e R M g,

oy P B FE = I“'— _'1.-_ o |,|| "'"-.J!:.""-'
i G | ”..?tmr*. -!M?"iwﬁu#' mh'&bmq
=8 y i : -

ruEEe |
I' | ":

CS 540 Introduction to Artificial In
Neural Networks (lll)

University of Wisconsin-Madison
Spring 2024

igence

Today’s goals

* Understand deep neural networks as computational graphs.
* Forward propagation of inputs to outputs.
* Backward propagation of loss gradients to weights and biases.

* Understand numerical stability issues In training neural networks.
* Vanishing or exploding gradients.

* Review generalization and understand how to use regularization for
better generalization.

* Overtfitting, underfitting
* Weight decay and dropout

- " — = gy Sl e e g = wa ‘l‘T“ _'r"':- ol
- = - N s R L ol g T < :.'i._, ..',M:{ .?:hnmr?ﬁfj ﬂ:{ T 'y ‘-
¥ - v L ey T 5 rl
-y i ..II = F_'.:i!_-‘ a =] -l wjTmEEe I:E e = 8 B I-‘;
i =t L o - =
i = [T = & e] =5 i LI E S el
ey .ﬂ_,___—l: i
P i i T -

:

T o
ey

Part I: Neural Networks as a
Computational Graph

Deep neural networks (DNNs)
h, = s(WWx + b))

Output layer f f2
h, = o(W®h, +b®)

o 'oy"g h; = O'(W(3)h2 + b(3))

Hidden layer f = WWh (4)

p = softmax(f)

Hidden layer | ’)
Oﬁg’ sg?g;’y"@ NNs are composition
' ‘#“»*é‘#&\ of nonlinear

TR
Input layer o/ b, \6 \o fu nCtiOI'IS

Neural networks as variables + operations
a = sigmoid(WX + b)

* Can describe with a computational graph

* Decompose functions into atomic operations

* Separate data (variables) and computing (operations)

Neural networks as a computational graph

* A two-layer neural network

Neural networks as a computational graph

* A two-layer neural network
* Forward propagation vs. backward propagation

Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z

e Z1 Zy Z3 Zy A
/ S

@ %

Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L

Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L oL ol

Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L ol ol

E_Iaﬂ'g

Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done

oL ol
633 B 834

Backward propagation: A modern treatment

* First, define a neural network as a computational graph
* Nodes are variables and operations.

* Must be a directed graph

* All operations must be differentiable.

* Backpropagation computes partial derivatives starting
from the loss and then working backwards through the
grapnh.

Backward propagation: Pylorch

for t in range(2000):

Forward pass: compute predicted y by passing x to the
override the __call_ _ operator so you can call them .
doing so you pass a Tensor of input data to the Modu.
a Tensor of output data.
v-pred = model o Forward propagation
Compute and print loss. We pass Tensors containing tf
values of y, and the loss function returns a Tensor i
loss.
loss = loss_fn(y_pred, y)
if t ¥ 100 == 99:

print(t, loss.item())

Zero the gradients before running the backward pass.
model.zero_grad()

Backward pass: compute gradient of the loss with resj
parameters of the model. Internalily, the parameters ¢
1in Tensors with requires_grad=True, so this call wil.

all learnable parameters in the model. BaCkWard propagathn

loss.backward()

Update the weights using gradient descent. Each parar
we can access 1ts gradients li1ke we did before. .
with toxch.no_grad(): Gradient Descent
for param in model.parameters():
param -= learning_rate * param.grad

Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss

k N\
?(y,¥) = —), y;jlogy; , where the ground truth and predicted probabilities Y,V € R”. Recall that the
J=1

softmax function turns output into probabilities: §; = Z;’;z]; ﬁiy What is the partial derivative 7 £(y,§)?
Hidden layer
m=3 neurons
B. exp(y;) — y; Input Output
C Vv:—V; \
Yi—Y; X4 f1
x € R

X2 / fk

Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss

£(y, V) = — Z y;logy; , where the ground truth and predicted probabilities y, y € R¥. Recall that the

j=1
: s~ €XPfi(x) : : L N
softmax function turns output into probabilities: §; = SFoxpf (0 What is the partial derivative afjf(y, V)"
Hidden layer
m=3 neurons
B. exp(y;) — y; Input Output

: Xp(f)
A Rewrite Z(y,y) = — Z y:log :xp) \
C.yi—y; ol lmpm fi

=1
X1

k
ZHIDC‘Z exp(f;) — Z

j=1 j= X € Rd

= log Z exp(f) — Z y.f.
i=1 =1 e xz

/ fr

_ exp(fj)
We have 9,7(y,§) = e~y =P~ y;

Y. explf)

; d .'_-;II.'IF |-l-- b LI

P

s =]

Part lI: Numerical Stability

Gradients for Neural Networks

« Compute the gradient of the loss € w.r.t. W,

a¢ ¢ oh? Qh'*! 9h'
OWt ~ 9h99hd-1"" ght oWt

Wikipedia

Two Issues for Deep Neural Networks d=1 1t

dh!

1=t

Gradient Exploding Gradient Vanishing

0.8199 ~ 2 x 10719

Issues with Gradient Exploding

* Value out of range: infinity value (NaN)
» Sensitive to learning rate (LR)
* Not small enough LR - larger gradients
 Too small LR - No progress
* May need to change LR dramatically during training

Gradient Vanishing

» Use sigmoid as the activation function

1
o(x) =77 x o' (x) =a(x)(1 — o(x))
"1 Small Small
024 gradients gradients

Issues with Gradient Vanishing

» Gradients with value O
* NoO progress In training
* No matter how to choose learning rate
» Severe with bottom layers (those near the input)

* Only top layers (near output) are well trained
* No benefit to make networks deeper

How to
stabilize
training?

Stabilize Training: Practical Considerations

» Goal: make sure gradient values are in a proper range
 E.g.In[1e-6, 1e3]

* Multiplication - plus
» Architecture change (e.g., ResNet)

 Normalize
» Batch Normalization, Gradient clipping

* Proper activation functions

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible.

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the RelLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the
sigmoid function, it will also have a vanishing gradient for every other training point.
D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients.
B.Using the RelLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the
sigmoid function, it will also have a vanishing gradient for every other training point.
D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Let's compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B. ReLU has non-zero gradient everywhere
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Quiz. Let's compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B.
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Q5. A Leaky RelLU is defined as f(x)=max(0.1x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Q5. A Leaky RelLU is defined as f(x)=max(0.1x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

10

B. No

o (e
PR
-

SR S

e | : . .
- L z : Ee | [oel = By
- - - (e W 2 . b = ._-L. A% ‘..'r.-‘:-'l-p = __1. i F .'___-. # '."u“ i
] i T e S ot Vo . |
: i - e, i

; . . = L
T ey i - o S o = R " T s oy e LT d
TR D s R O L e R _-.L'-_:-_-__"““{ -ﬁ'"#:, e ME{.,J: ‘E* |

"
—— el
—

Part lll: Generalization & Regularization

How good are

the models? lﬁ

?

Training Error and Generalization Error

 [raining error: model error on the training data
* Generalization error: model error on new data
» Example: practice a future exam with past exams

* Doing well on past exams (training error) doesn't
guarantee a good score on the future exam
(generalization error)

Underfitting - \/ o

Ove I‘fltti n g Overfitting

Image credit: hackernoon.com

Model Capacity

* The abillity to fit variety of functions

* Low capacity models struggles to ——-——
fit training set s

» Underfitting
» High capacity models can

memorize the training set
* QOverfitting

Influence of Model Complexity

D — m—
Underfitting Optimum Overfitting

Also known as

“Test loss”

Loss

Generalization loss

Training loss

Model complexity

* Recent research has challenged this view for some types of models.

Estimate Neural Network Capacity

* It's hard to compare complexity d :
between different families of models. \.
» e.g. K-NN vs neural networks O ONENRO
* Given a model family, two main factors
matter:

+ The number of parameters (@4 m+ (m+ 1)k

* The values taken by each parameter

Data Complexity

* Multiple factors matters R

[
. bl L 'I. »
] - g¥
LR L $a el %

s @ [g L] L -

. . "I. et g a* - " ® ~ .

L)
. = -.- I.’ L] "- e ™ t. & Seeg ., a

. -) . .

ﬂ ’ I r r] . % o Pl SN, s ... ’ .
- .' " \ ...-. 2P, LSt " .-‘-'I o - - 2
. O exa p I eS . . '.: .: . '. .'.:‘. ? :i*‘:..:. ...' :.I...‘ .l.

. 3 . - . l.‘: -: ". .- :.. ::é:.::: :I ? -‘ :. - L]
" Foe oy ey '.}' "05.5 :-"
- ' * .f.... = 1-0.* L] L : o e -
e ,.,. = ‘:: .a.- .'..-'.::“i:" .-. S L]
* =| . l.' * :I . e L] g ..
. 2 & .. .l.-.‘. ?. g :' L] - ‘.'; ea
. ':. ’ o "::.o .;. - . L] ...%.l.l. s "
. : ‘e . b “ . e ..::-“-' .c'o“ i b - . -
g (1 ¢ . _...:.',.'_. . : :. ;’.. ar ...- " .-. .
. . LA Jﬂ‘ ‘.-. we e s e = = .
- L] :.' ."g. ..C ™ !‘,.,I -' L -.
-_‘.- .-, Rl L.
.* o . " "
. . * . :

» time/space structure
o # of labels

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data”?

A. Training loss Is low and generalization loss Is high.
B. Training loss is low and generalization loss Is low.

C. Training loss is high and generalization loss is high.
D. Training loss Is high and generalization loss Is low.

E. None of these.

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data”?

A. Training loss Is low and generalization loss Is high.
B. Training loss is low and generalization loss Is low.

C. Training loss is high and generalization loss is high.
D. Training loss Is high and generalization loss Is low.

E. None of these.

Quiz Break: Adding more layers to a multi-layer
perceptron may cause

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.

Quiz Break: Adding more layers to a multi-layer
perceptron may cause . (Multiple
answers)

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.

How to regularize the model for
better generalization?

Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

Traning Emor: 0.100 Tramning Emor; 0.160
TestEmorr 0259 TestEmor 0.223
Bayes Emor. 0.210 Bayes Emor. 0.210

Squared Norm Regularization as Hard Constraint

 Reduce model complexity by limiting value
range /

minL(w, b)subjectto || w ||“< B

 Often do not regularize bias b v

* Doing or not doing has little difference in
practice

A small B means more regularization

Squared Norm Regularization as Soft Constraint

« \We can rewrite the hard constraint version as

A
minL(w, b) + > | w |2

Squared Norm Regularization as Soft Constraint

« \We can rewrite the hard constraint version as

A
minL(w, b) + > | w |2

 Hyper-parameter Acontrols regularization importance
* 2 =0: no effect
A>oo,w -0

[llustrate the Effect on Optimal Solutions

A
w* = argminL(w, b) + > RTAE

~

w" = argminL(w, b)

Hinton et al.

Apply Dropout

» Often apply dropout on the output of hidden fully-connected layers

MLP with one hidden layer Hidden layer after dropout

h = 6(WWx + b))
h’ = dropout(h)

0 = W@h' + b®
p = softmax(o)

courses.d2l.ai/berkeley-stat-157

Dropout

PW
Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

Dropout

Hinton et al.

F..
2 l
E ﬁﬁ I-H. ,y'lh -i.,...
E L t" I A
?:1.5 \ m 5
o -t
"t

D 200000 400000 &00000 800000 1000000
Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-

works have 2 to 4 hidden layers each
with 1024 to 2048 units.

Quiz Break, Q4.1:

In standard dropout regularization, with dropout probability p, each

. , , () with probability p
intermediate activation h is replaced by a random variable h’ as: #' = {ﬂ . PRIy P
. olnerwise

To make E[h’] = h. What is “?" ?

A h Hidden layer
m=3 Nneurons
B. h/p Input .
1
G.h/“-p) X, \
el
D. h(1-p) x€ER h,
X2

5 /'

Quiz Break, Q4.1:

In standard dropout regularization, with dropout probability p, each

. , , () with probability p
intermediate activation h is replaced by a random variable h’ as: #' = {ﬂ . PRIy P
. olnerwise

To make E[h’] = h. What is “?" ?

A h Hidden layer
M=3 Neurons
B. h/p Input .
1
C.h/({-p) N N~
i
D. h(1-p) XER h,
X2

5 /

What we’ve learned today...

* Deep neural networks

* Computational graph (forward and backward propagation)
* Numerical stability in training

* Gradient vanishing/exploding
* (Generalization and regularization

* Overfitting, underfitting

* Weight decay and dropout

	CS 540 Introduction to Artificial Intelligence
Neural Networks (III)
	Today’s goals
	Part I: Neural Networks as a Computational Graph
	Slide Number 4
	Neural networks as variables + operations
	Neural networks as a computational graph
	Neural networks as a computational graph
	Neural networks: forward propagation
	Neural networks: backward propagation
	Neural networks: backward propagation
	Neural networks: backward propagation
	Neural networks: backward propagation
	Backward propagation: A modern treatment
	Backward propagation: PyTorch
	Slide Number 15
	Slide Number 16
	Part II: Numerical Stability
	Gradients for Neural Networks
	Two Issues for Deep Neural Networks
	Issues with Gradient Exploding
	Gradient Vanishing
	Issues with Gradient Vanishing
	How to stabilize training?
	Stabilize Training: Practical Considerations
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Part III: Generalization & Regularization
	How good are the models?
	Training Error and Generalization Error
	Underfitting
Overfitting
	Model Capacity
	Influence of Model Complexity
	Estimate Neural Network Capacity
	Data Complexity
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	How to regularize the model for better generalization?
	Weight Decay
	Squared Norm Regularization as Hard Constraint
	Squared Norm Regularization as Soft Constraint
	Squared Norm Regularization as Soft Constraint
	Illustrate the Effect on Optimal Solutions
	Dropout
	Apply Dropout
	Dropout
	Dropout
	Slide Number 53
	Slide Number 54
	What we’ve learned today…

