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Today’s goals

* Understand deep neural networks as computational graphs.
* Forward propagation of inputs to outputs.
* Backward propagation of loss gradients to weights and biases.

* Understand numerical stability issues In training neural networks.
* Vanishing or exploding gradients.

* Review generalization and understand how to use regularization for
better generalization.

* Overtfitting, underfitting
* Weight decay and dropout
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Part I: Neural Networks as a
Computational Graph



Deep neural networks (DNNs)
h, = s(WWx + b))

Output layer f f2
h, = o(W®h, +b®)

o 'oy"g h; = O'(W(3)h2 + b(3))

Hidden layer f = WWh (4)

p = softmax(f)

Hidden layer | ’ )
Oﬁg’ sg?g;’y"@ NNs are composition
' ‘#“»*é‘#&\ of nonlinear

TR
Input layer o/ b, \6 \o fu nCtiOI'IS




Neural networks as variables + operations
a = sigmoid(WX + b)

* Can describe with a computational graph

* Decompose functions into atomic operations

* Separate data (variables) and computing (operations)




Neural networks as a computational graph

* A two-layer neural network




Neural networks as a computational graph

* A two-layer neural network
* Forward propagation vs. backward propagation




Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z

e Z1 Zy Z3 Zy A
/ S
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Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L
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Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L ol ol
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Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done

oL ol
633 B 834




Backward propagation: A modern treatment

* First, define a neural network as a computational graph
* Nodes are variables and operations.

* Must be a directed graph

* All operations must be differentiable.

* Backpropagation computes partial derivatives starting
from the loss and then working backwards through the
grapnh.



Backward propagation: Pylorch

for t in range(2000):

# Forward pass: compute predicted y by passing x to the
# override the __call_ _ operator so you can call them .
# doing so you pass a Tensor of input data to the Modu.
# a Tensor of output data.
v-pred = model o Forward propagation
# Compute and print loss. We pass Tensors containing tf
# values of y, and the loss function returns a Tensor i
# loss.
loss = loss_fn(y_pred, y)
if t ¥ 100 == 99:

print(t, loss.item())

# Zero the gradients before running the backward pass.
model.zero_grad()

# Backward pass: compute gradient of the loss with resj
# parameters of the model. Internalily, the parameters ¢
# 1in Tensors with requires_grad=True, so this call wil.

# all learnable parameters in the model. BaCkWard propagathn

loss.backward()

# Update the weights using gradient descent. Each parar
# we can access 1ts gradients li1ke we did before. .
with toxch.no_grad(): Gradient Descent
for param in model.parameters():
param -= learning_rate * param.grad



Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss

k N\
?(y,¥) = — ), y;jlogy; , where the ground truth and predicted probabilities Y,V € R”. Recall that the
J=1

softmax function turns output into probabilities: §; = Z;’;z]; ﬁiy What is the partial derivative 7 £(y,§)?
Hidden layer
m=3 neurons
B. exp(y;) — y; Input Output
C Vv:—V; \
Yi—Y; X4 f1
x € R

X2 / fk



Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss

£(y, V) = — Z y;logy; , where the ground truth and predicted probabilities y, y € R¥. Recall that the

j=1
: s~ €XPfi(x) : : L N
softmax function turns output into probabilities: §; = SFoxpf (0 What is the partial derivative afjf(y, V)"
Hidden layer
m=3 neurons
B. exp(y;) — y; Input Output

: Xp(f)
A Rewrite Z(y,y) = — Z y:log :xp ) \
C.yi—y; ol lmpm fi

=1
X1

k
ZHIDC‘Z exp(f;) — Z

j=1 j= X € Rd

= log Z exp(f) — Z y.f.
i=1 =1 e xz

/ fr

_ exp(fj)
We have  9,7(y,§) = e~y =P~ y;

Y. explf)
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Part lI: Numerical Stability



Gradients for Neural Networks

« Compute the gradient of the loss € w.r.t. W,

a¢ ¢ oh? Qh'*! 9h'
OWt ~ 9h99hd-1"" ght oWt

Wikipedia



Two Issues for Deep Neural Networks d=1 1t

dh!

1=t

Gradient Exploding Gradient Vanishing

0.8199 ~ 2 x 10719



Issues with Gradient Exploding

* Value out of range: infinity value (NaN)
» Sensitive to learning rate (LR)
* Not small enough LR - larger gradients
 Too small LR - No progress
* May need to change LR dramatically during training



Gradient Vanishing

» Use sigmoid as the activation function

1
o(x) =77 x o' (x) =a(x)(1 — o(x))
"1 Small Small
024 gradients gradients




Issues with Gradient Vanishing

» Gradients with value O
* NoO progress In training
* No matter how to choose learning rate
» Severe with bottom layers (those near the input)

* Only top layers (near output) are well trained
* No benefit to make networks deeper



How to
stabilize
training?




Stabilize Training: Practical Considerations

» Goal: make sure gradient values are in a proper range
 E.g.In[1e-6, 1e3]

* Multiplication - plus
» Architecture change (e.g., ResNet)

 Normalize
» Batch Normalization, Gradient clipping

* Proper activation functions



Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible.

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the RelLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the
sigmoid function, it will also have a vanishing gradient for every other training point.
D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.
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C. If a network has the vanishing gradient problem for one training point due to the
sigmoid function, it will also have a vanishing gradient for every other training point.
D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.



Quiz. Let's compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B. ReLU has non-zero gradient everywhere
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input



Quiz. Let's compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B.
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input



Q5. A Leaky RelLU is defined as f(x)=max(0.1x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No



Q5. A Leaky RelLU is defined as f(x)=max(0.1x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

10

B. No
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Part lll: Generalization & Regularization




How good are

the models? lﬁ

?




Training Error and Generalization Error

 [raining error: model error on the training data
* Generalization error: model error on new data
» Example: practice a future exam with past exams

* Doing well on past exams (training error) doesn't
guarantee a good score on the future exam
(generalization error)



Underfitting - \/ o

Ove I‘fltti n g Overfitting

Image credit: hackernoon.com



Model Capacity

* The abillity to fit variety of functions

* Low capacity models struggles to ——-——
fit training set s

» Underfitting
» High capacity models can

memorize the training set
* QOverfitting



Influence of Model Complexity

D —  m—
Underfitting Optimum Overfitting

Also known as

“Test loss”

Loss

Generalization loss

Training loss

Model complexity

* Recent research has challenged this view for some types of models.



Estimate Neural Network Capacity

* It's hard to compare complexity d :
between different families of models. \.
» e.g. K-NN vs neural networks O ONENRO
* Given a model family, two main factors
matter:

+ The number of parameters (@4 m+ (m+ 1)k

* The values taken by each parameter




Data Complexity

* Multiple factors matters R
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» time/space structure
o # of labels




Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data”?

A. Training loss Is low and generalization loss Is high.
B. Training loss is low and generalization loss Is low.

C. Training loss is high and generalization loss is high.
D. Training loss Is high and generalization loss Is low.

E. None of these.



Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data”?
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Quiz Break: Adding more layers to a multi-layer
perceptron may cause

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.



Quiz Break: Adding more layers to a multi-layer
perceptron may cause . (Multiple
answers)

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.



How to regularize the model for
better generalization?




Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

Traning Emor: 0.100 Tramning Emor; 0.160
TestEmorr 0259 TestEmor  0.223
Bayes Emor.  0.210 Bayes Emor. 0.210



Squared Norm Regularization as Hard Constraint

 Reduce model complexity by limiting value
range /

minL(w, b)subjectto || w ||“< B

 Often do not regularize bias b v

* Doing or not doing has little difference in
practice

A small B means more regularization



Squared Norm Regularization as Soft Constraint

« \We can rewrite the hard constraint version as

A
minL(w, b) + > | w |2



Squared Norm Regularization as Soft Constraint

« \We can rewrite the hard constraint version as

A
minL(w, b) + > | w |2

 Hyper-parameter Acontrols regularization importance
* 2 =0: no effect
A>oo,w -0



[llustrate the Effect on Optimal Solutions

A
w* = argminL(w, b) + > RTAE

~

w" = argminL(w, b)



Hinton et al.




Apply Dropout

» Often apply dropout on the output of hidden fully-connected layers

MLP with one hidden layer Hidden layer after dropout

h = 6(WWx + b))
h’ = dropout(h)

0 = W@h' + b®
p = softmax(o)

courses.d2l.ai/berkeley-stat-157



Dropout

PW
Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.



Dropout

Hinton et al.

F..
2 l
E ﬁﬁ I-H. ,y'lh -i.,...
E L t" I A
?:1.5 \ m 5
o -t
"t

D 200000 400000 &00000 800000 1000000
Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-

works have 2 to 4 hidden layers each
with 1024 to 2048 units.



Quiz Break, Q4.1:

In standard dropout regularization, with dropout probability p, each

. . . . . . , , () with probability p
intermediate activation h is replaced by a random variable h’ as: #' = {ﬂ . PRIy P
. olnerwise

To make E[h’] = h. What is “?" ?

A h Hidden layer
m=3 Nneurons
B. h/p Input .
1
G.h/“-p) X, \
el
D. h(1-p) x€ER h,
X2

5 /'



Quiz Break, Q4.1:

In standard dropout regularization, with dropout probability p, each

. . . . . . , , () with probability p
intermediate activation h is replaced by a random variable h’ as: #' = {ﬂ . PRIy P
. olnerwise

To make E[h’] = h. What is “?" ?

A h Hidden layer
M=3 Neurons
B. h/p Input .
1
C.h/({-p) N N~
i
D. h(1-p) XER h,
X2

5 /



What we’ve learned today...

* Deep neural networks

* Computational graph (forward and backward propagation)
* Numerical stability in training

* Gradient vanishing/exploding
* (Generalization and regularization

* Overfitting, underfitting

* Weight decay and dropout
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