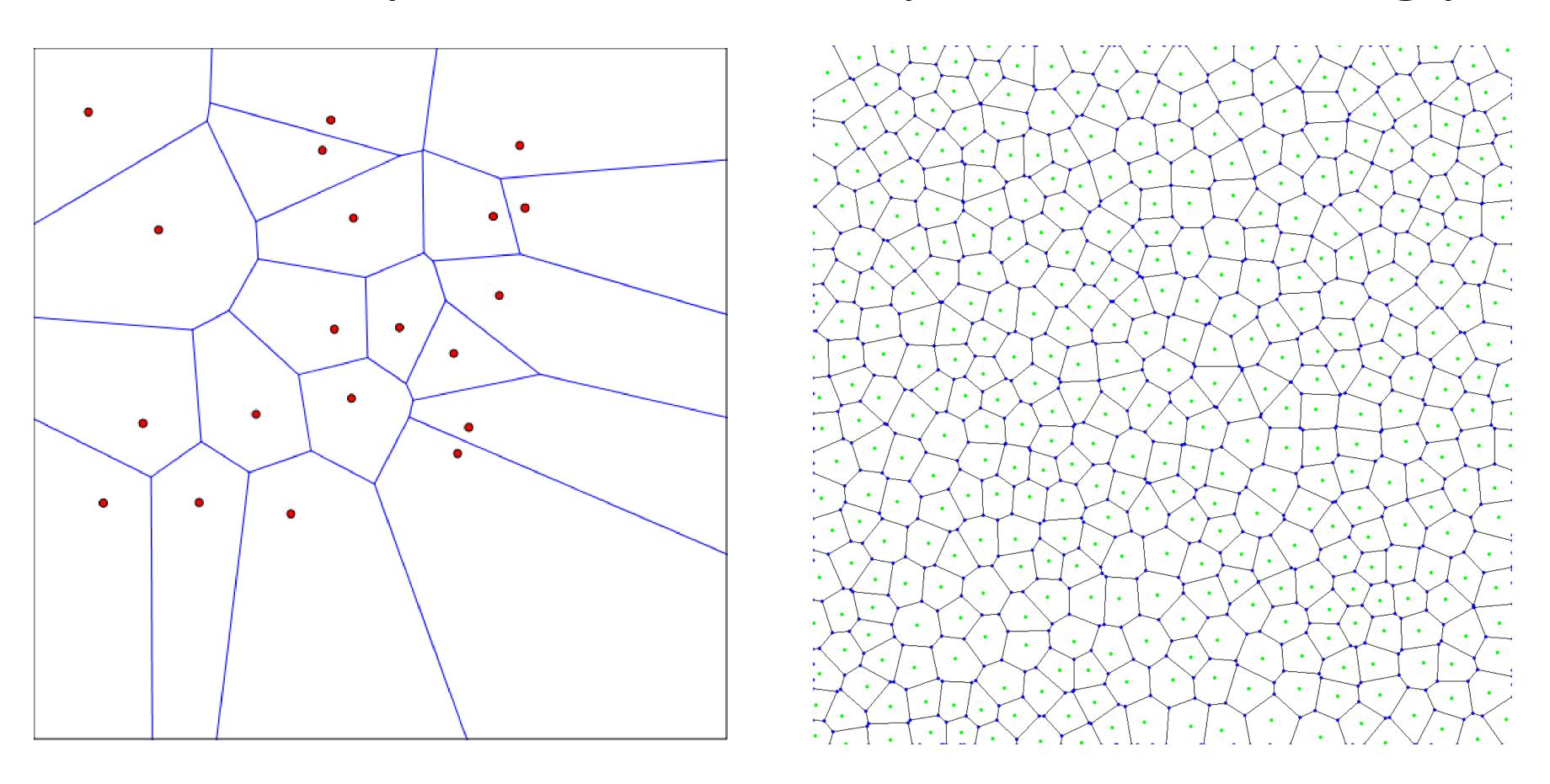
Example 2: 1-NN for little green man

- Predict gender (M,F) from weight, height -
- Predict age (adult, juvenile) from weight, height



1NN: Decision Regions

Defined by "Voronoi Diagram"Each cell contains points closer to a particular training point



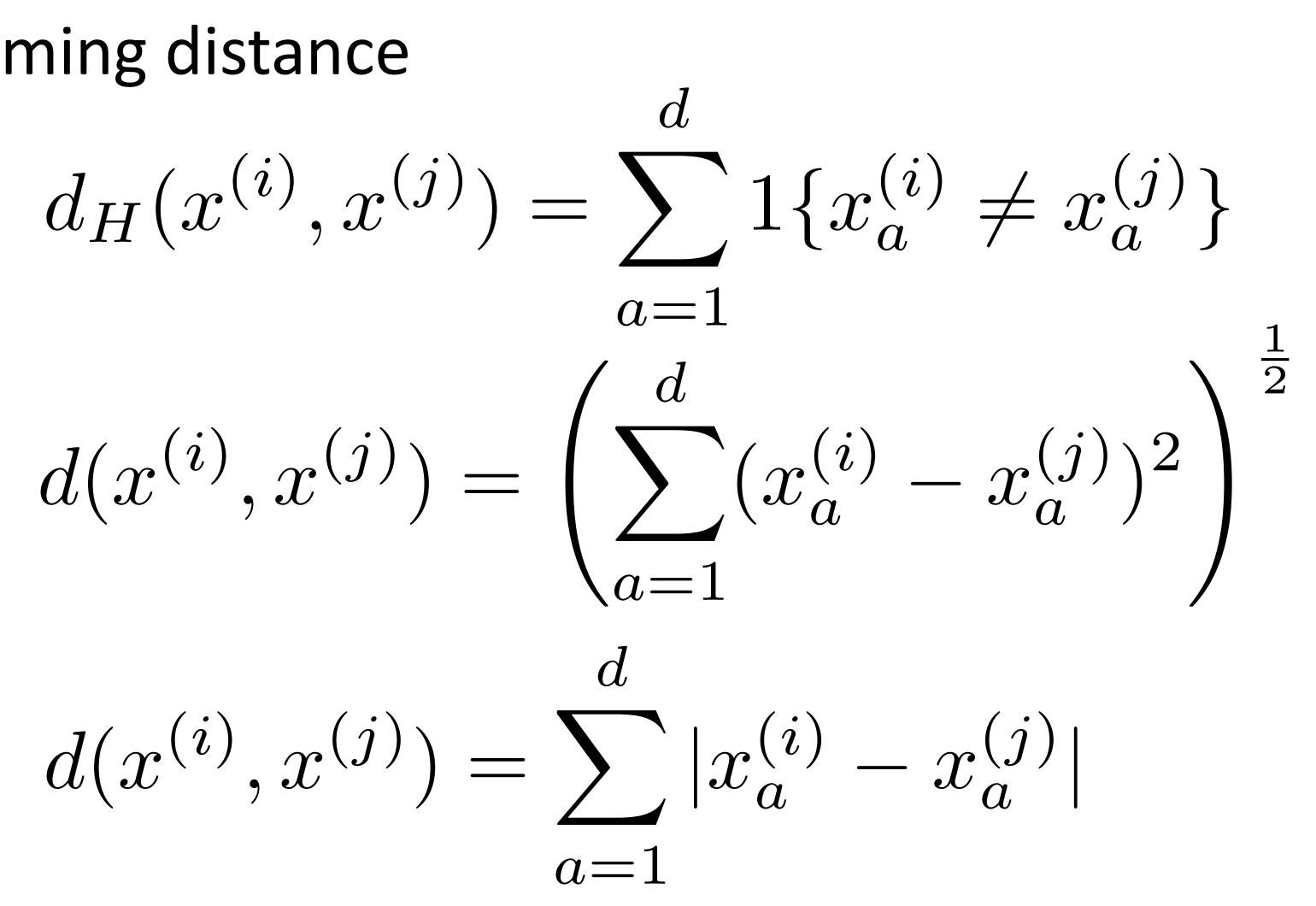
k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:

• Euclidean distance:

•L1 (Manhattan) dist.:



k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for x, find **k** most similar training points Return

• I.e., among the k points, output mean label.

 $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$

$$\hat{y} = \frac{1}{k} \sum_{i=1}^{k} y^{(i)}$$

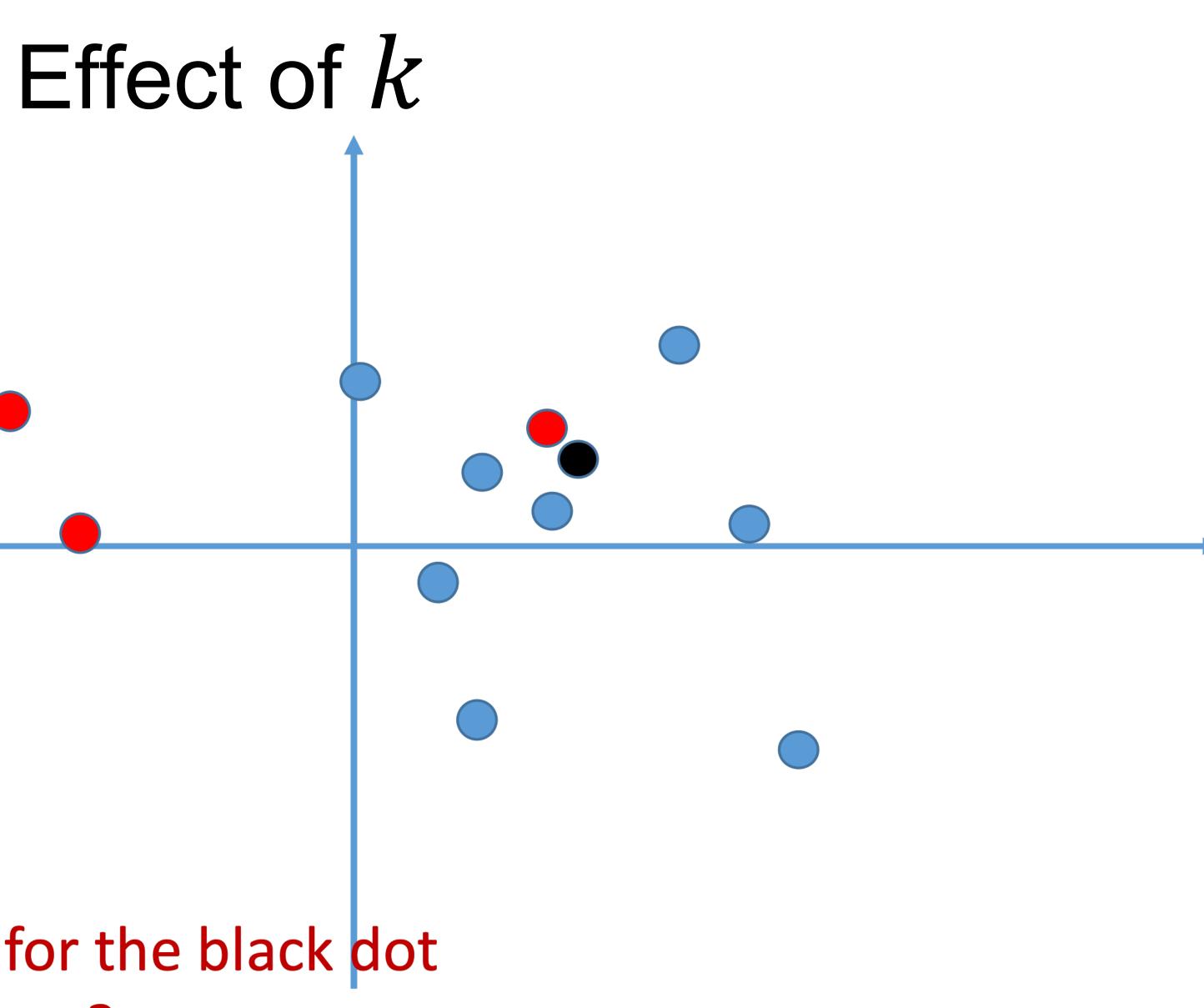
More on distance functions...

- Be careful with scale
- Same feature but different units may change relative distance (fixing other features)
- Sometimes OK to normalize each feature dimension

$$x'_{id} = \frac{x_{id} - \mu_d}{\sigma_d}, \forall i :$$

• Other times not OK: e.g. dimension contains small random noise

- ining set mean for dimension d
- $= 1...n, \forall d$
- set standard deviation for dimension d

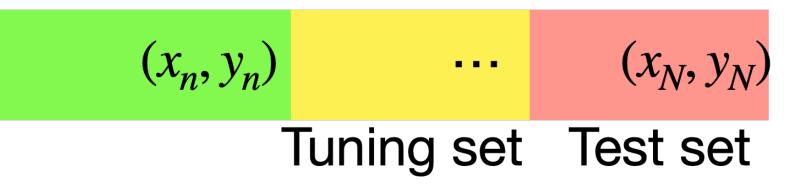


What's the predicted label for the black dot using 1 neighbor? 3 neighbors?

How to pick k, the number of neighbors

- Split data into training and tuning sets
- Classify tuning set with different k
- Pick k that produces least tuning-set error

(Shuffle whole dataset first) (x_1, y_1) . . . Training set



Quiz break Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Quiz break Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Q1-2: Which of the following distance measure do we use in case of categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-2: Which of the following distance measure do we use in case of categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-3: Consider binary classification in 2D where the intended label of a point x = (x1, x2) is positive if x1>x2 and negative otherwise. Let the training set be all points of the form x = [4a, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Q1-3: Consider binary classification in 2D where the intended label of a point x = (x1, x2) is positive if x1>x2 and negative otherwise. Let the training set be all points of the form x = [4a, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Nearest neighbors are [4,3] => positive[8,6] => positive[8,9] => negative [8,9] => negative Individually.

Part II: Maximum Likelihood Estimation

Supervised Machine Learning

Non-parametric (e.g., KNN)

Parametric

VS.

Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)

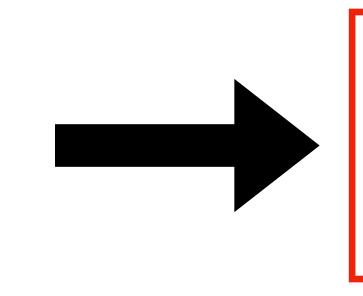
$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed distribution (also called the i.i.d. assumption)

Supervised Machine Learning

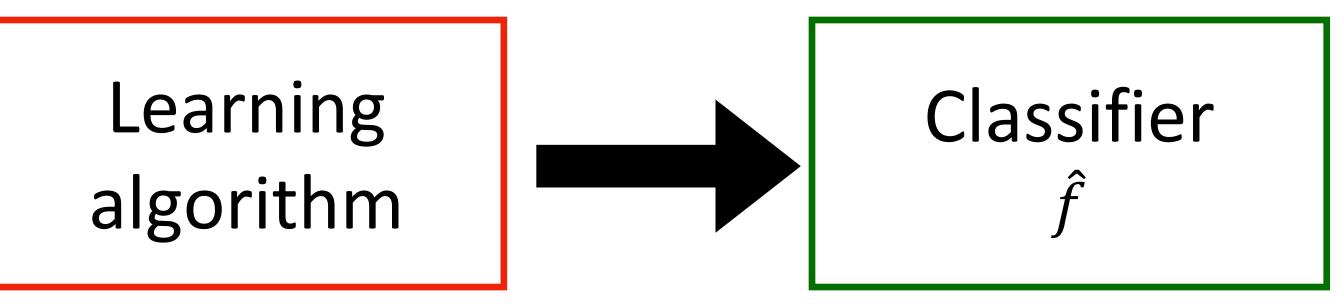
Statistical modeling approach

Labeled training data (n examples)



 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

drawn independently from a fixed underlying distribution (also called the i.i.d. assumption)

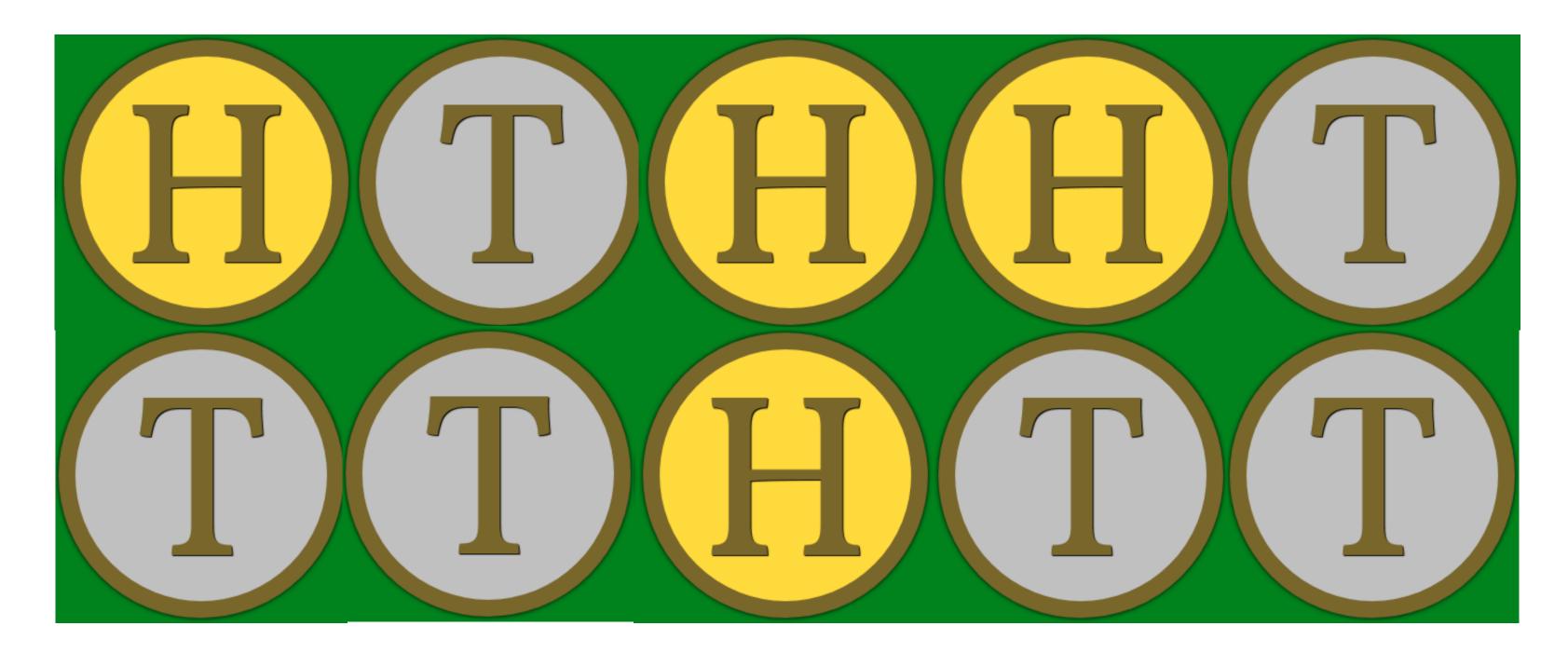


select $\hat{f}(\theta)$ from a pool of models \mathcal{F} that best describe the data observed

How to select $\hat{f} \in \mathcal{F}$? (best fits the data)

- Maximum likelihood (best fits the data)
- Maximum a posteriori
 (best fits the data but incorporates prior assumptions)
- Optimization of 'loss' criterion (best discriminates the labels)

Maximum Likelihood Estimation: An Example Flip a coin 10 times, how can you estimate $\theta = p(Head)$?



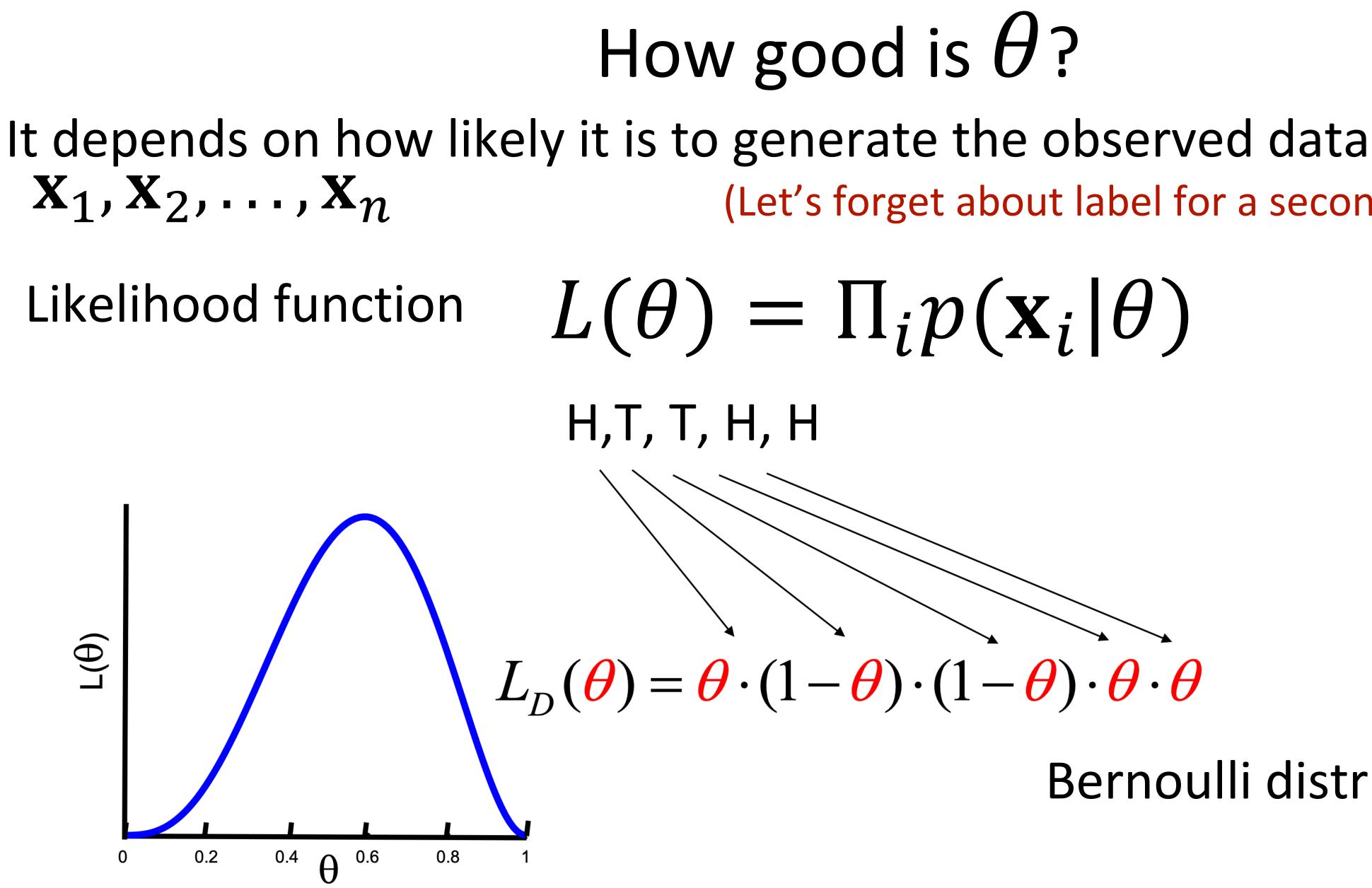
Intuitively, $\theta = 4/10 = 0.4$

How good is θ ? It depends on how likely it is to generate the observed data $X_1, X_2, ..., X_n$ $L(\theta) = \Pi_i p(\mathbf{x}_i | \theta)$ Likelihood function

Interpretation: How probable (or how likely) is the data given the probabilistic model p_{θ} ?

- (Let's forget about label for a second)

- Under i.i.d assumption



(Let's forget about label for a second)

Bernoulli distribution

Log-likelihood function $L_{\nabla}(\theta) = \theta \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$ $= \theta^{N_H} \cdot (1 - \theta)^{N_T}$

Log-likelihood function

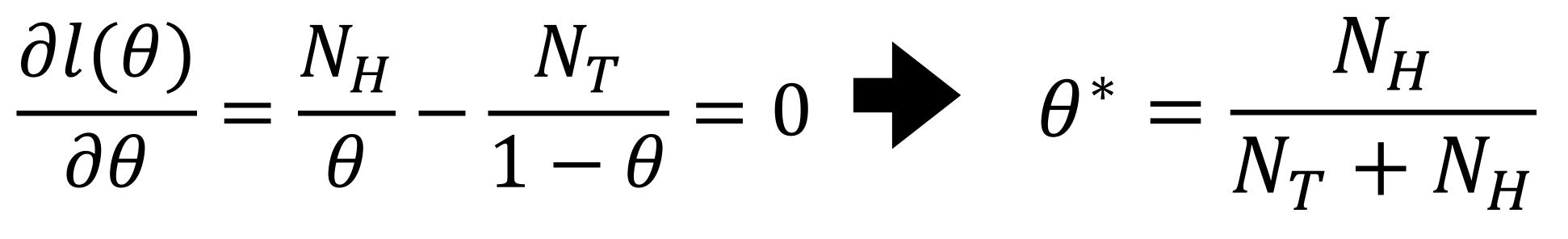
$\ell(\theta) = \log L(\theta)$ $= N_H \log \theta + N_T \log(1 - \theta)$

Maximum Likelihood Estimation (MLE) Find optimal θ^* to maximize the likelihood function (and log-likelihood)

$\theta^* = \operatorname{argmax} N_H \log$

which confirms your intuition!

$$g\theta + N_T \log(1-\theta)$$



Fitting a model to heights of females **Observed some data** (in inches): 60, 62, 53, 58,... $\in \mathbb{R}$

Model class: Gaussian model

 $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{\sqrt{2\pi\sigma^2}}\right)$

So, what's the MLE for the given data?

- Maximum Likelihood Estimation: Gaussian Model

 - $\{\chi_1, \chi_2, \dots, \chi_n\}$

$$\frac{(x-\mu)^2}{2\sigma^2}\bigg)$$

Estimating the parameters in a Gaussian

• Mean

 $\mu = \mathbf{E}[x] \quad \mathsf{h}$

• Variance

$\sigma^2 = \mathbf{E}[(x - \mu)^2]$

courses.d2l.ai/berkeley-stat-157

nence
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

hence
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

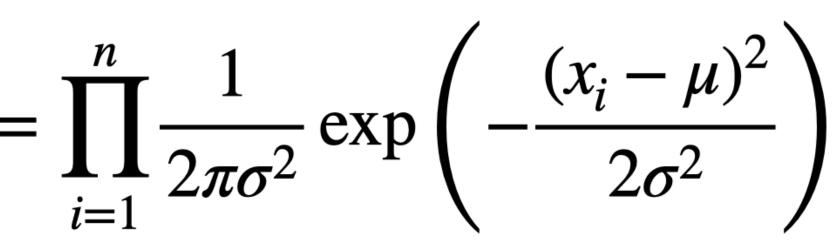
Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): $x_1, x_2, \ldots, x_n \in \mathbb{R}$

Assume that the data is drawn from a Gaussian

$$L(\mu, \sigma^2 | X) = \prod_{i=1}^n p(x_i; \mu, \sigma^2) =$$

Fitting parameters is maximizing likelihood w.r.t μ, σ^2 (maximize likelihood that data was generated by model)



$$\int_{1}^{1} p(x_i; \mu, \sigma^2)$$

Maximum Likelihood

- Estimate parameters by finding ones that explain the data
- Decompose likelihood

 $\sum_{i=1}^{n} \frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x_i - x_i) + \frac{1}{2\sigma^2} (x$

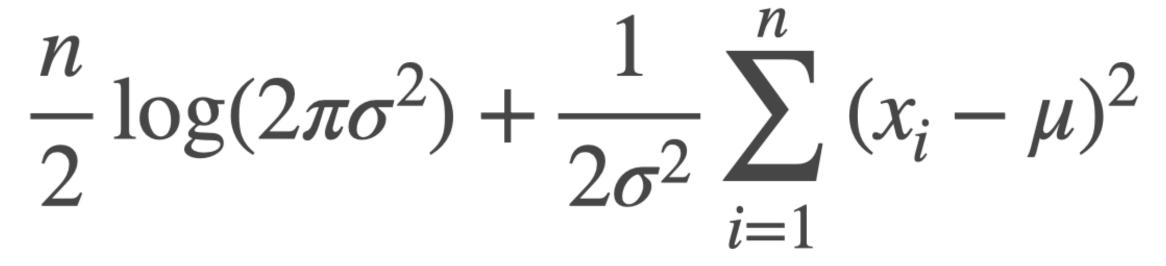
courses.d2l.ai/berkeley-stat-157

$\underset{u.\sigma^2}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i; \mu, \sigma^2) = \underset{u.\sigma^2}{\operatorname{argmin}} - \log \prod_{i=1}^{n} p(x_i; \mu, \sigma^2)$

$$(-\mu)^{2} = \frac{n}{2} \log(2\pi\sigma^{2}) + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \frac{1}{n})^{n} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
Minimized for $\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$

Maximum Likelihood

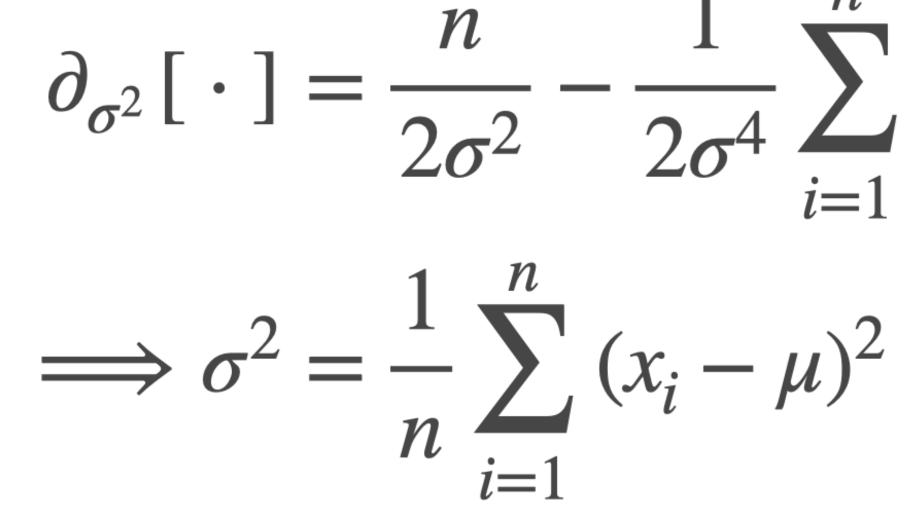
Estimating the variance



Maximum Likelihood

Estimating the variance

Take derivatives with respect to it

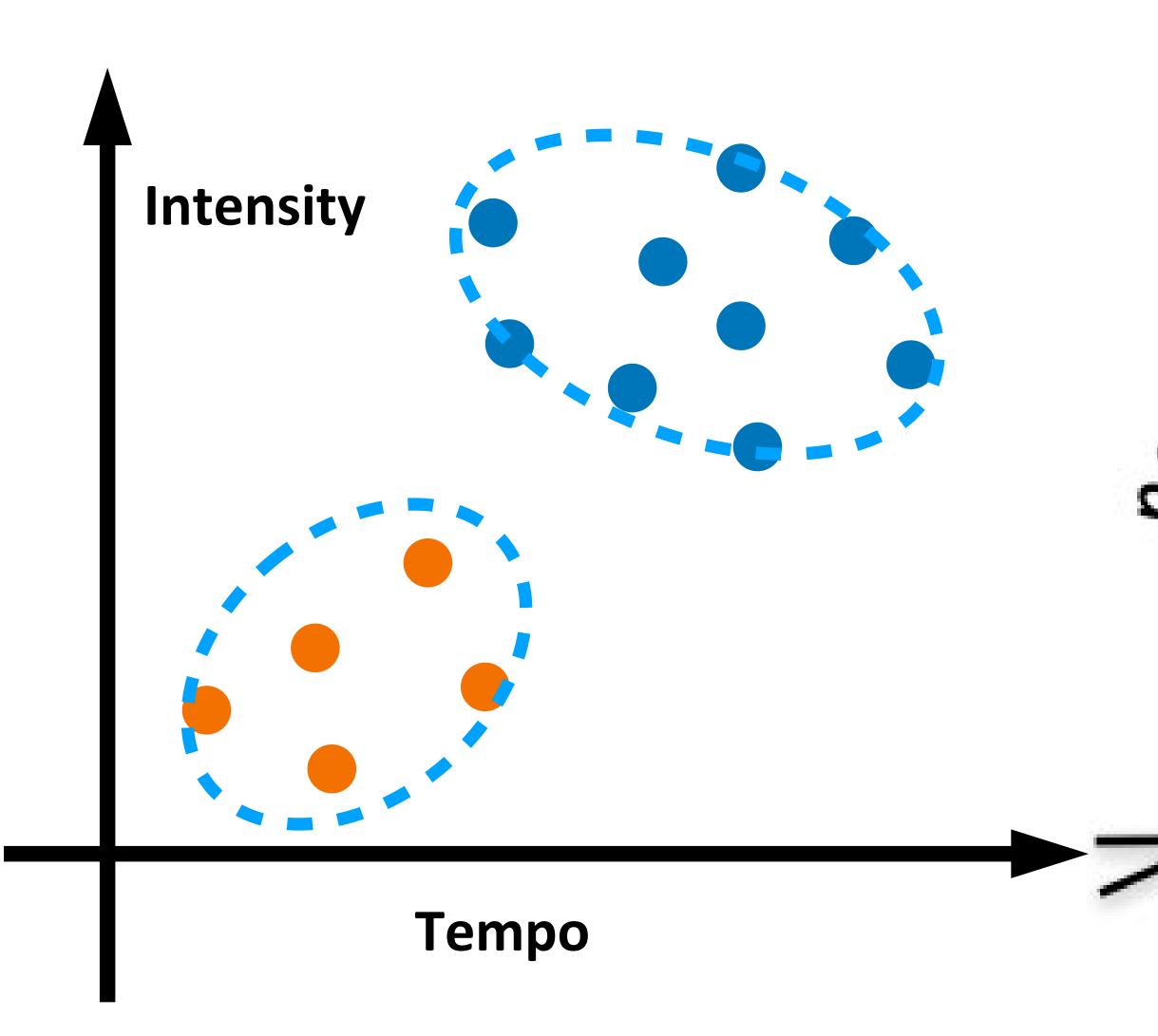


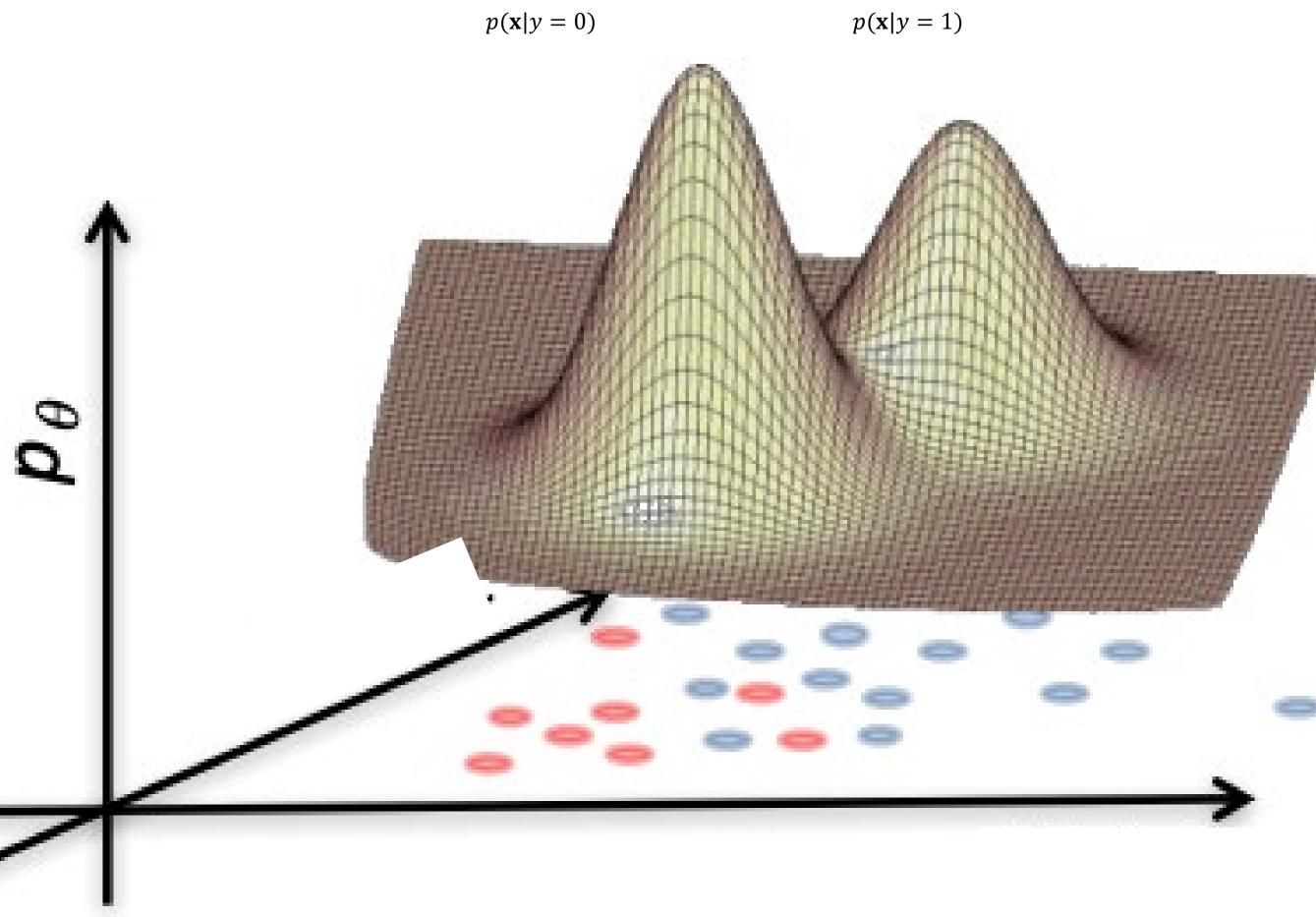
courses.d2l.ai/berkelev-stat-157

$\frac{n}{2}\log(2\pi\sigma^2) + \frac{1}{2\sigma^2}\sum_{i=1}^{n} (x_i - \mu)^2$

$$\frac{1}{2\sigma^4} - \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

Classification via MLE





Classification via MLE

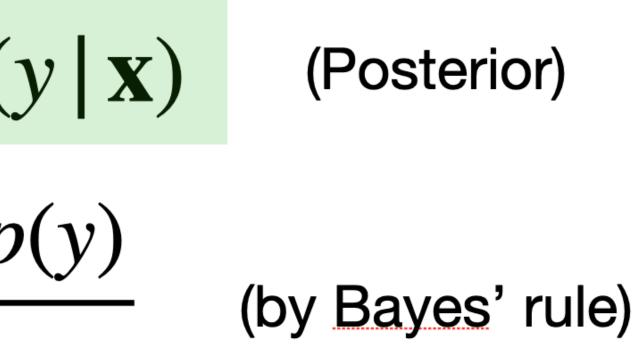
 $\hat{y} = \hat{f}(\mathbf{x}) = \arg \max p(y | \mathbf{x})$ (Prediction)

$(y | \mathbf{x})$ (Posterior)

Classification via MLE

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg \max p(\mathbf{x})$$
(Prediction)
$$= \arg \max \frac{p(\mathbf{x} \mid y) \cdot p}{p(\mathbf{x})}$$

 $= \underset{v}{\operatorname{arg\,max}} p(\mathbf{x} | y) p(y)$



Using labelled training data, learn class priors and class conditionals

Quiz break

Q2-2: True or False Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

Quiz break

Q2-2: True or False Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

Part III: Naïve Bayes

- If weather is sunny, would you like to play outside?
- Posterior probability p(Yes | 🔆) vs. p(No | 🌾)

- If weather is sunny, would you like to play outside?
- Posterior probability p(Yes | 🔆) vs. p(No | 🌾)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

- If weather is sunny, would you like to play outside?
- Posterior probability p(Yes | 💓) vs. p(No | 💓)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

p(| Play) p(Play)

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

1
1
1
•

Frequency Table			
Weather No			
Overcast			
Rainy	3		
Sunny	2		
Grand Total	5		

• Step 1: Convert the data to a frequency table of Weather and Play

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table		Like	Likelihood table				
Weather	No	Yes	Weather	No	Yes		
Overcast		4	Overcast		4	=4/14	0.
Rainy	3	2	Rainy	3	2	=5/14	0.
Sunny	2	3	Sunny	2	3	=5/14	0.
Grand Total	5	9	All	5	9		
				=5/14	=9/14		
				0.36	0.64		

Ye

• **Step 1**: Convert the data to a frequency table of Weather and Play

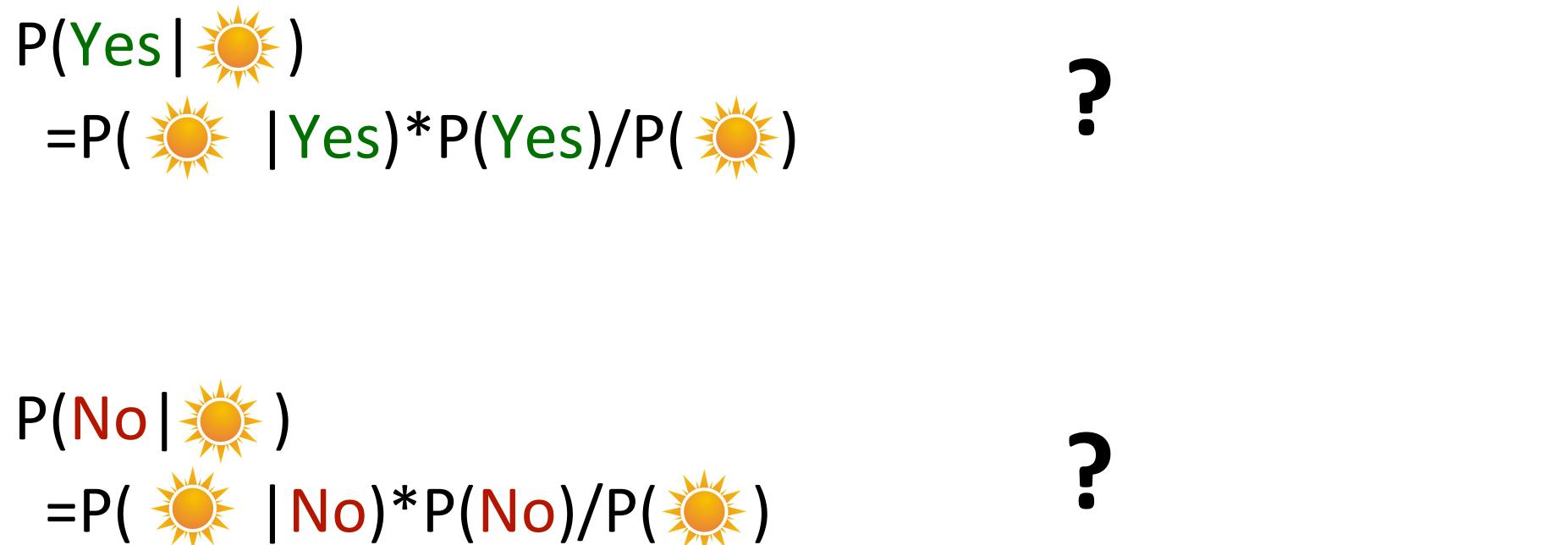
• Step 2: Based on the frequency table, calculate likelihoods and priors

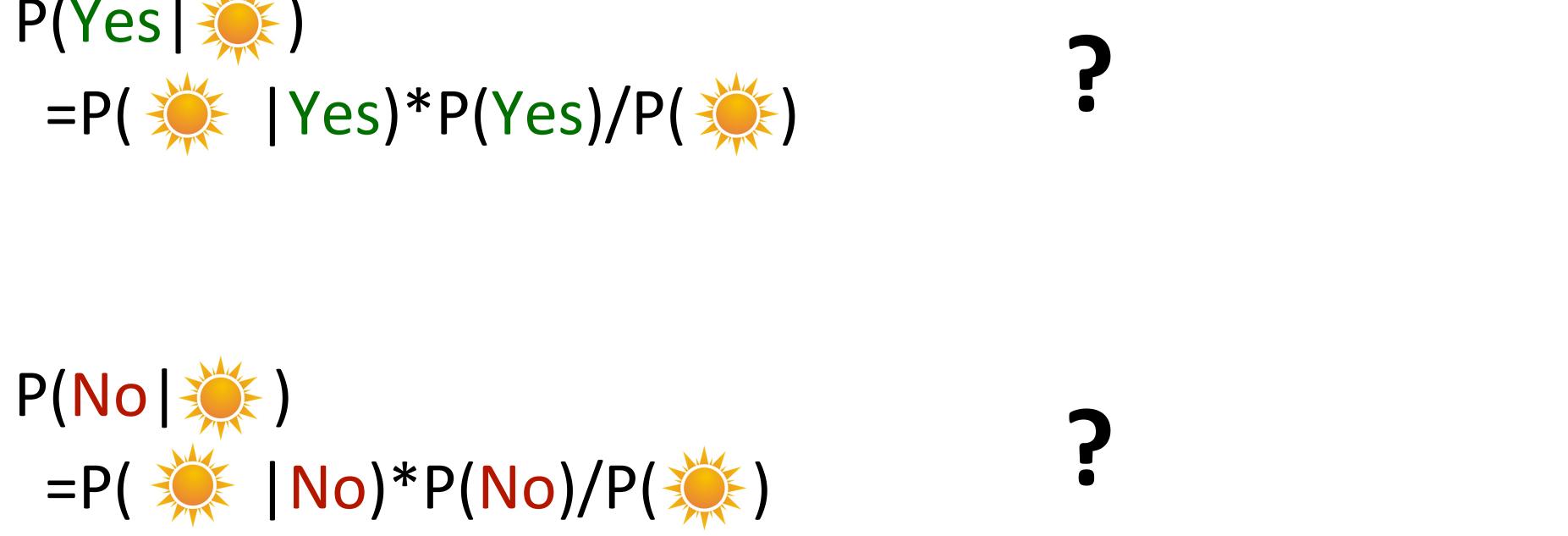
Yes) =
$$0.64$$

es) = $3/9 = 0.33$

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

• Step 3: Based on the likelihoods and priors, calculate posteriors





• Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes | =0.33*0.64/0.36 =0.6 P(No) =P(***** |No)*P(No)/P(*****) =0.4*0.36/0.36 =0.4

go outside and play!

Bayesian classification

$$\hat{y} = \arg \max p(y | \mathbf{x})$$
Prediction)
$$= \arg \max \frac{p(\mathbf{x} | y) \cdot p(\mathbf{x})}{p(\mathbf{x})}$$

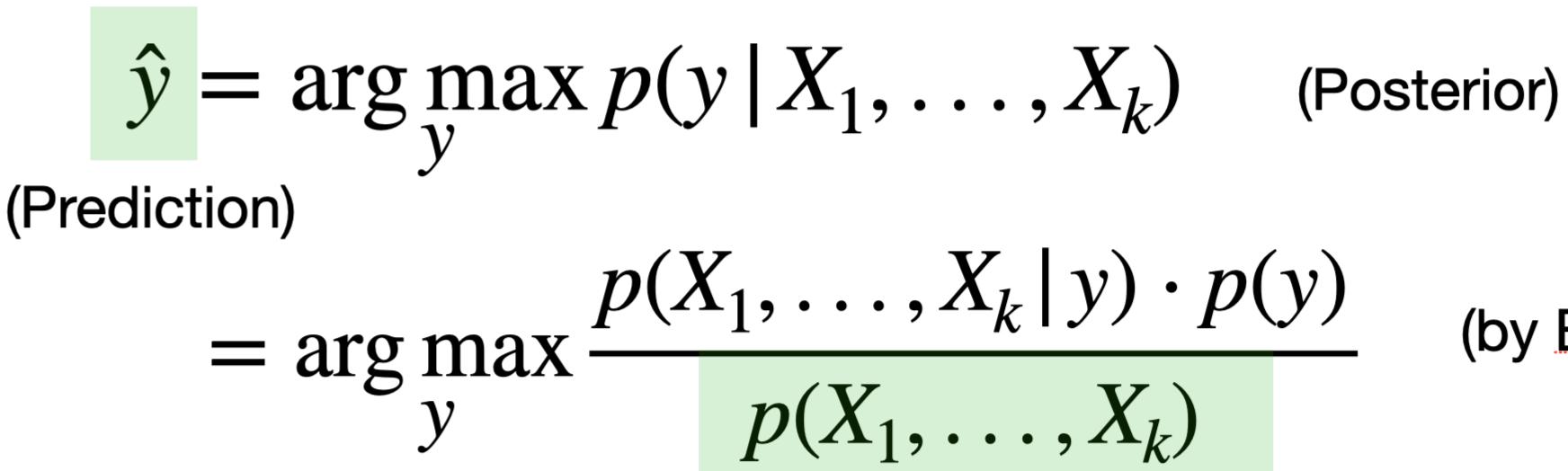
 $= \arg \max p(\mathbf{x} | y)p(y)$

(Posterior)

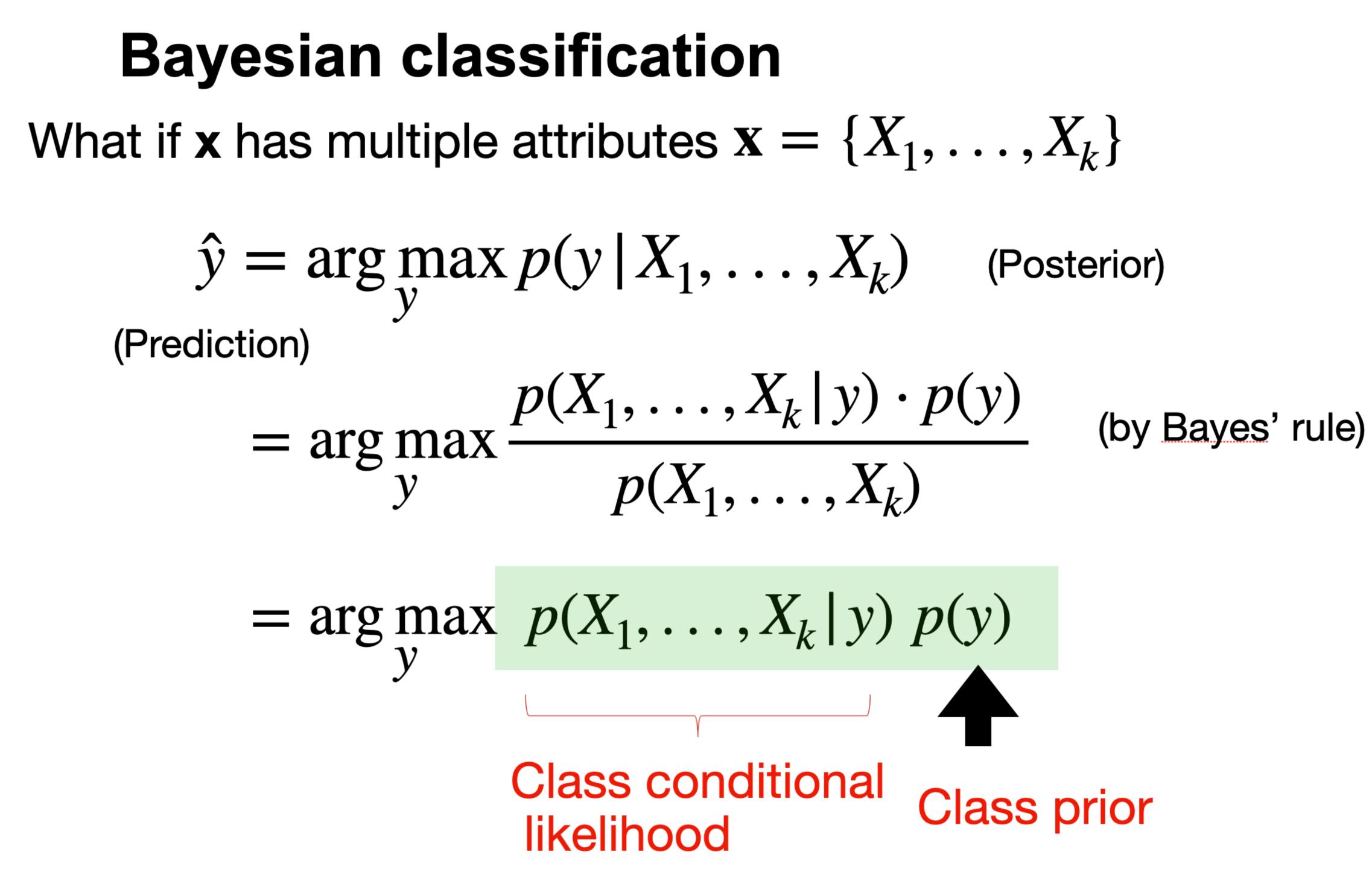
Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$ (Posterior)

$\hat{y} = \arg \max_{v} p(y | X_1, \dots, X_k)$ (Prediction)

Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$



(by Bayes' rule) Independent of y



Naïve Bayes Assumption

Conditional independence of feature attributes

$p(X_1, \ldots, X_k | y) p(y) = \prod_{i=1}^k p(X_i | y) p(y)$ Easier to estimate (using MLE!)

Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

Q3-2: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied Sick		R
Yes	No	No	F
Yes	No	Yes	P
No	Yes	Yes	F
No	Yes	No	P
Yes	Yes	Yes	P

Quiz break

- esult Fail Dass Fail **D**ass
- Pass

- A Pass
- B Fail

Q3-2: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

Quiz break

- esult Fail Dass Fail **D**ass

• A Pass • B Fail

Quiz break

We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

	i		
Confident	Studied	Sick	Result
Yes	No	No No	
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

 $P(y = P | x_1 = Y, x_2 = Y, x_3 = N)$ $= \frac{P(x_1 = Y | Y = P)P(x_2 = Y | Y = P)P(x_3 = N | Y = P)P(y = P)}{P(x_1 = Y, x_2 = Y, x_3 = N)}$ $=\frac{2}{3}*\frac{2}{3}*\frac{1}{3}*\frac{3}{5}/P(x_1=Y,x_2=Y,x_3=N)$ $\propto \frac{4}{9*5}$ Larger!

 A Pass B Fail

$$P(y = F | x_1 = Y, x_2 = Y, x_3 = N)$$

= $\frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{2}{5} / P(x_1 = Y, x_2 = Y, x_3 = N)$
 $\propto \frac{1}{4 * 5}$

What we've learned today...

- K-Nearest Neighbors
- Maximum likelihood estimation
 - Bernoulli model
 - Gaussian model
- Naive Bayes
 - Conditional independence assumption

Thanks!