

CS 540 Introduction to Artificial Intelligence Midterm Review

University of Wisconsin-Madison Spring 2024

Announcements

- · Homeworks:
 - HW6 deadline on Thursday March. 14th at 11 AM
 - While you can use study groups to discuss high level ideas, you need to code independently.

Thank you for your feedback!

Midterm Information

- Time: March 13th 7:30-9 PM
- Place: Humanities 2340: A-K Humanities 3650: L-Z
- Format: multiple choice (20 questions)
- Cheat sheet: single piece of paper, front and back
- Calculator: fine if it doesn't have an Internet connection
- Detailed topic list + practice: https://piazza.com/class/lrjf9oinrox1zf/post/409

Reasoning With Conditional Distributions

- Evaluating probabilities:
 - Wake up with a sore throat.
 - Do I have the flu?

- Too strong.
- Inference: compute probability given evidence P(F|S)
 - Can be much more complex!

Using Bayes' Rule

- Want: P(F|S)
- Bayes' Rule: $P(F|S) = \frac{P(F,S)}{P(S)} = \frac{P(S|F)P(F)}{P(S)}$
- Parts:
 - $\qquad P(S) = 0.1 \qquad {\sf Sore\ throat\ rate}$
 - P(F) = 0.01 Flu rate
 - -P(S|F) = 0.9 Sore throat rate among flu sufferers

So: P(F|S) = 0.09

Using Bayes' Rule

- Interpretation P(F|S) = 0.09
 - Much higher chance of flu than normal rate (0.01).
 - Very different from P(S|F) = 0.9
 - 90% of folks with flu have a sore throat
 - But, only 9% of folks with a sore throat have flu

• Idea: update probabilities from

evidence

Fancy name for what we just did. Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- *H* is the hypothesis
- E is the evidence

• Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} \longleftarrow \text{Prior}$$

Prior: estimate of the probability without evidence

• Terminology:

Likelihood
$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

• Likelihood: probability of evidence given a hypothesis

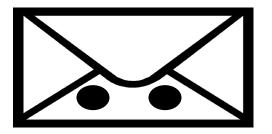
Terminology:

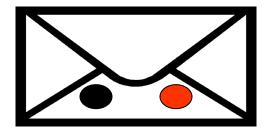
$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$
Posterior

• Posterior: probability of hypothesis given evidence.

Two Envelopes Problem

- We have two envelopes:
 - $-E_1$ has two black balls, E_2 has one black, one red
 - The red one is worth \$100. Others, zero
 - Open an envelope, see one ball. Then, can switch (or not).
 - You see a black ball. Switch?





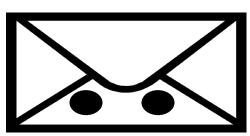
Two Envelopes Solution

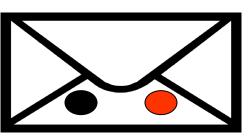
• Let's solve it. $P(E_1|\text{Black ball}) = \frac{P(\text{Black ball}|E_1)P(E_1)}{P(\text{Black ball})}$

• Now plug in:
$$P(E_1|\text{Black ball}) = \frac{1 \times \frac{1}{2}}{P(\text{Black ball})}$$

$$P(E_2|\text{Black ball}) = \frac{\frac{1}{2} \times \frac{1}{2}}{P(\text{Black ball})}$$

So switch!





Naïve Bayes

Conditional Probability & Bayes:

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1, \dots, E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

• If we further make the conditional independence assumption (a.k.a. Naïve Bayes)

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H) \cdots P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

Naïve Bayes

Expression

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

- H: some class we'd like to infer from evidence
 - We know prior P(H)
 - Estimate $P(E_i|H)$ from data! ("training")
 - Very similar to envelopes problem.

Break & Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

- A. 5/104
- B. 95/100
- C. 1/100
- D. 1/2

Break & Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

```
A. 5/104

S: Spam
NS: Not Spam
DS: Detected as Spam

P(S) = 50 % spam email
P(NS) = 50% not spam email
P(DS|NS) = 5% false positive, detected as spam but not spam
P(DS|S) = 99% detected as spam and it is spam

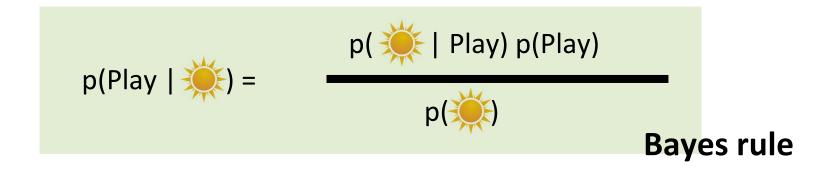
Applying Bayes Rule
P(NS|DS) = (P(DS|NS)*P(NS)) / P(DS) = (P(DS|NS)*P(NS)) / (P(DS|NS)*P(NS)) + P(DS|S)*P(S)) = 5/104
```

If weather is sunny, would you like to play outside?
 Posterior probability p(Yes | ***) vs. p(No | ***)

- If weather is sunny, would you like to play outside?
 Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day m}, m={1,2,...,N}

If weather is sunny, would you like to play outside?
 Posterior probability p(Yes |) vs. p(No |)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day m}, m={1,2,...,N}



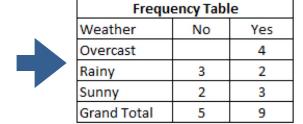
• Step 1: Convert the data to a frequency table of Weather and Play

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table			
Weather	No	Yes	
Overcast		4	
Rainy	3	2	
Sunny	2	3	
Grand Total	5	9	

- Step 1: Convert the data to a frequency table of Weather and Play
- Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No



Lik	elihood tab	le	<u>l</u>	
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

p(Play = Yes) =
$$0.64$$

p(\Rightarrow | Yes) = $3/9 = 0.33$

• Step 3: Based on the likelihoods and priors, calculate posteriors

• Step 3: Based on the likelihoods and priors, calculate posteriors

```
P(Yes | 🌉)
 =P( ** | Yes)*P(Yes)/P( **)
 =0.33*0.64/0.36
 =0.6
P(No|※)
 =P( ** | No)*P(No)/P(**)
 =0.4*0.36/0.36
 =0.4
```

P(Yes | **※**) → P(No | **※**)

go outside and play!

Bayesian classification

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \underset{y}{\operatorname{arg\,max}} p(y \mid X_1, \dots, X_k)$$
 (Posterior)
(Prediction)

Bayesian classification

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k) \quad \text{(Posterior)}$$

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

Independent of y

Bayesian classification

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

 $= \arg\max_{v} p(X_1, \dots, X_k | y) p(y)$

onditional Class prior

Class conditional likelihood

Naïve Bayes Assumption

Conditional independence of feature attributes

Quiz break

Q3-2: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other.

We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A Pass
- B Fail

Quiz break

Q3-2: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other.

We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A Pass
- B Fail

Quiz break

We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

•	A	Pa	ISS
---	---	----	-----

B Fail

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

$$P(y = F | x_1 = Y, x_2 = Y, x_3 = N)$$

$$= \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{2}{5} / P(x_1 = Y, x_2 = Y, x_3 = N)$$

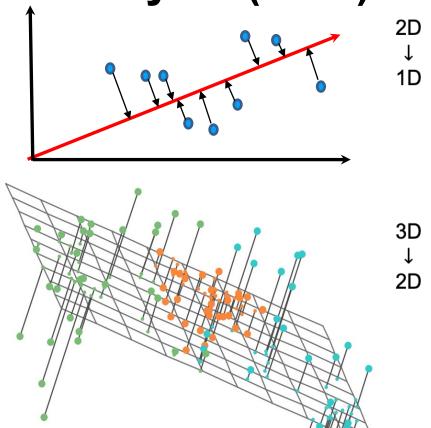
$$\propto \frac{1}{4 * 5}$$

$$\begin{split} &P(y=P|x_1=Y,x_2=Y,x_3=N)\\ &=\frac{P(x_1=Y|Y=P)P(x_2=Y|Y=P)P(x_3=N|Y=P)P(y=P)}{P(x_1=Y,x_2=Y,x_3=N)}\\ &=\frac{2}{3}*\frac{2}{3}*\frac{1}{3}*\frac{3}{5}/P(x_1=Y,x_2=Y,x_3=N)\\ &\propto\frac{4}{9*5} \quad \text{Larger!} \end{split}$$

Principal Components Analysis (PCA)

A type of dimensionality reduction approach

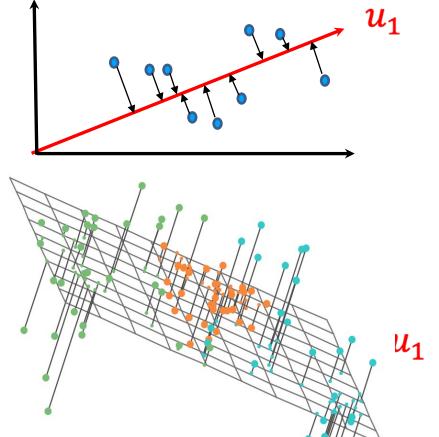
 For when data is approximately lower dimensional

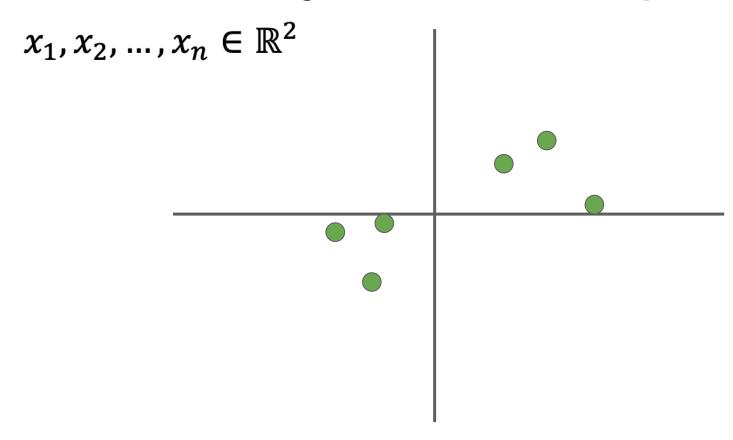


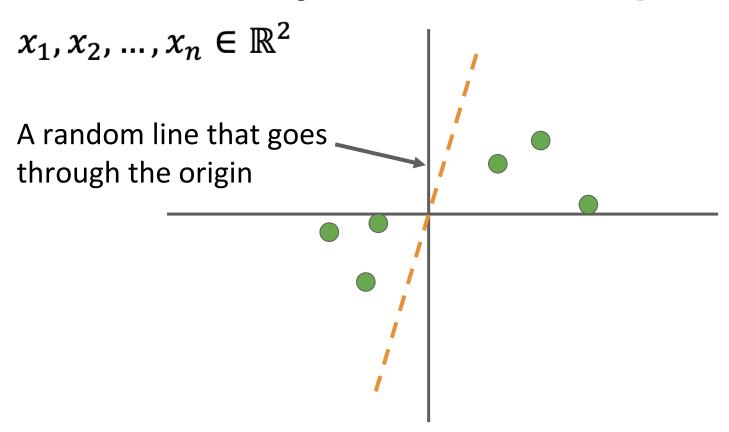
Principal Components Analysis (PCA)

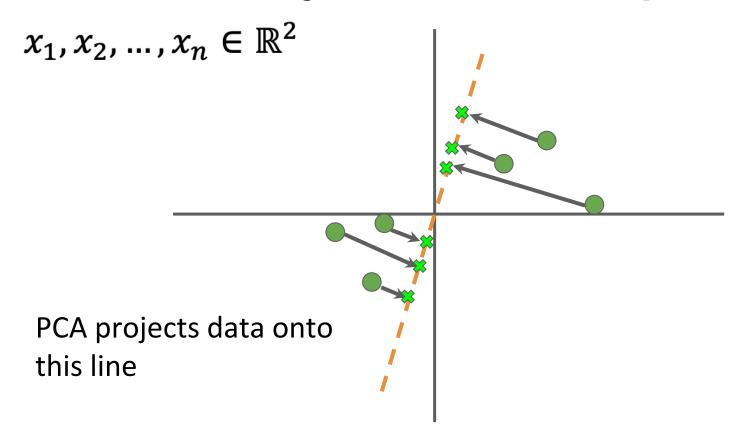
- Find axes $u_1, u_2, ..., u_m \in \mathbb{R}^d$ of a subspace
 - Will project to this subspace
- Want to preserve data
 - minimize projection error

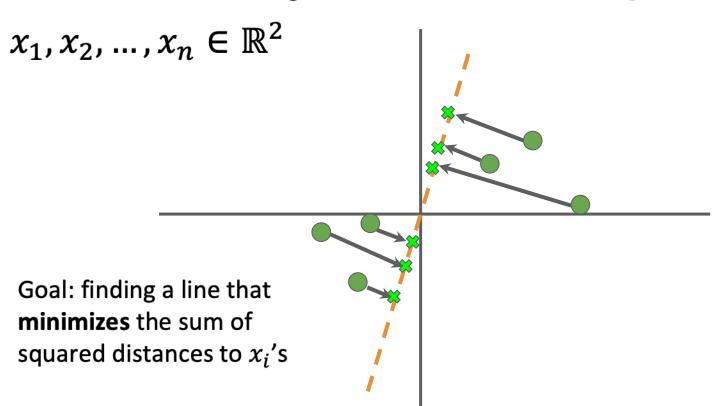
 These vectors are the principal components





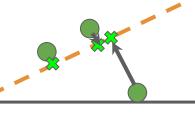


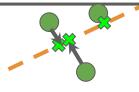




Projection: An Example

$$x_1, x_2, \dots, x_n \in \mathbb{R}^2$$





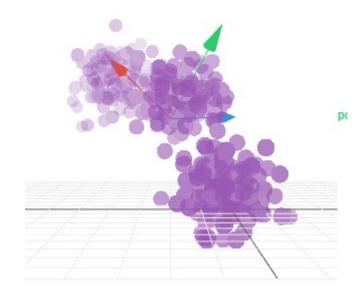
The sum of squared distances gets smaller as the line fits better

The **optimal** line is called Principal Component 1

PCA Procedure

Inputs: data $x_1, x_2, ..., x_n \in \mathbb{R}^d$

— Center data so that $\frac{1}{n}\sum_{i=1}^n x_i = 0$



Victor Powell

PCA Procedure

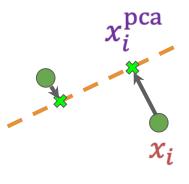
Output:

principal components $u_1, ..., u_m \in \mathbb{R}^d$

- Orthogonal
- Can show: they are top-m eigenvectors of

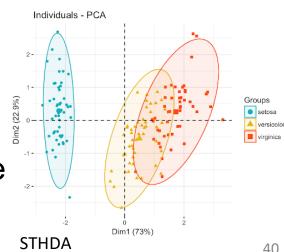
$$S = \frac{1}{n-1} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}} \text{ (covariance matrix)}$$

- Each x_i projected to $x_i^{\text{pca}} = \sum_{j=1}^m (u_j^{\mathsf{T}} x_i) u_j$



Many Variations

- PCA, Kernel PCA, ICA, CCA
 - Extract structure from high dimensional dataset
- Uses:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use



Application: Image Compression

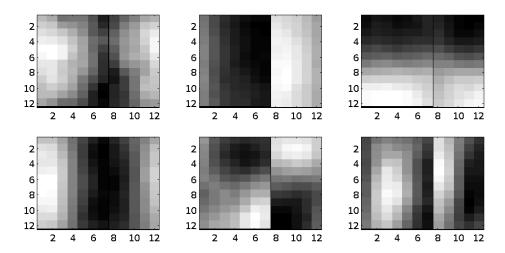
Start with image; divide into 12x12 patches

- That is, 144-D vector

– Original image:

Application: Image Compression

6 principal components (as an image)



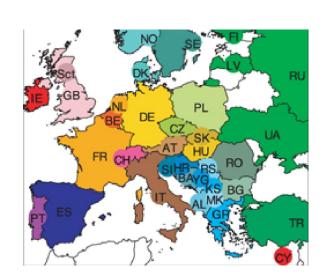
Application: Image Compression

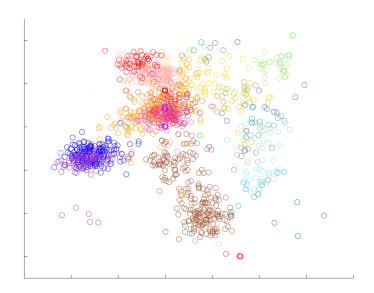
Project to 6D

Original

Application: Exploratory Data Analysis

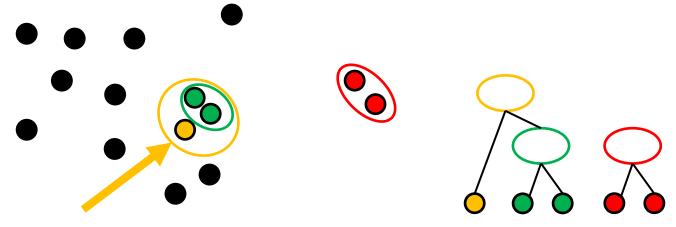
 [Novembre et al. '08]: Take top two singular vectors of people x SNP matrix (POPRES)





Agglomerative Clustering Example

Repeat: Get pair of clusters that are closest and merge



Merging Criteria

Merge: use closest clusters. Define closest? Single-linkage

$$d(A,B) = \min_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$
 Complete-linkage

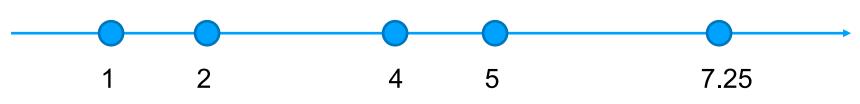
$$d(A,B) = \max_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$
 Average-linkage

$$d(A,B) = \frac{1}{|A||B|} \sum_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

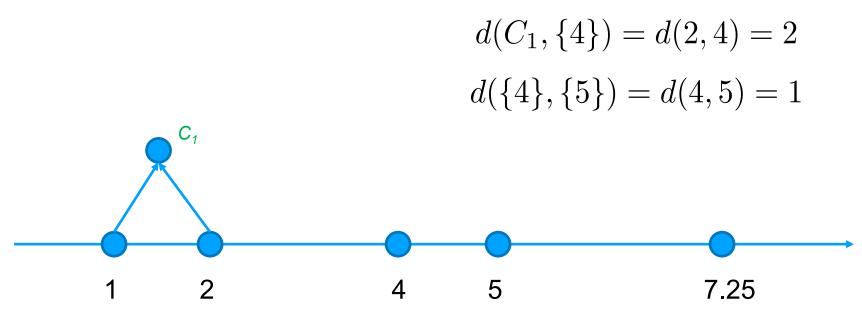
We'll merge using single-linkage

1-dimensional vectors.

Initial: all points are clusters

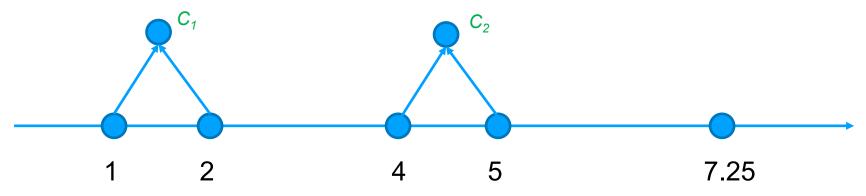


We'll merge using single-linkage

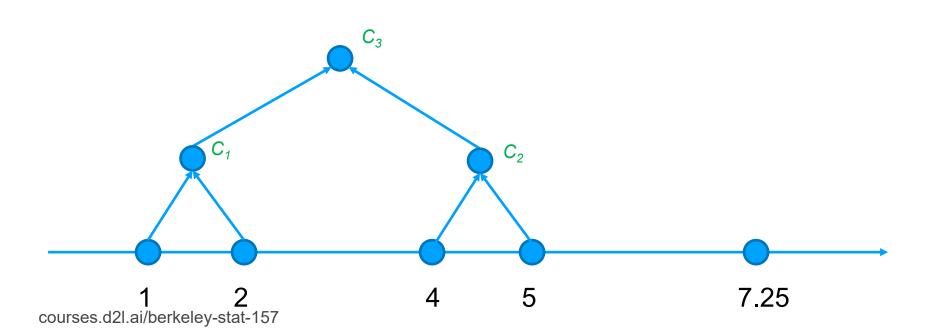


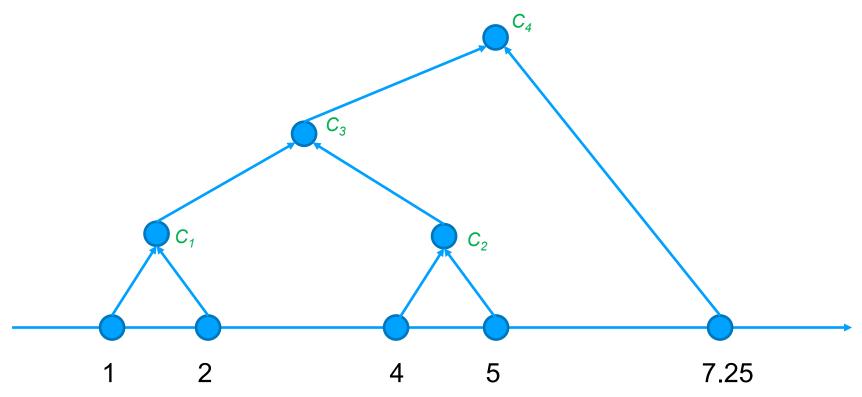
Continue...

$$d(C_1, C_2) = d(2, 4) = 2$$
$$d(C_2, \{7.25\}) = d(5, 7.25) = 2.25$$



Continue...

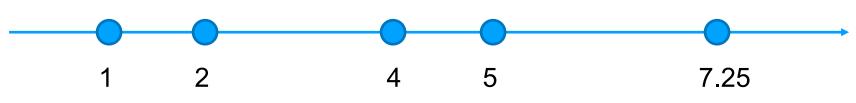




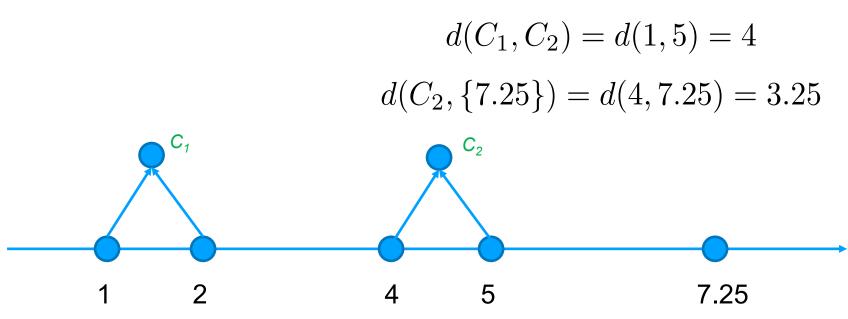
We'll merge using complete-linkage

1-dimensional vectors.

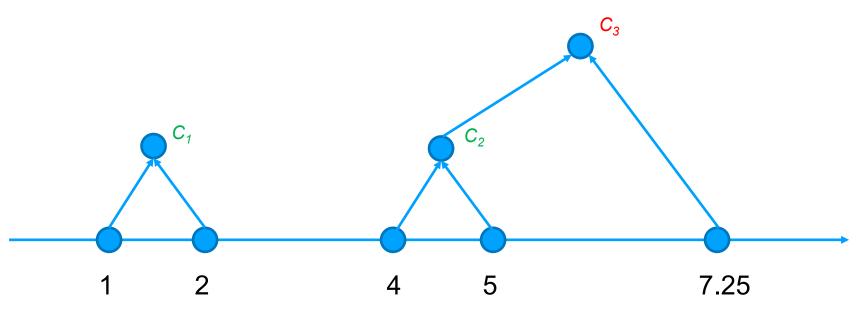
Initial: all points are clusters

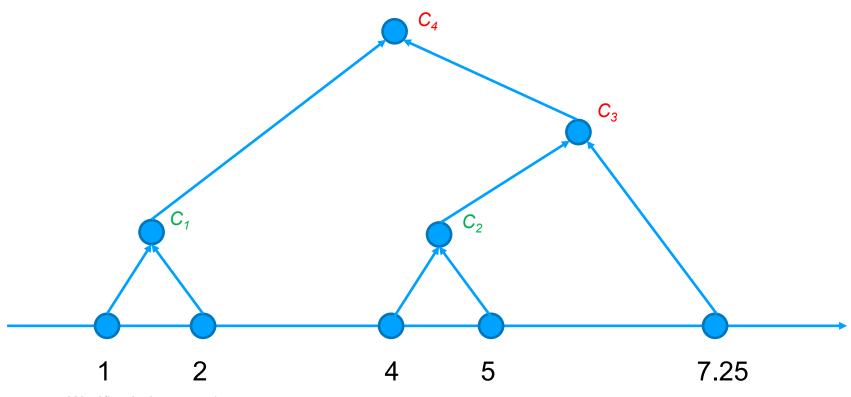


Beginning is the same...



Now we diverge:



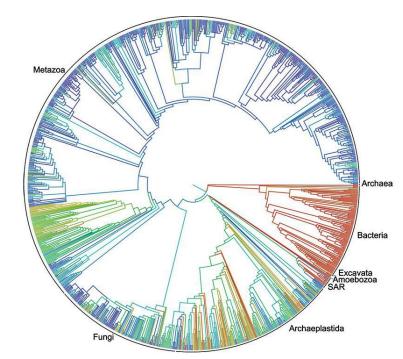


When to Stop?

No simple answer:

Use the binary tree (a **dendogram**)

Cut at different levels (get different heights/depths)



http://opentreeoflife.org/

Break & Quiz

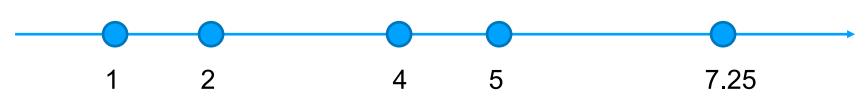
Q 1.1: Let's do hierarchical clustering for two clusters with average linkage on the dataset below. What are the clusters?

```
A. {1}, {2,4,5,7.25}
```

B. {1,2}, {4, 5, 7.25}

C. {1,2,4}, {5, 7.25}

D. {1,2,4,5}, {7.25}



Break & Quiz

Q 1.1: Let's do hierarchical clustering for two clusters with average linkage on the dataset below. What are the clusters?

```
A. {1}, {2,4,5,7.25}

B. {1,2}, {4, 5, 7.25}

C. {1,2,4}, {5, 7.25}

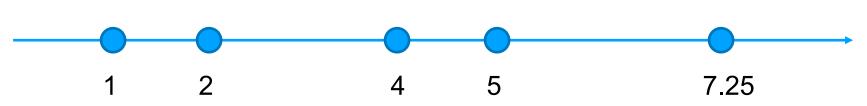
D. {1,2,4,5}, {7.25}

So average linkage will merge {4,5} and {7.25}

Iteration 1: merge 1 and 2
Iteration 2: merge 4 and 5
Iteration 3: Now we have clusters {1,2}, {4,5}, {7.25}.

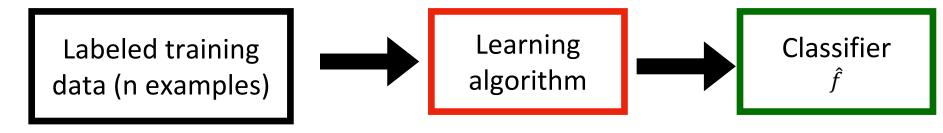
distance({1,2}, {4,5})= 3
distance({4,5}, {7.25}) = 2.75

So average linkage will merge {4,5} and {7.25}
```



Supervised Machine Learning

Statistical modeling approach



$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption)

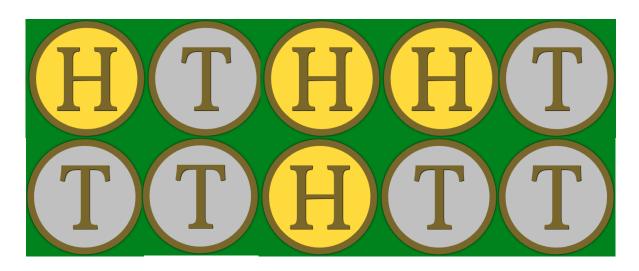
select $\hat{f}(\theta)$ from a pool of models \mathcal{F} that **best describe the data observed**

How to select $\hat{f} \in \mathcal{F}$?

- Maximum likelihood (best fits the data)
- Maximum a posteriori
 (best fits the data but incorporates prior assumptions)
- Optimization of 'loss' criterion (best discriminates the labels)

Maximum Likelihood Estimation: An Example

Flip a coin 10 times, how can you estimate $\theta = p(Head)$?



Intuitively, $\theta = 4/10 = 0.4$

How good is θ ?

It depends on how likely it is to generate the observed data

$$\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$$

(Let's forget about label for a second)

Likelihood function

$$L(\theta) = \Pi_i p(\mathbf{x}_i | \theta)$$

Under i.i.d assumption

Interpretation: How **probable** (or how likely) is the data given the probabilistic model p_{θ} ?

How good is θ ?

It depends on how likely it is to generate the observed data X_1, X_2, \dots, X_n (Let's forget about label for a second)

Likelihood function

$$L(\theta) = \Pi_i p(\mathbf{x}_i | \theta)$$

H,T, T, H, H $L_{D}(\theta) = \theta \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$

Bernoulli distribution

Log-likelihood function

$$L_D(\boldsymbol{\theta}) = \boldsymbol{\theta} \cdot (1 - \boldsymbol{\theta}) \cdot (1 - \boldsymbol{\theta}) \cdot \boldsymbol{\theta} \cdot \boldsymbol{\theta}$$
$$= \boldsymbol{\theta}^{N_H} \cdot (1 - \boldsymbol{\theta})^{N_T}$$

Log-likelihood function

$$\ell(\theta) = \log L(\theta)$$
$$= N_H \log \theta + N_T \log(1 - \theta)$$

Maximum Likelihood Estimation (MLE)

Find optimal $heta^*$ to maximize the likelihood function (and log-likelihood)

$$\theta^* = \operatorname{argmax} N_H \log \theta + N_T \log(1 - \theta)$$

$$\frac{\partial l(\theta)}{\partial \theta} = \frac{N_H}{\theta} - \frac{N_T}{1 - \theta} = 0 \quad \bullet \quad \theta^* = \frac{N_H}{N_T + N_H}$$

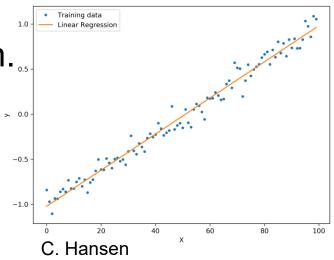
which confirms your intuition!

Linear Regression

Simplest type of regression problem.

Inputs: $(\mathbf{x}_1,y_1), (\mathbf{x}_2,y_2), \ldots, (\mathbf{x}_n,y_n)$

- x's are vectors, y's are scalars.
- "Linear": predict a linear combination of x components + intercept



$$f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d = \theta_0 + x^T \theta$$

Want: parameters θ

Linear Regression Setup

Problem Setup

Goal: figure out how to minimize square loss Let's organize it. Train set $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

• Since $f(x) = \theta_0 + x^T \theta$, use a notational trick by augmenting feature vector with a constant dimension of 1:

 $x = \begin{bmatrix} 1 \\ x \end{bmatrix}$

• Then, with this one more dimension we can write (θ) contains θ_0 now $\theta_{f(x)=x^T\theta}$

Linear Regression Setup

Problem Setup

Train set $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Take train features and make it a n*(d+1) matrix, and y a vector:

$$X = \begin{bmatrix} x_1^T \\ \dots \\ x_n^T \end{bmatrix} \qquad \qquad y = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}$$

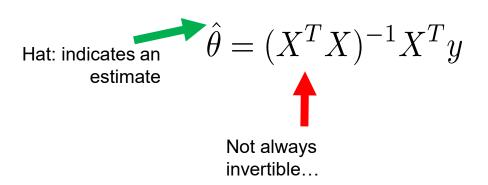
Then, the empirical risk is $\frac{1}{n}||X\theta - y||^2$

Finding The Estimated Parameters

Have our loss: $\frac{1}{n} ||X\theta - y||^2$

Could optimize it with SGD, etc...

But the minimum also has a closed-form solution (vector calculus):



"Normal Equation s"

How Good are the Estimated

Parameters?

Now we have parameters $\hat{\theta} = (X^T X)^{-1} X^T y$ How good are they?

Predictions are $f(x_i) = \hat{\theta}^T x_i = ((X^T X)^{-1} X^T y)^T x_i$ Errors ("residuals")

$$|y_i - f(x_i)| = |y_i - \hat{\theta}^T x_i| = |y_i - ((X^T X)^{-1} X^T y)^T x_i|$$

If data is linear, residuals are 0. Almost never the case!

Mean squared error on a test set

$$\frac{1}{m} \sum_{i=n+1}^{n+m} (\hat{\theta}^T x_i - y_i)^2$$

Linear Regression → Classification?

What if we want the same idea, but y is 0 or 1?

Need to convert the $\theta^T x$ to a probability in [0,1]

$$p(y=1|x) = \frac{1}{1 + \exp(-\theta^T x)}$$
 Why does this work?

Logistic function

If is really big, to 1 $\theta^T x$ is really big, is really small $\to p$ close

If really negative exp is huge $\rightarrow p$ close to 0

"Logistic Regression"

Break & Quiz

Q 2.1: You have a dataset for regression given by $(x_1, y_1) = ([-1,0,1], 2)$ and $(x_2, y_2) = ([2,3,1], 4)$.

What are the labels, number of points (n), and dimension of the features (d)?

- A. labels are 2 and 4; n=3, and d=2.
- B. labels are 2 and 4; n=2, and d=3.
- C. labels are [-1,0,1] and [2,3,1]; n=2, and d=4.
- D. labels are 2 and 3; n=4, and d=2.

Q 2.1: You have a dataset for regression given by $(x_1, y_1) = ([-1,0,1], 2)$ and $(x_2, y_2) = ([2,3,1], 4)$.

What are the labels, number of points (n), and dimension of the features (d)?

- A. labels are 2 and 4; n=3, and d=2.
- B. labels are 2 and 4; n=2, and d=3.
- C. labels are [-1,0,1] and [2,3,1]; n=2, and d=4.
- D. labels are 2 and 3; n=4, and d=2.

Q 2.1: You have a dataset for regression given by $(x_1, y_1) = ([-1,0,1], 2)$ and $(x_2, y_2) = ([2,3,1], 4)$.

What are the labels, number of points (n), and dimension of the features (d)?

- A. labels are 2 and 4; n=3, and d=2.
- B. labels are 2 and 4; n=2, and d=3.
- C. labels are [-1,0,1] and [2,3,1]; n=2, and d=4.
- D. labels are 2 and 3; n=4, and d=2.

There are two data points, each x has 3 features, and the labels are the y-values.

Q 2.2: You have a dataset for regression given by $(x_1, y_1) = ([-1,0,1], 2)$ and $(x_2, y_2) = ([2,3,1], 4)$.

We have the weights $\beta_0=0$, $\beta_1=2$, $\beta_2=1$, $\beta_3=1$. Predict $\widehat{\boldsymbol{y}}$ for x=[1,10,1]

- A. 15
- B. 9
- C. 13
- D. 21

Q 2.2: You have a dataset for regression given by $(x_1, y_1) = ([-1,0,1], 2)$ and $(x_2, y_2) = ([2,3,1], 4)$.

We have the weights $\beta_0=0, \beta_1=2, \beta_2=1, \beta_3=1$. Predict $\widehat{\boldsymbol{y}}$ for x=[1,10,1]

- A. 15
- B. 9
- C. 13
- D. 21

Q 2.2: You have a dataset for regression given by $(x_1, y_1) = ([-1,0,1], 2)$ and $(x_2, y_2) = ([2,3,1], 4)$.

We have the weights $\beta_0=0, \beta_1=2, \beta_2=1, \beta_3=1$. Predict $\widehat{\boldsymbol{y}}$ for x=[1,10,1]

- A. 15
- B. 9
- C. 13
- D. 21

$$\hat{y} = 1 * \beta_0 + 1 * \beta_1 + 10 * \beta_2 + 1 * \beta_3 = 13$$

Q 2.3: You have a dataset for regression given by $(x_1, y_1) = ([-1,0,1], 2)$ and $(x_2, y_2) = ([2,3,1], 4)$.

We have the weights $\beta_0 = 0$, $\beta_1 = 2$, $\beta_2 = 1$, $\beta_3 = 1$. What is the mean squared error (MSE) on the training set?

- A. 9
- B. 13/2
- C. 25/2
- D. 25

Q 2.3: You have a dataset for regression given by $(x_1, y_1) = ([-1,0,1], 2)$ and $(x_2, y_2) = ([2,3,1], 4)$.

We have the weights $\beta_0 = 0$, $\beta_1 = 2$, $\beta_2 = 1$, $\beta_3 = 1$. What is the mean squared error (MSE) on the training set?

- A. 9
- B. 13/2
- C. **25/2**
- D. 25

Q 2.3: You have a dataset for regression given by $(x_1, y_1) = ([-1,0,1], 2)$ and $(x_2, y_2) = ([2,3,1], 4)$.

We have the weights $\beta_0 = 0$, $\beta_1 = 2$, $\beta_2 = 1$, $\beta_3 = 1$. What is the mean squared error (MSE) on the training set?

- A. 9
- B. 13/2
- C. 25/2
- D. 25

Compute the predicted label for each data point, then compute the squared error for each data point, then take the mean error of the two points:

$$\hat{y}_1 = -1 * \beta_1 + 0 * \beta_2 + 1 * \beta_3 = -1$$
$$\ell(\hat{y}_1, y_1) = (-1 - 2)^2 = 9$$

$$\hat{y}_2 = 2 * \beta_1 + 3 * \beta_2 + 1 * \beta_3 = 8$$

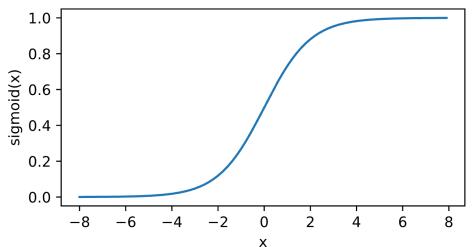
$$\ell(\hat{y}_1, y_1) = (8 - 4)^2 = 16$$

$$MSE = (16 + 9) / 2 = 25 / 2$$

$$\mathbf{x} \in \mathbb{R}^{d}, y = \{-1, +1\}$$

$$p(y = 1 | \mathbf{x}) = \sigma(\mathbf{w}^{T} \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{T} \mathbf{x})}$$

$$p(y = -1 | \mathbf{x}) = 1 - \sigma(\mathbf{w}^{T} \mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{T} \mathbf{x})}$$



Given: $\{(\mathbf{X}_i, y_i)\}_{i=1}^n$ $\mathbf{x} \in \mathbb{R}^d, y = \{-1, +1\}$

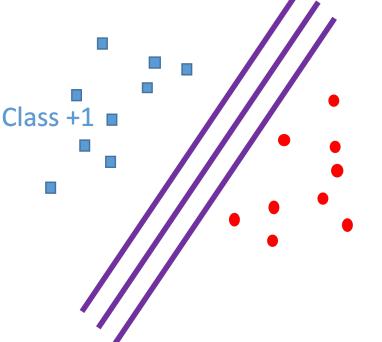
Training: maximize likelihood estimate (on the conditional probability)

$$\max_{\mathbf{w}} \sum_{i} \log \frac{1}{1 + \exp(-y_{i}\mathbf{w}^{T}\mathbf{x}_{i})}$$

Given: $\{(\mathbf{X}_i, y_i)\}_{i=1}^n$ $\mathbf{x} \in \mathbb{R}^d, y = \{-1, +1\}$

Training: maximize likelihood estimate (on the conditional probability)

When training data is linearly separable, many solutions



Class -1

Given:
$$\{(\mathbf{X}_i, y_i)\}_{i=1}^n$$
 $\mathbf{x} \in \mathbb{R}^d, y = \{-1, +1\}$

Training: maximum A posteriori (MAP)

$$\min_{\mathbf{w}} \sum_{i} -\log \frac{1}{1 + \exp(-y_{i}\mathbf{w}^{T}\mathbf{x}_{i})} + \frac{\lambda}{2} \| \mathbf{w} \|_{2}^{2}$$

- Convex optimization
- Solve via (stochastic) gradient descent

How to train a neural network? Binary classification

 $\mathbf{x} \in \mathbb{R}^d$ One training data point in the training set D

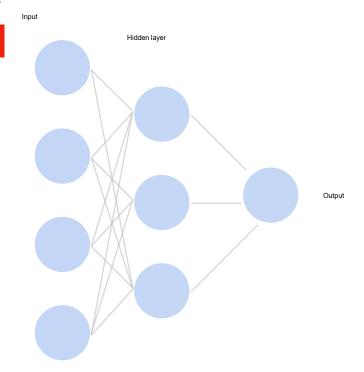
 $\hat{y} \in [0,1]$ Model output for example **x**

(This is a function of all weights $W:\hat{y}=g(W)$)

y Ground truth label for example x

Learning by matching the output to the label

We want $\hat{y} \to 1$ when y = 1, and $\hat{y} \to 0$ when y = 0



How to train a neural network? Binary

classification 1 Loss function: $\frac{1}{|D|} \sum_{(\mathbf{x}, y) \in D} \ell(\mathbf{x}, y)$

Per-sample loss:

$$\ell(\mathbf{x}, y) = -y\log(\hat{y}) - (1 - y)\log(1 - \hat{y})$$

Hidden layer 100 neurons Output

Negative log likelihood Minimizing NLL is equivalent to Max Likelihood Learning (MLE) Also known as binary cross-entropy loss

How to train a neural network? Multiclass

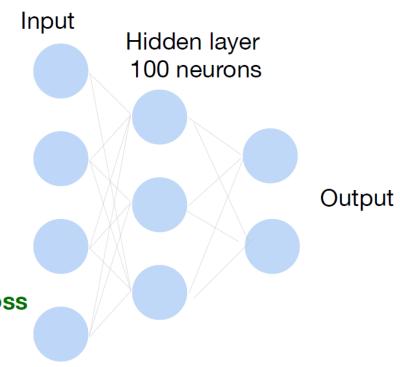
Loss function:
$$\frac{1}{|D|} \sum_{(\mathbf{x}, y) \in D} \ell(\mathbf{x}, y)$$

Per-sample loss:

$$\ell(\mathbf{x}, y) = \sum_{k=1}^{K} -Y_k \log p_k = -\log p_y$$

where Y is one-hot encoding of y

Also known as cross-entropy loss or softmax loss

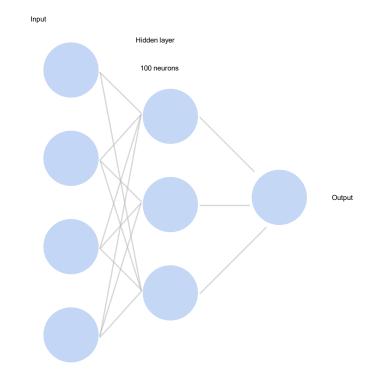


How to train a neural network?

Update the weights W to minimize the loss function

$$L = \frac{1}{|D|} \sum_{(\mathbf{x}, y) \in D} \ell(\mathbf{x}, y)$$

Use gradient descent!



Gradient Descent

- Choose a learning rate $\alpha > 0$
- Initialize the model parameters w_0
- For t = 1, 2, ...
 - Update parameters:

$$\mathbf{w}_t = \mathbf{w}_{t-1} - \alpha \frac{\partial L}{\partial \mathbf{w}_{t-1}}$$

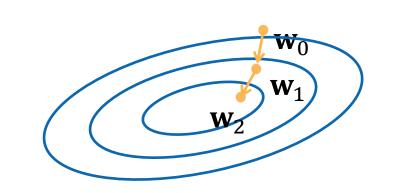
 $\frac{\partial \mathbf{w}_{t-1}}{\partial \boldsymbol{w}_{t-1}}$ per iteration

D can be very

large. Expensive

$$= \mathbf{w}_{t-1} - \alpha \frac{1}{|D|} \sum_{(\mathbf{x}, \mathbf{y}) \in D} \frac{\partial \ell(\mathbf{x}, \mathbf{y})}{\partial \mathbf{w}_{t-1}}$$
The gradient w.r.t. all parameters is

Repeat until converges



ne gradient w.r.t. all parameters is obtained by concatenating the partial derivatives w.r.t. each parameter

Minibatch Stochastic Gradient Descent

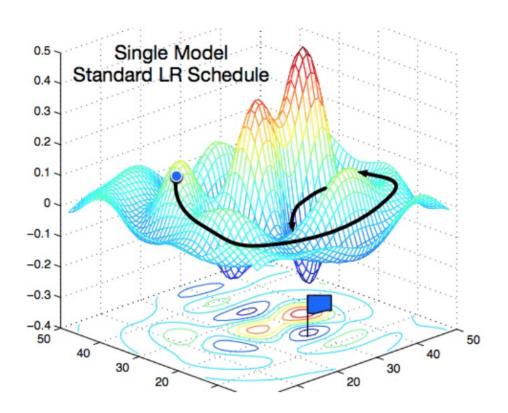
- Choose a learning rate $\alpha > 0$
- Initialize the model parameters w_0
- For t = 1, 2, ...
 - Randomly sample a subset (mini-batch) ${\cal B}$

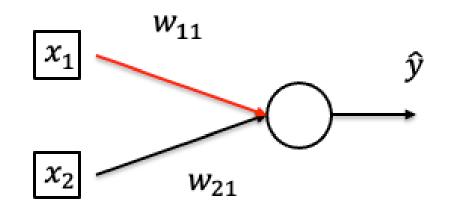
 $\subset D$ Update parameters:

$$\mathbf{w}_{t} = \mathbf{w}_{t-1} - \alpha \frac{1}{|B|} \sum_{(\mathbf{x}, \mathbf{y}) \in B} \frac{\partial \ell(\mathbf{x}, \mathbf{y})}{\partial \mathbf{w}_{t-1}}$$

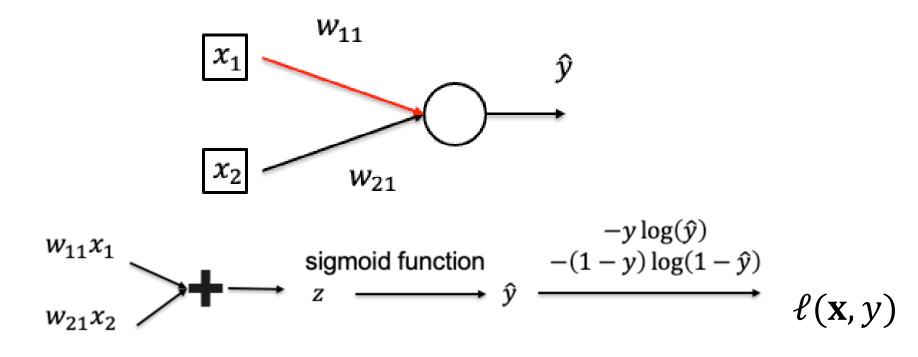
Repeat until converges

Non-convex Optimization





- Want to compute $\frac{\partial \ell(\mathbf{x}, \mathbf{y})}{\partial w_{11}}$
- Data point: $((x_1, x_2), y)$



Use chain rule!

$$\begin{array}{c|c}
x_1 & \hat{y} \\
\hline
x_2 & w_{21}
\end{array}$$

$$\begin{array}{c|c}
x_1 & \hat{y} \\
\hline
& & \\
& & \\
& & \\
& & \\
\end{array}$$
sigmoid function
$$\begin{array}{c|c}
-y \log(\hat{y}) \\
-(1-y) \log(1-\hat{y})
\end{array}$$

$$\begin{array}{c|c}
\ell(\mathbf{x}, y) \\
\frac{\partial \hat{y}}{\partial z} = \sigma'(z) & \frac{\partial \ell(\mathbf{x}, y)}{\partial \hat{y}} = \frac{1-y}{1-\hat{y}} - \frac{y}{\hat{y}}
\end{array}$$

• By chain rule: $\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial w_{11}}$

$$x_1$$
 w_{11}
 \hat{y}
 x_2
 w_{21}

$$\begin{array}{c|c} \hline x_2 & \hline & \\ \hline w_{21} \\ \hline & \\ \hline w_{11}x_1 \\ \hline & \\ \hline & \\ z & \hline & \\ \hline & \\ \hline \end{array} \begin{array}{c} -(1) \\ \hline \\ \hline \end{array}$$

$$\begin{array}{c|c} x_2 & w_{21} \\ \hline w_{11}x_1 & & \text{sigmoid function} \\ w_{21}x_2 & & \hat{y} & \hline \end{array}$$

$$\begin{array}{c|c}
x_2 & w_{21} \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

sigmoid function
$$\hat{y}$$
 $\xrightarrow{-(1-y)\log(1-\hat{y})}$ $\ell(\mathbf{x},y)$ $\frac{\partial \hat{y}}{\partial z} = \sigma'(z)$ $\frac{\partial \ell(\mathbf{x},y)}{\partial \hat{y}} = \frac{1-y}{1-\hat{y}} - \frac{y}{\hat{y}}$

$$\frac{\partial \hat{y}}{\partial z} = \sigma'(z) \qquad \frac{\partial \ell(\mathbf{x}, \mathbf{y})}{\partial \hat{y}}$$
• By chain rule:
$$\frac{\partial l}{\partial z} = \frac{\partial l}{\partial z} \frac{\partial \hat{y}}{\partial z}$$

 $-y\log(\hat{y})$ $w_{11}x_{1}$ sigmoid function $-(1-y)\log(1-\hat{y})$

$$x_1$$
 w_{11}
 \hat{y}
 x_2
 w_{21}

$$\begin{array}{c|c}
x_2 & w_{21} \\
\hline
 & w_{11}x_1 \\
 & z & \widehat{y} & \xrightarrow{-y \log(\widehat{y})} \\
 & w_{21}x_2 & \widehat{y} & \xrightarrow{-(1-y)\log(1-\widehat{y})}
\end{array}$$

By chain rule:
$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial \hat{y}} \ \hat{y}(1 - \hat{y})x_1$$

 $\frac{\partial \hat{y}}{\partial z} = \sigma'(z) = \sigma(z)(1 - \sigma(z))$

 $-y\log(\hat{y})$

 $\ell(\mathbf{x},y)$

$$x_1$$
 w_{11}
 \hat{y}
 w_{21}

$$\frac{\partial \hat{y}}{\partial z} = \sigma'(z) = \sigma(z)(1 - \sigma(z))$$
By chain rule:
$$\frac{\partial l}{\partial w_{11}} = (\frac{1 - y}{1 - \hat{y}} - \frac{y}{\hat{y}})\hat{y}(1 - \hat{y})x_1$$

$$\frac{\partial \hat{y}}{\partial z} = \sigma'(z) = \sigma(z)(1 - \sigma(z))$$

 $\ell(\mathbf{x},y)$

$$\begin{array}{c|c}
x_1 & \hat{y} \\
\hline
x_2 & w_{21}
\end{array}$$

$$\begin{array}{c|c}
w_{11}x_1 & -y\log(\hat{y}) \\
\hline
-(1-y)\log(1-\hat{y}) \\
\hline
z & \widehat{y}
\end{array}$$

$$\begin{array}{c|c}
\frac{\partial \hat{y}}{\partial z} = \sigma'(z) = \sigma(z)(1-\sigma(z))
\end{array}$$

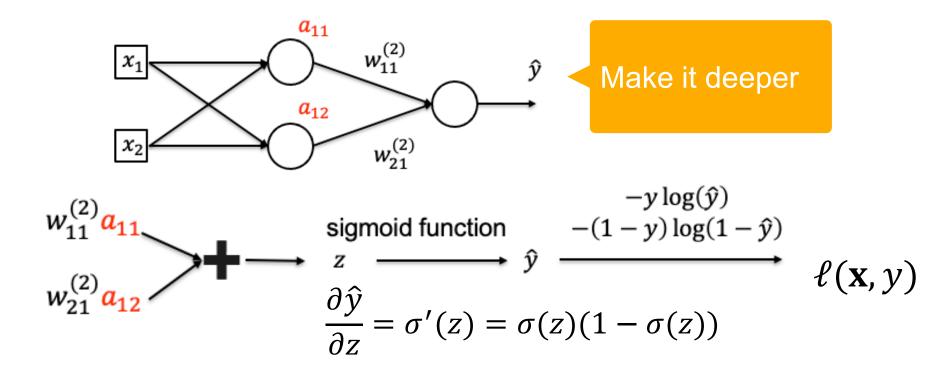
$$\ell(\mathbf{x}, y)$$

• By chain rule: $\frac{\partial l}{\partial w_{11}} = (\hat{y} - y)x_1$

$$x_1$$
 x_2
 w_{11}
 y
 w_{21}

 $\ell(\mathbf{x},y)$

By chain rule $\frac{\partial l}{\partial x_1} = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} w_{11} = (\hat{y} - y) w_{11}$



• By chain ru $\frac{\partial l}{\partial a_{11}} = (\hat{y} - y)w_{11}^{(2)}, \ \frac{\partial l}{\partial a_{12}} = (\hat{y} - y)w_{21}^{(2)}$

$$x_1$$
 $w_{11}^{(1)}$
 a_{11}
 $w_{11}^{(2)}$
 a_{12}
 $w_{21}^{(2)}$
 a_{12}
 $w_{21}^{(2)}$

• By chain rule
$$\frac{\partial l}{\partial w_{11}^{(1)}} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}} = (\hat{y} - y) w_{11}^{(2)} \frac{\partial a_{11}}{\partial w_{11}^{(1)}}$$

• By chain ru
$$\frac{\partial l}{\partial w_{11}^{(1)}} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}} = (\hat{y} - y)w_{11}^{(2)}a_{11}(1 - a_{11})x_1$$

By chain rule:
$$\frac{\partial l}{\partial x_1} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial x_1} + \frac{\partial l}{\partial a_{12}} \frac{\partial a_{12}}{\partial x_1}$$