

CS540 Introduction to Artificial Intelligence Neural Networks: Review

University of Wisconsin-Madison Spring 2024

Announcements

. Homework:

- HW7 is due on Thursday Apr. 4 at 11 AM

. Class roadmap:

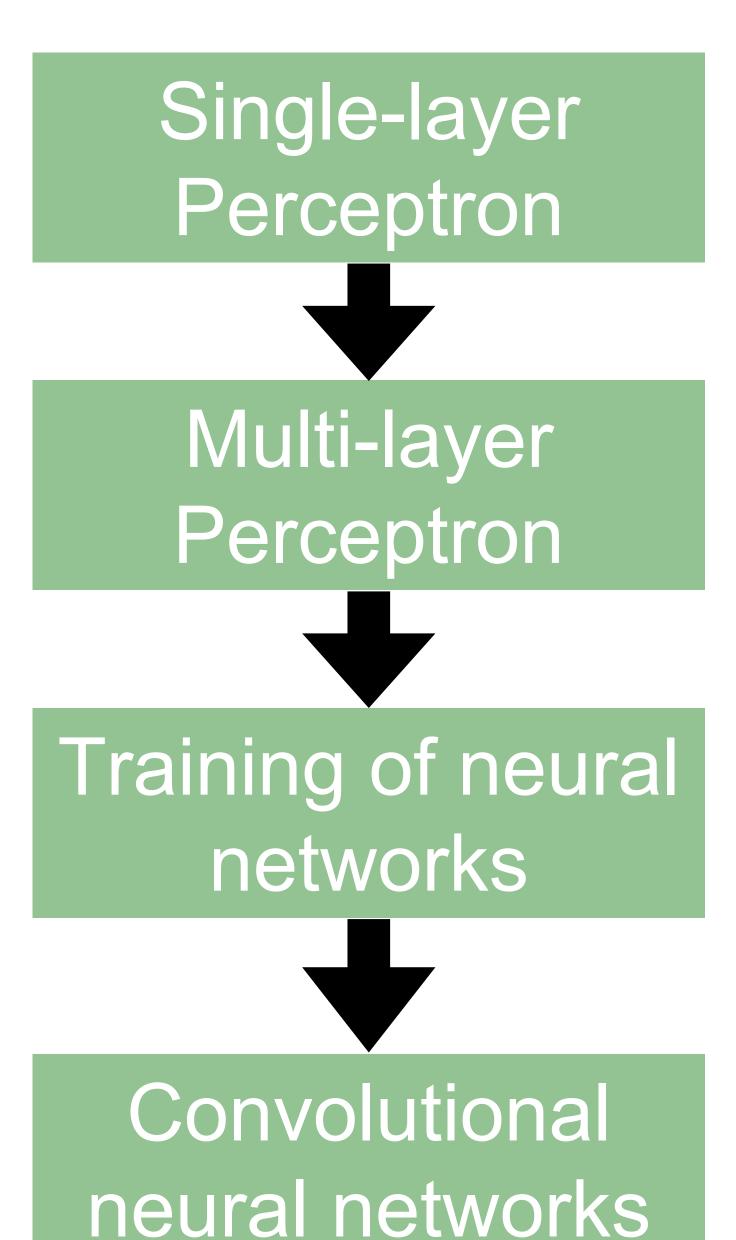
Tuesday, Apr. 2	Deep Learning and Neural Network's Summary
Thursday, Apr. 4	Search I: Un-Informed search
Tuesday, Apr. 9	Search II: Informed search

How to classify

Cats vs. dogs?

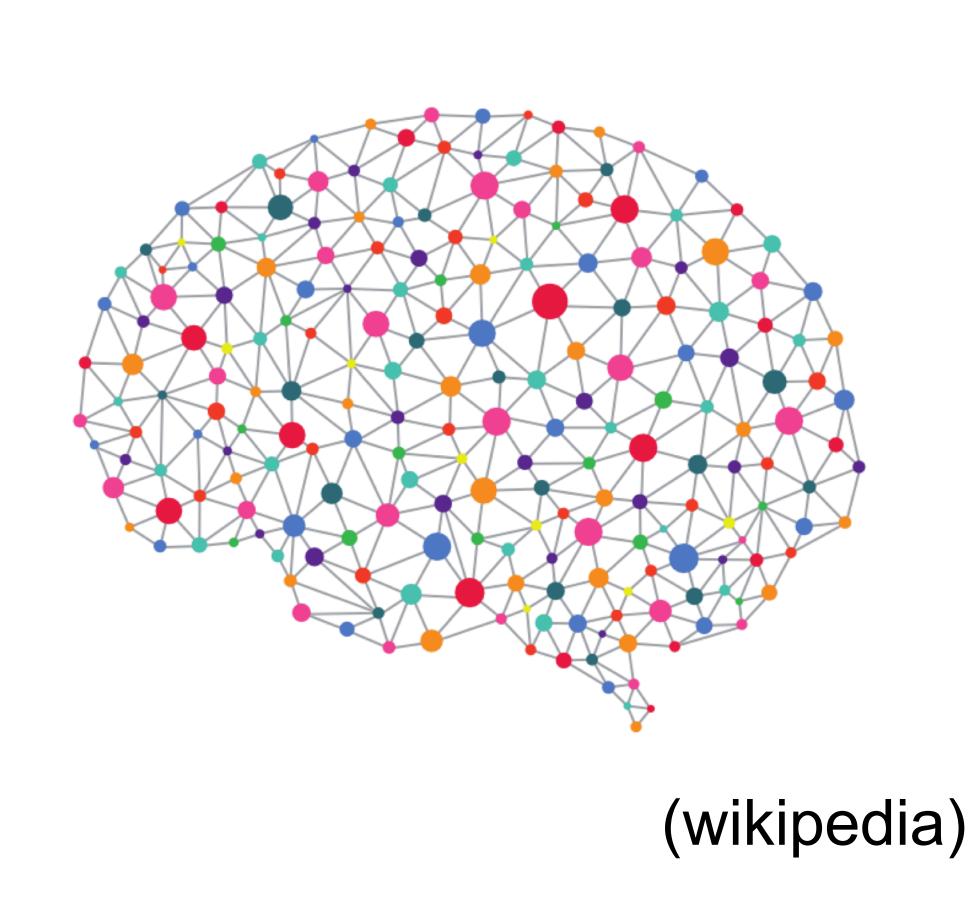
Neural networks can also be used for regression.

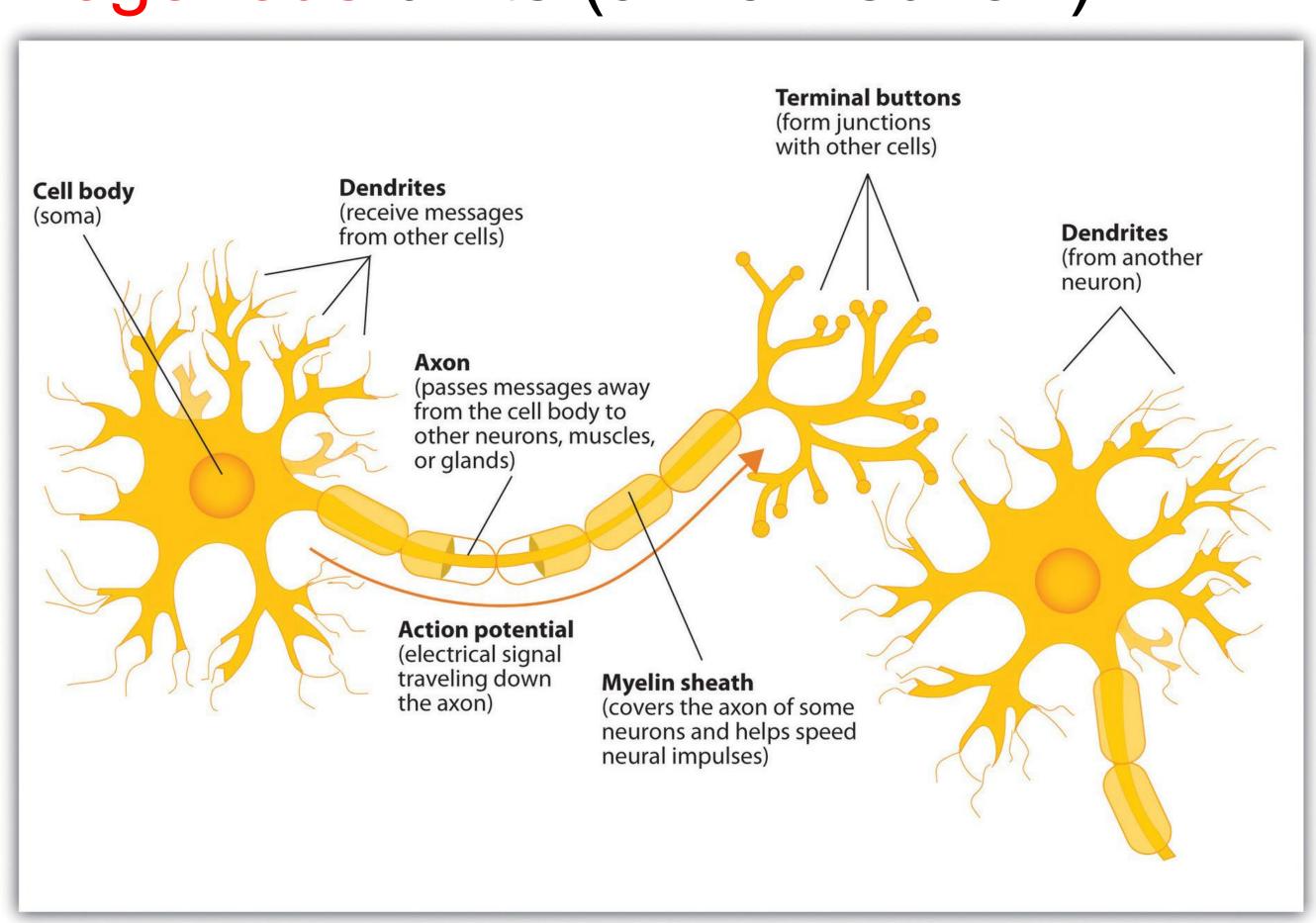
- Typically, no activation on outputs, mean squared error loss function.



Inspiration from neuroscience

- Inspirations from human brains
- Networks of simple and homogenous units (a.k.a neuron)





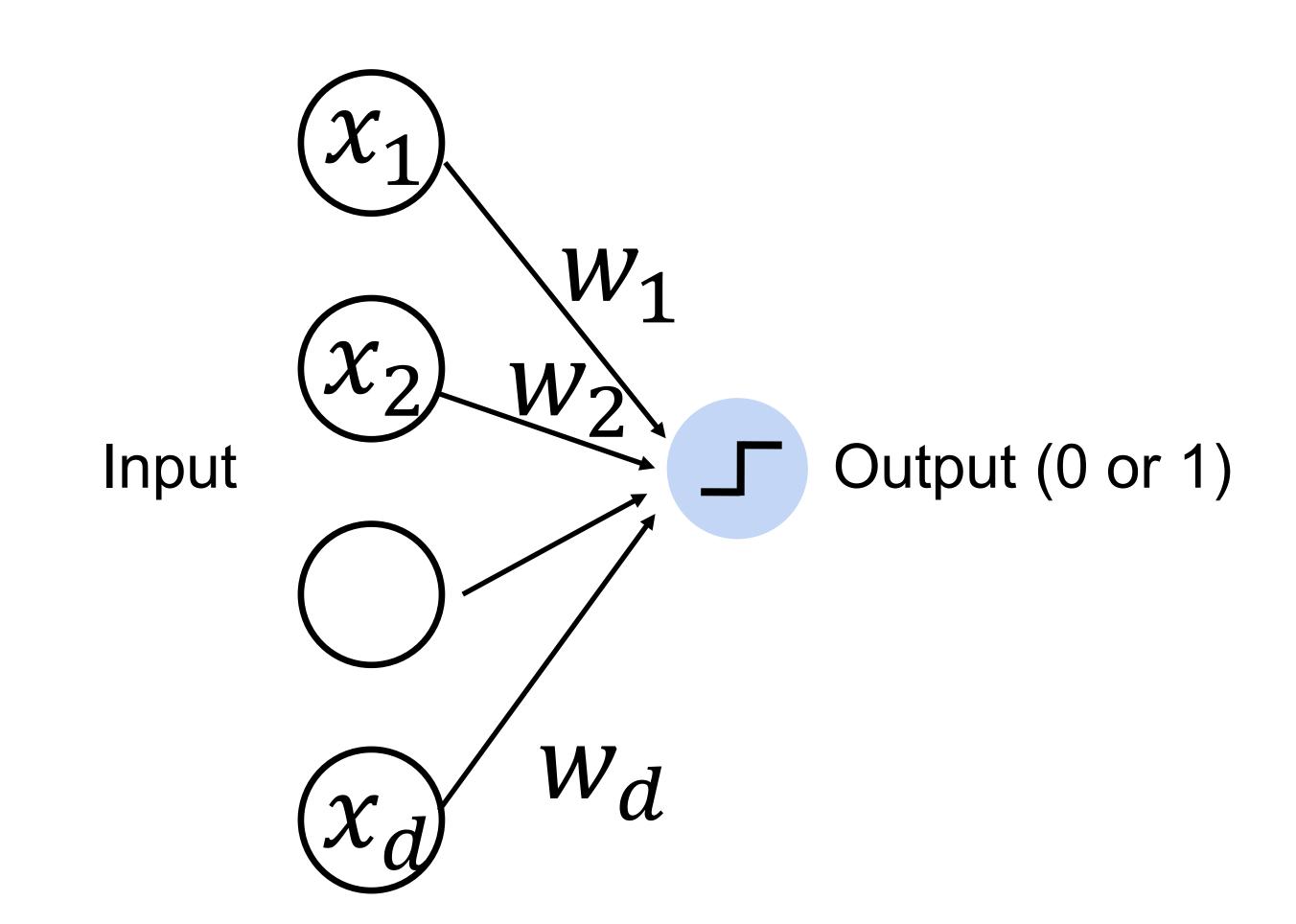
Perceptron

Given input x, weight w and bias b, perceptron outputs:

$$o = \sigma(\mathbf{w}^\mathsf{T}\mathbf{x} + b)$$

$$o = \sigma(\mathbf{w}^\mathsf{T} \mathbf{x} + b)$$
 $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ Activation function

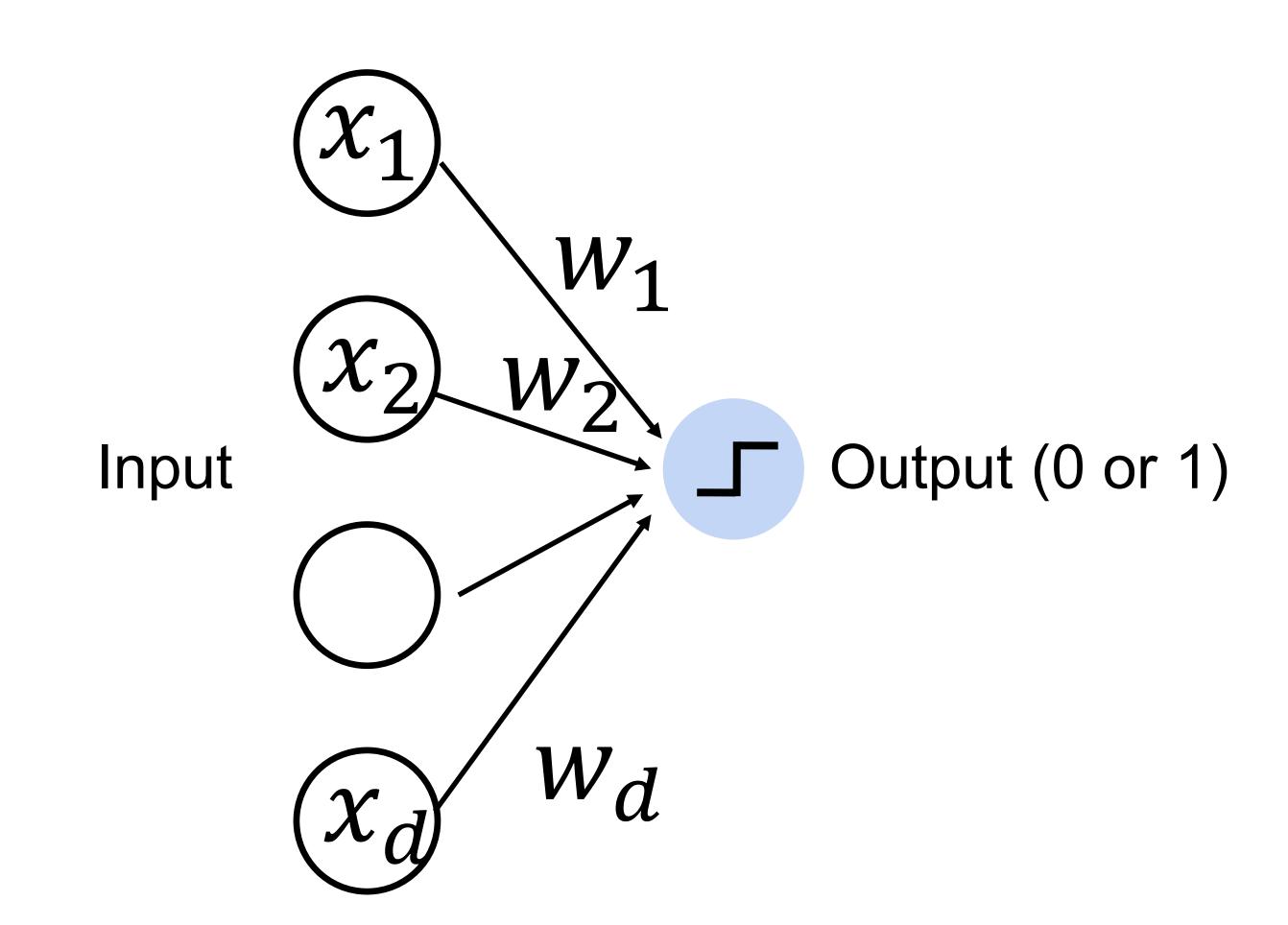
Cats vs. dogs?



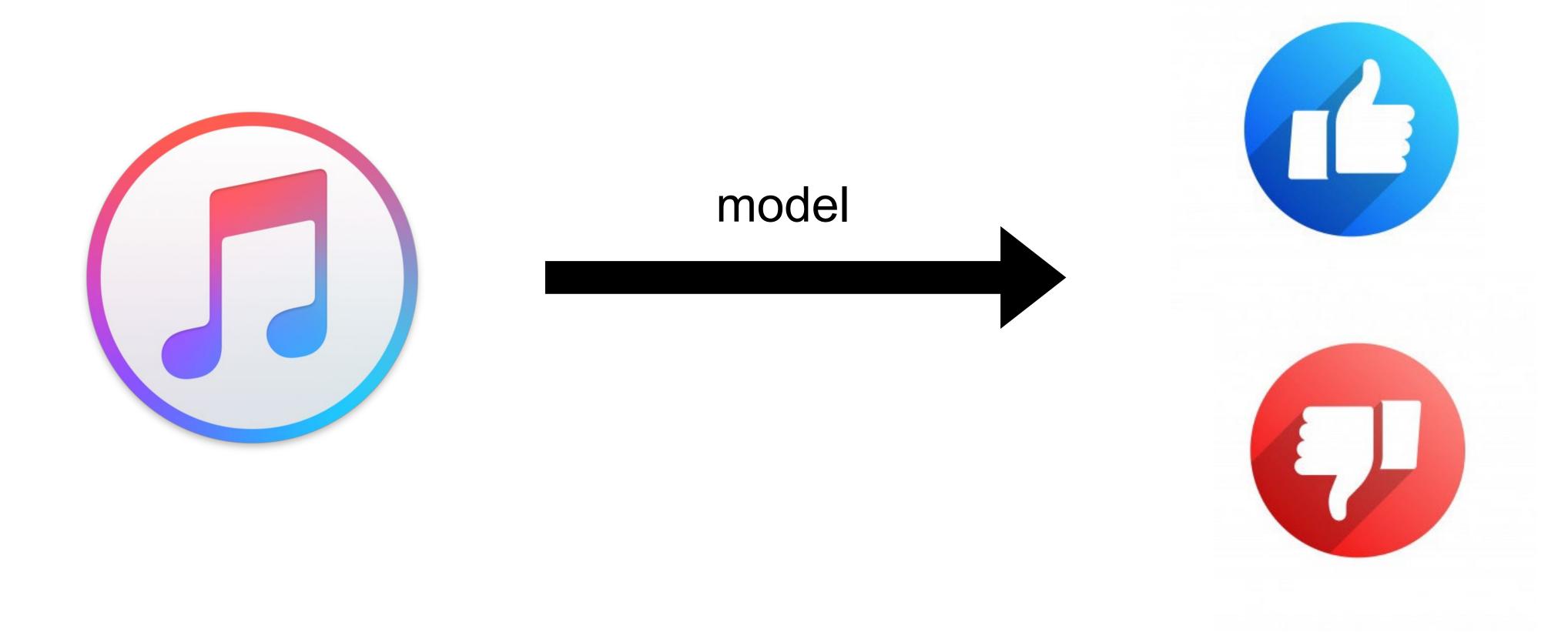
Perceptron

• Goal: learn parameters $\mathbf{w} = \{w_1, w_2, \dots, w_d\}$ and b to minimize the classification error

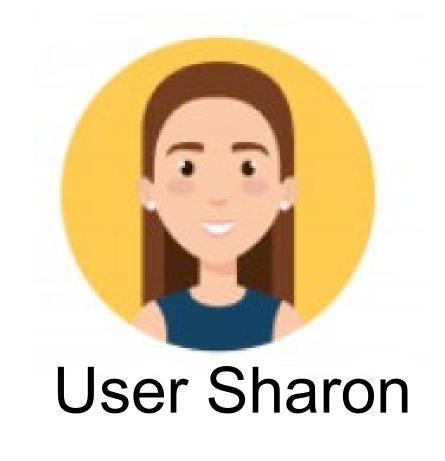
Cats vs. dogs?



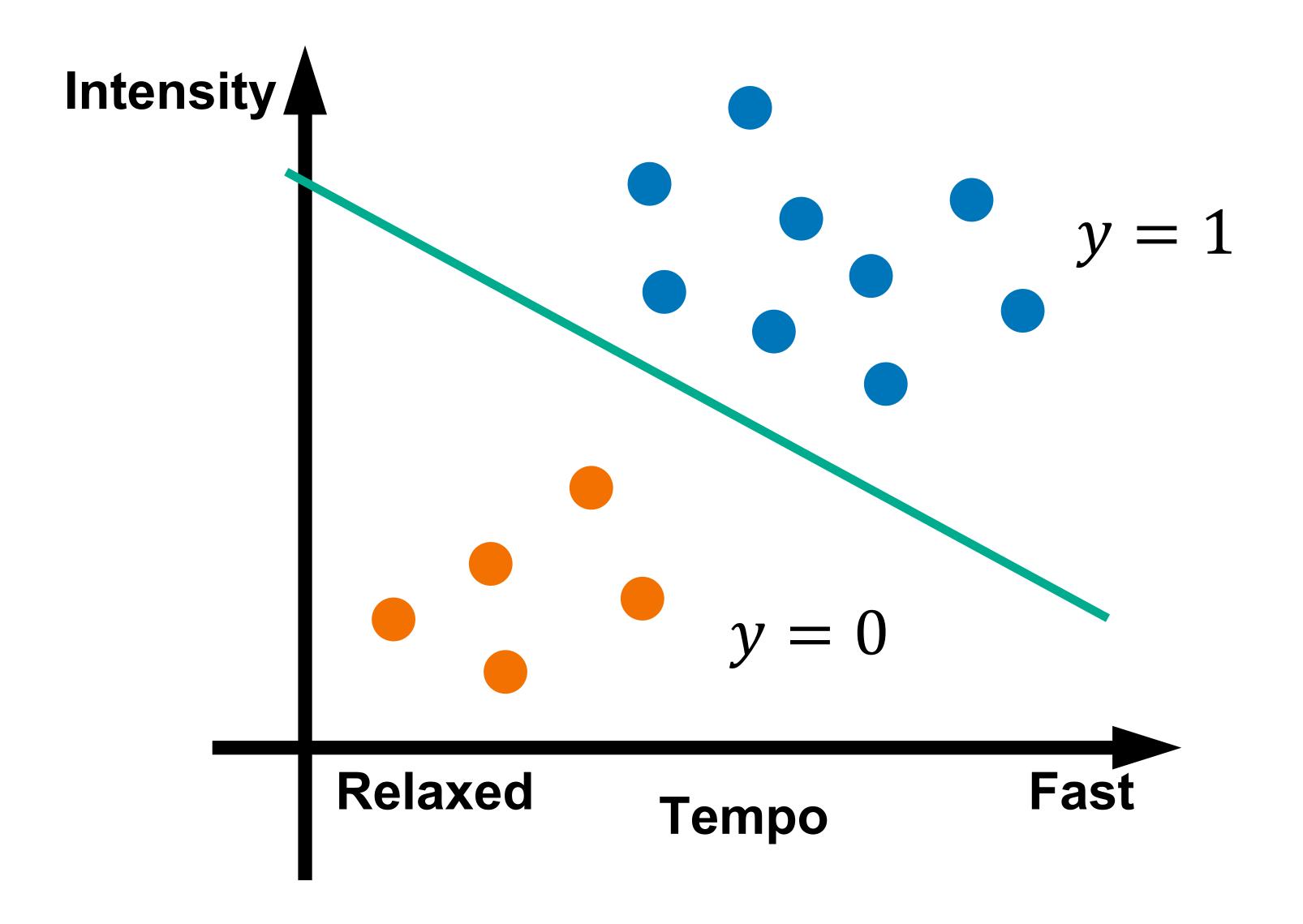
Example 2: Predict whether a user likes a song or not



Example 2: Predict whether a user likes a song or not using Perceptron

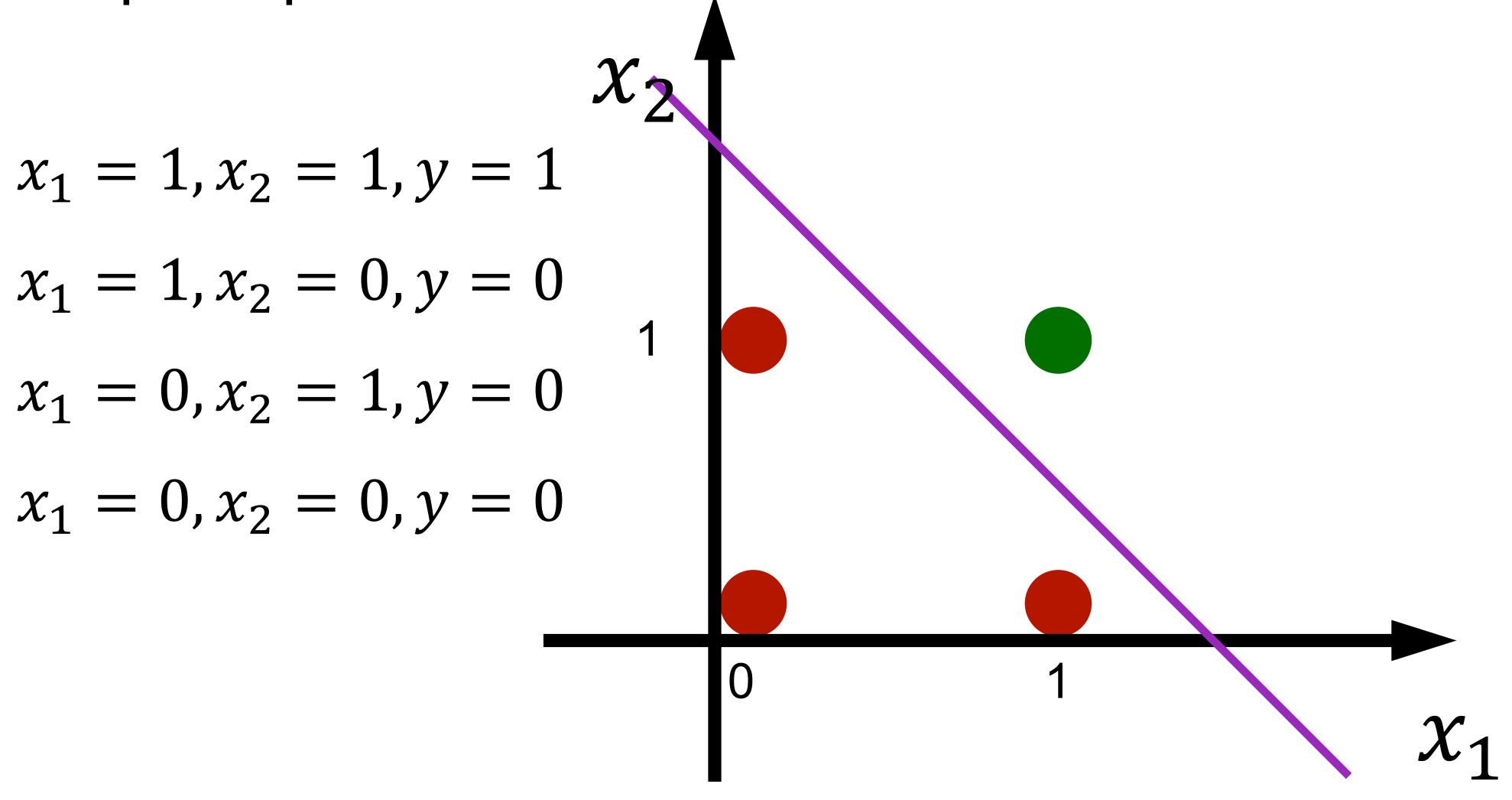


- DisLike
- Like



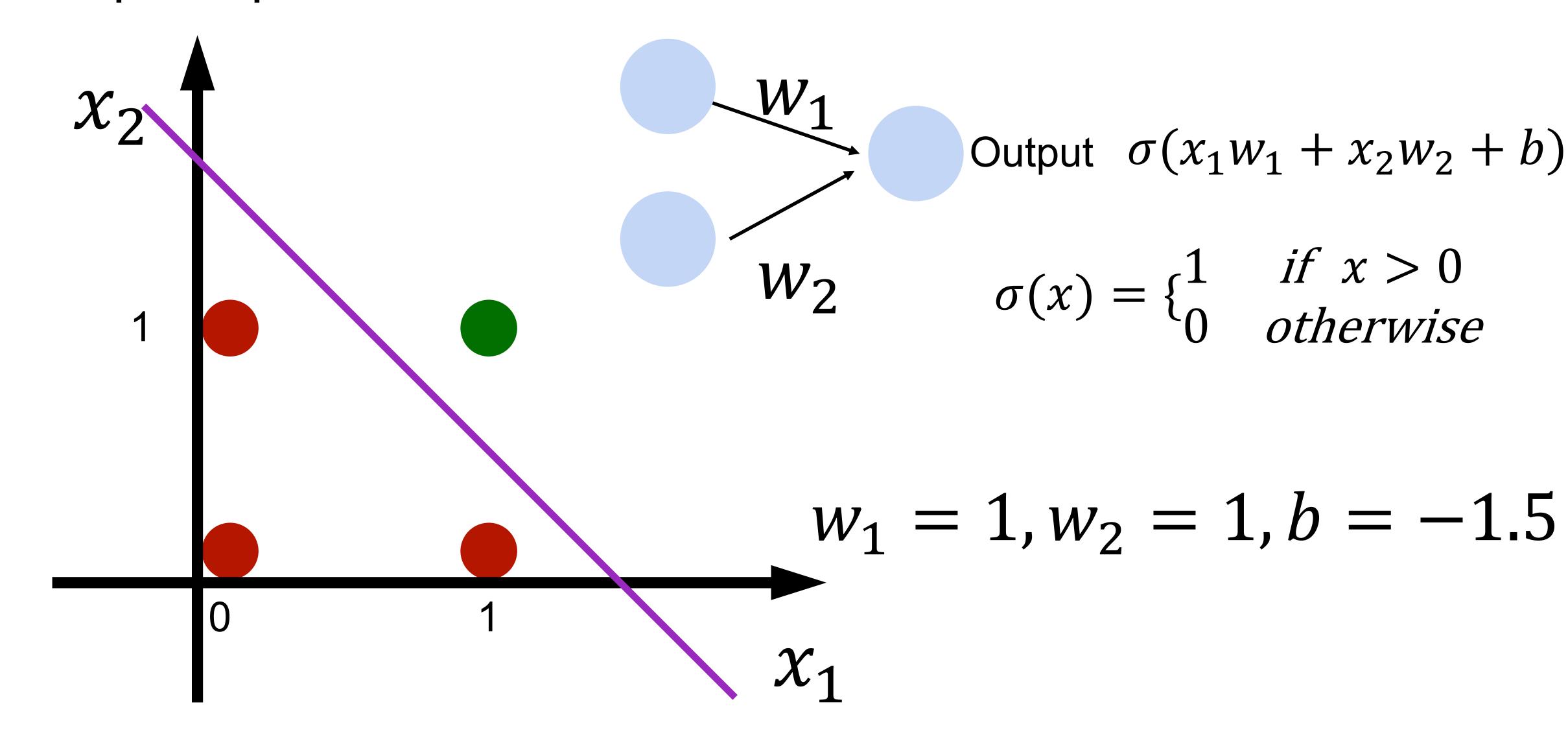
Learning logic functions using perceptron

The perceptron can learn an AND function



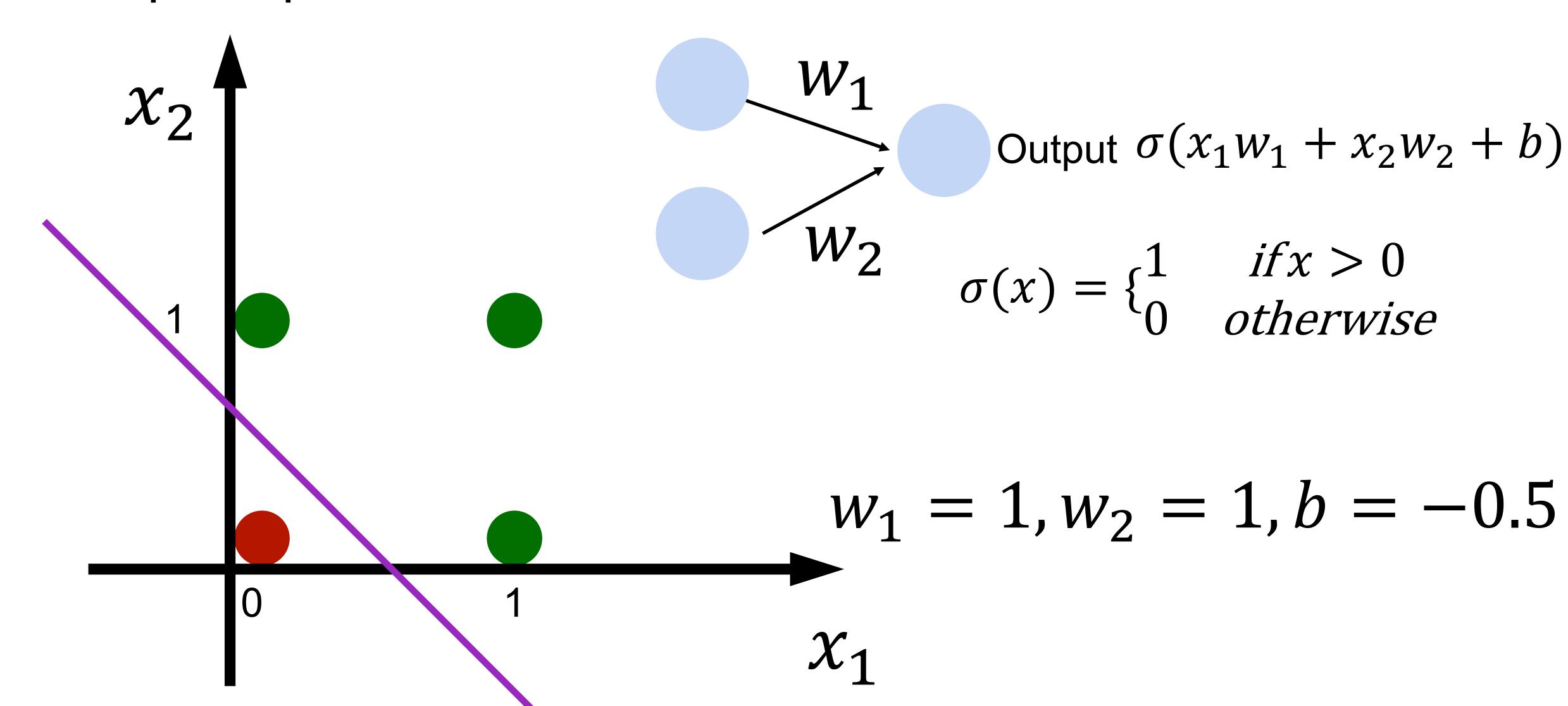
Learning logic functions using perceptron

The perceptron can learn an AND function



Learning OR function using perceptron

The perceptron can learn an OR function



XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)

$$x_1 = 1, x_2 = 1, y = 0$$

 $x_1 = 1, x_2 = 0, y = 1$
 $x_1 = 0, x_2 = 1, y = 1$
 $x_1 = 0, x_2 = 0, y = 0$

This contributed to the first Al winter

Quiz break

Which one of the following is NOT true about perceptron?

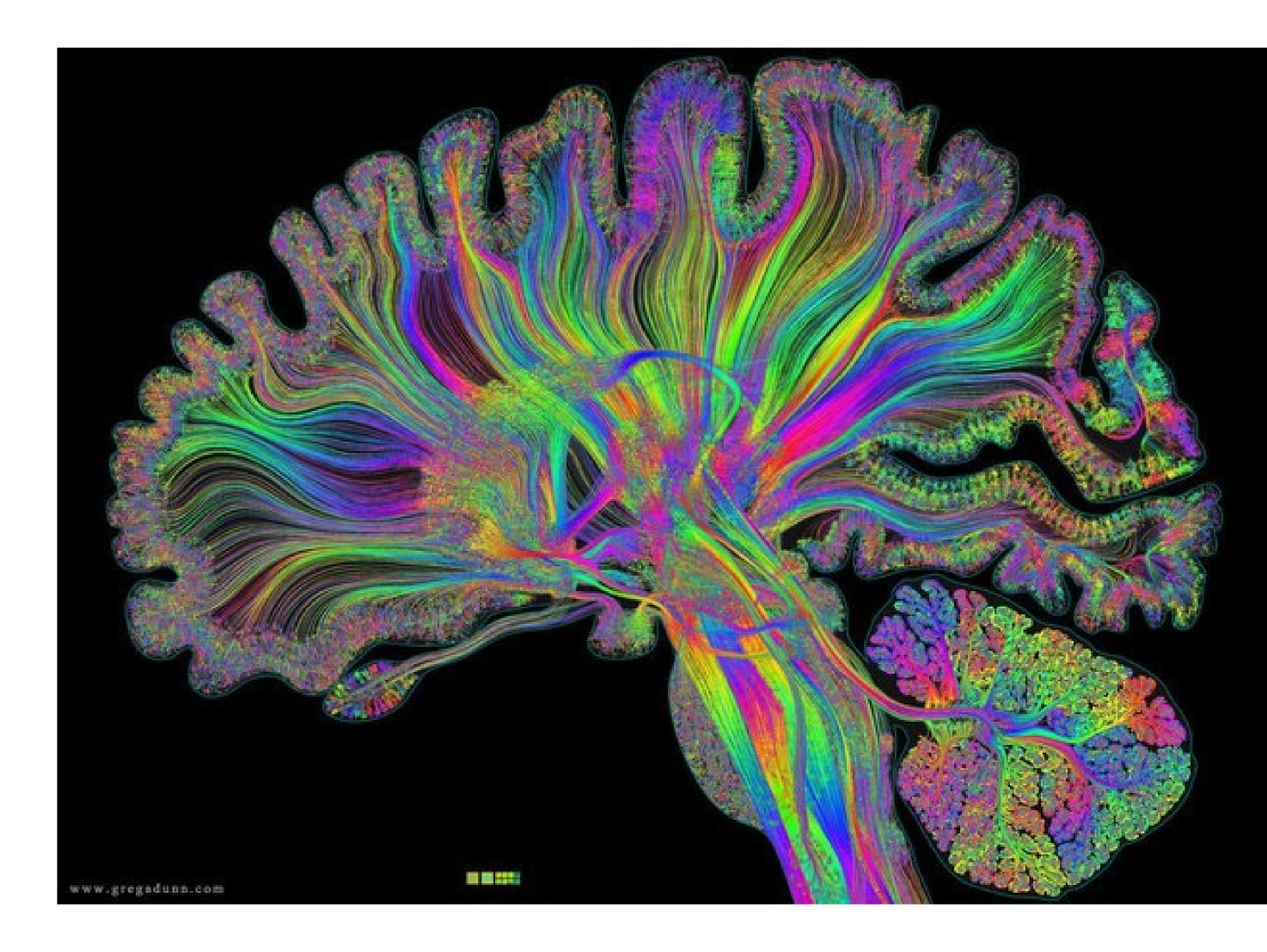
- A. Perceptron only works if the data is linearly separable.
- B. Perceptron can learn AND function
- C. Perceptron can learn XOR function
- D. Perceptron is a supervised learning algorithm

Quiz break

Which one of the following is NOT true about perceptron?

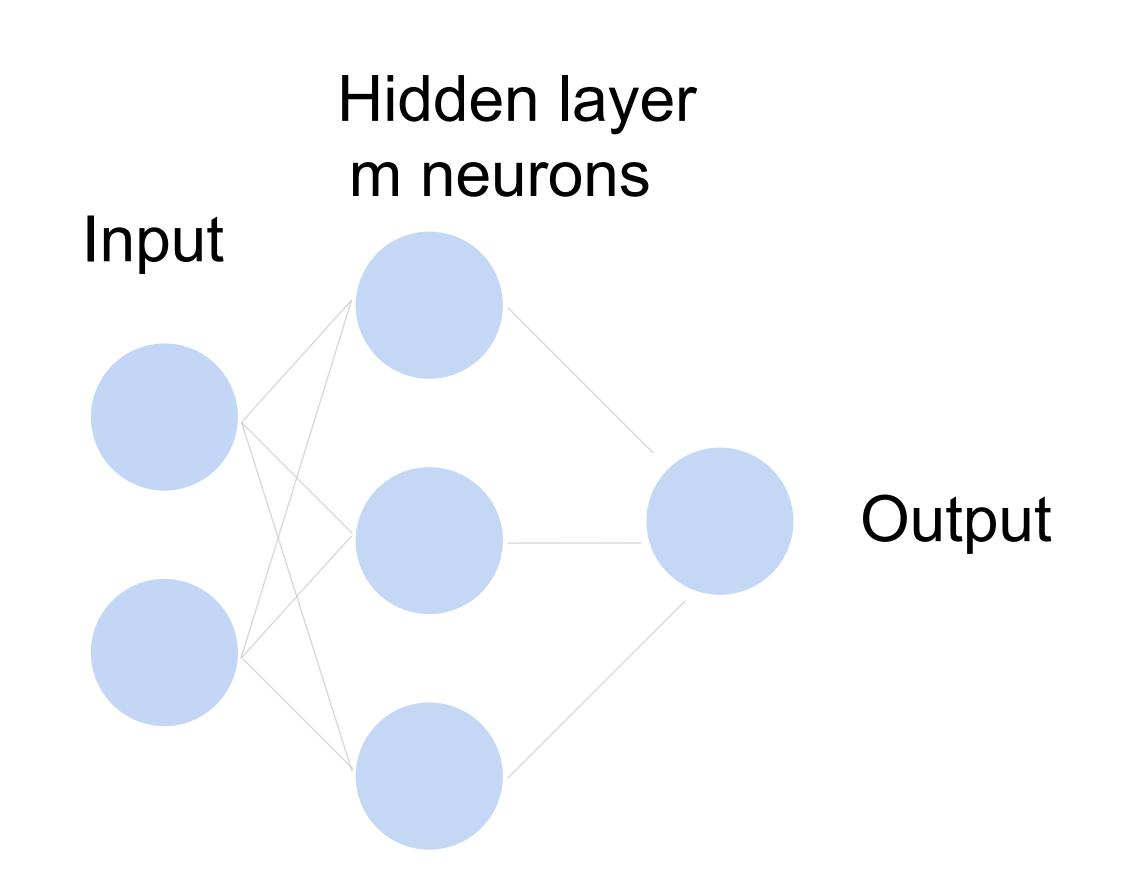
- A. Perceptron only works if the data is linearly separable.
- B. Perceptron can learn AND function
- C. Perceptron can learn XOR function
- D. Perceptron is a supervised learning algorithm

Multilayer Perceptron



Single Hidden Layer

How to classify Cats vs. dogs?

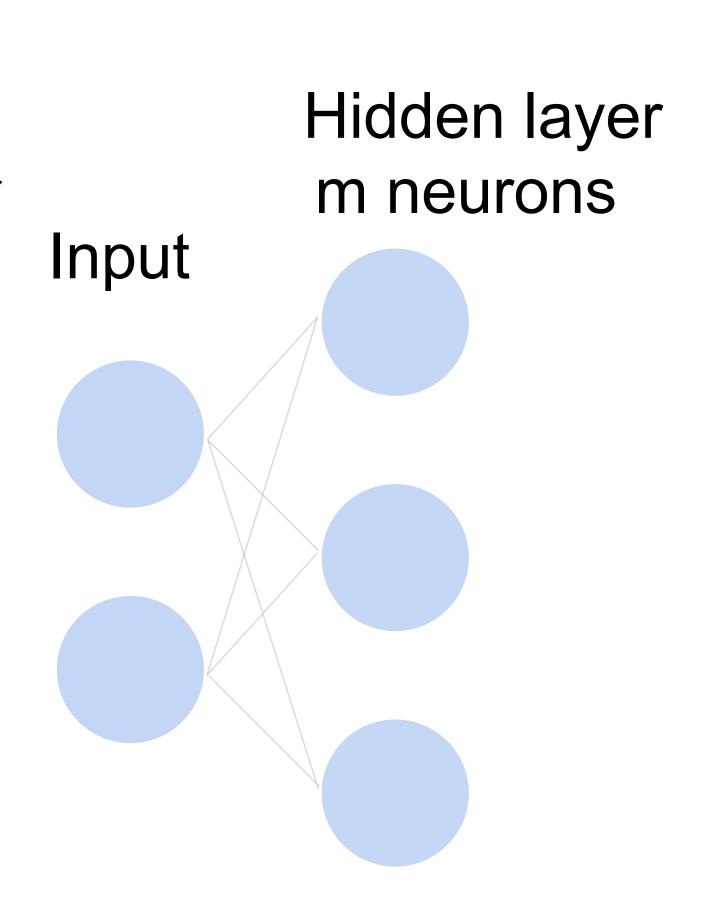


Single Hidden Layer

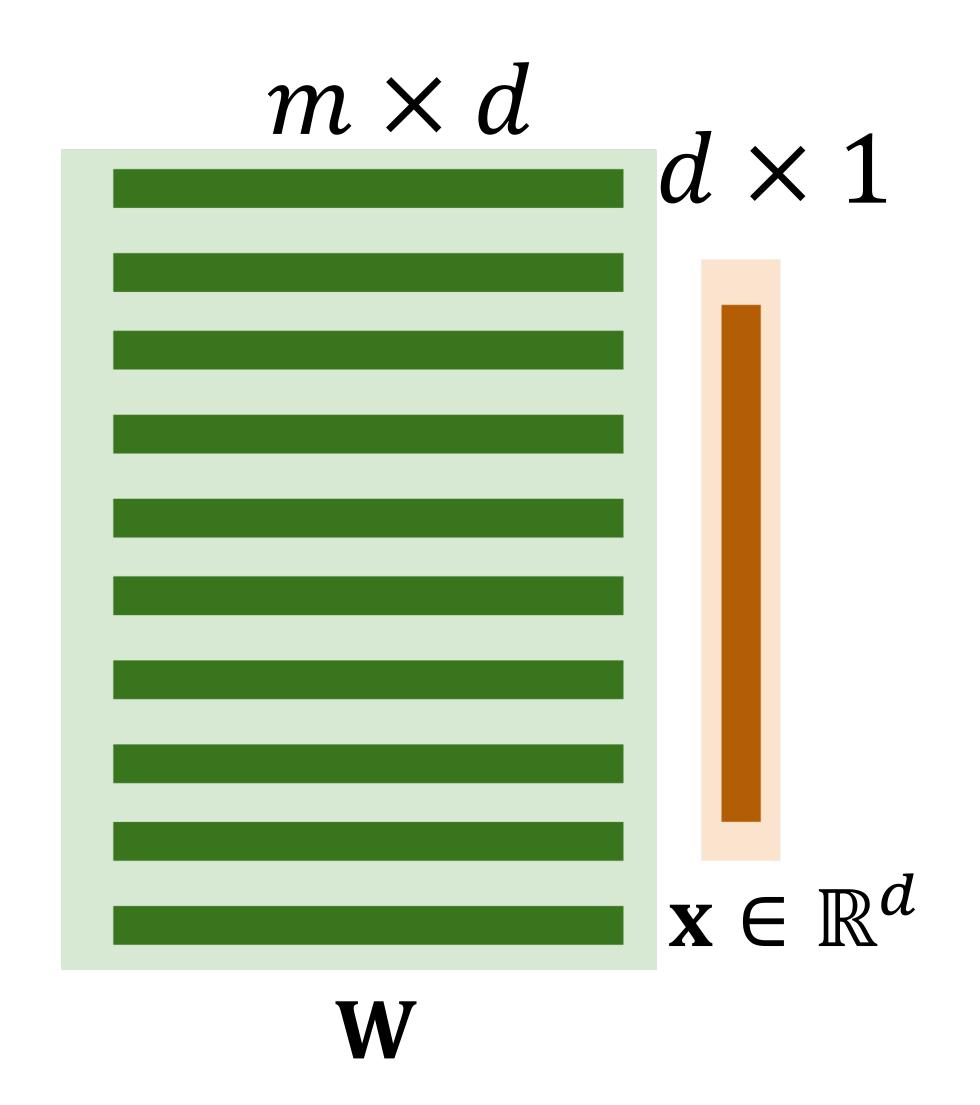
- Input $\mathbf{x} \in \mathbb{R}^d$
- Hidden $\mathbf{W} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$
- Intermediate output

$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

 σ is an element-wise activation function

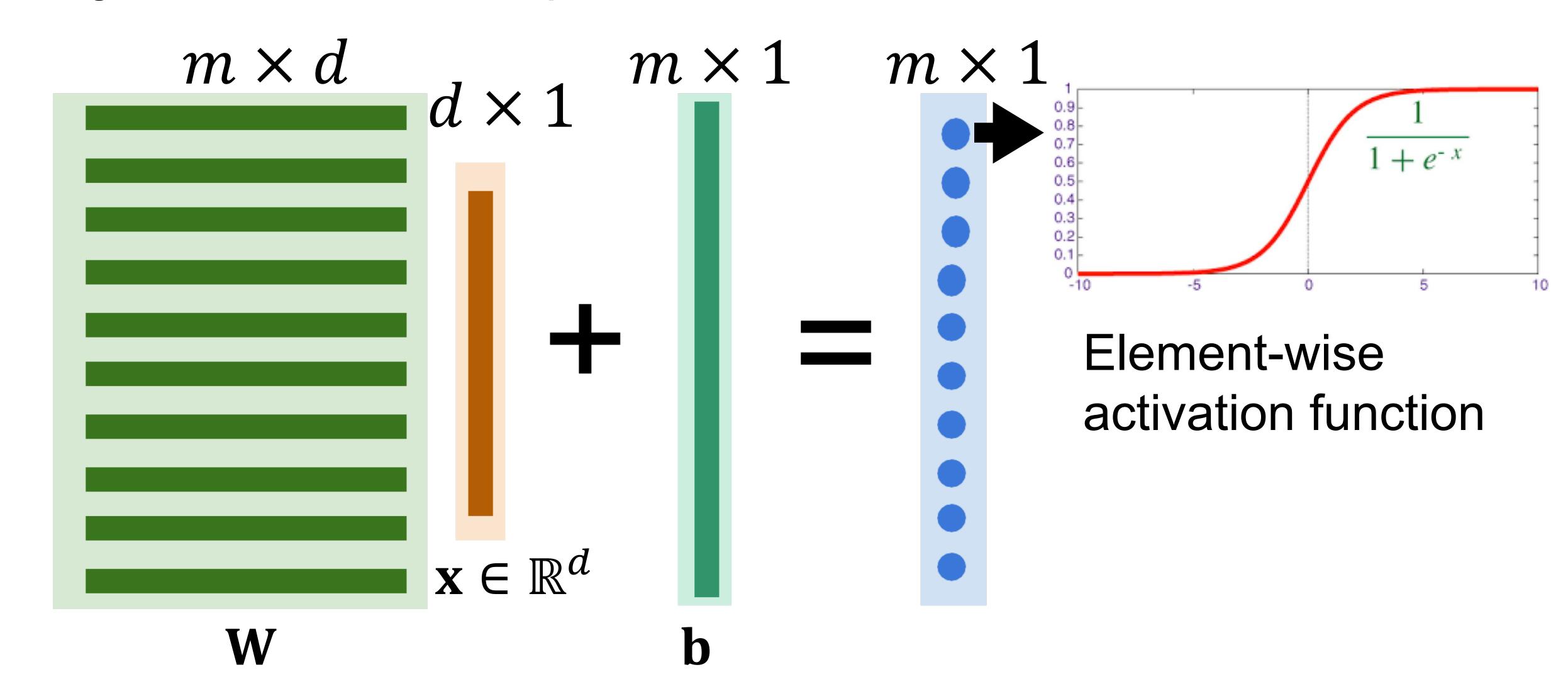


Neural networks with one hidden layer



Neural networks with one hidden layer

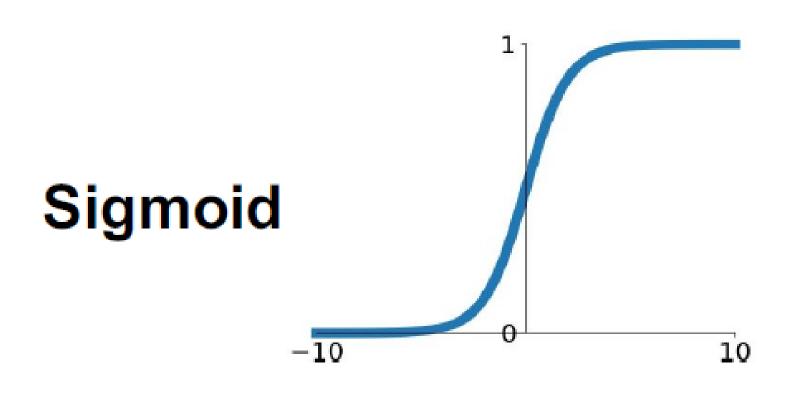
Key elements: linear operations + Nonlinear activations

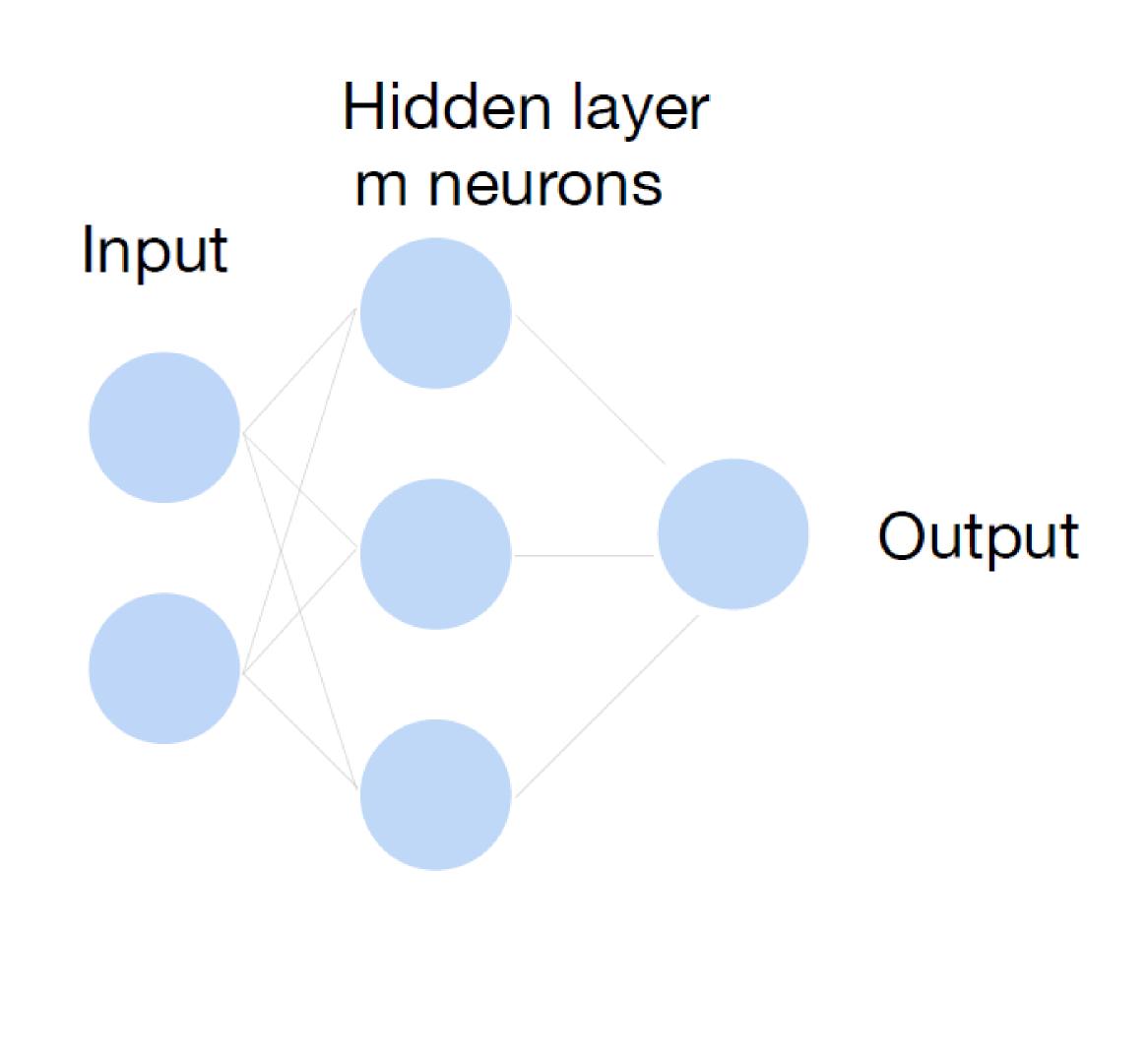


Single Hidden Layer

- Output $f = \mathbf{w}_2^\mathsf{T} \mathbf{h} + b_2$
- Normalize the output into probability using sigmoid

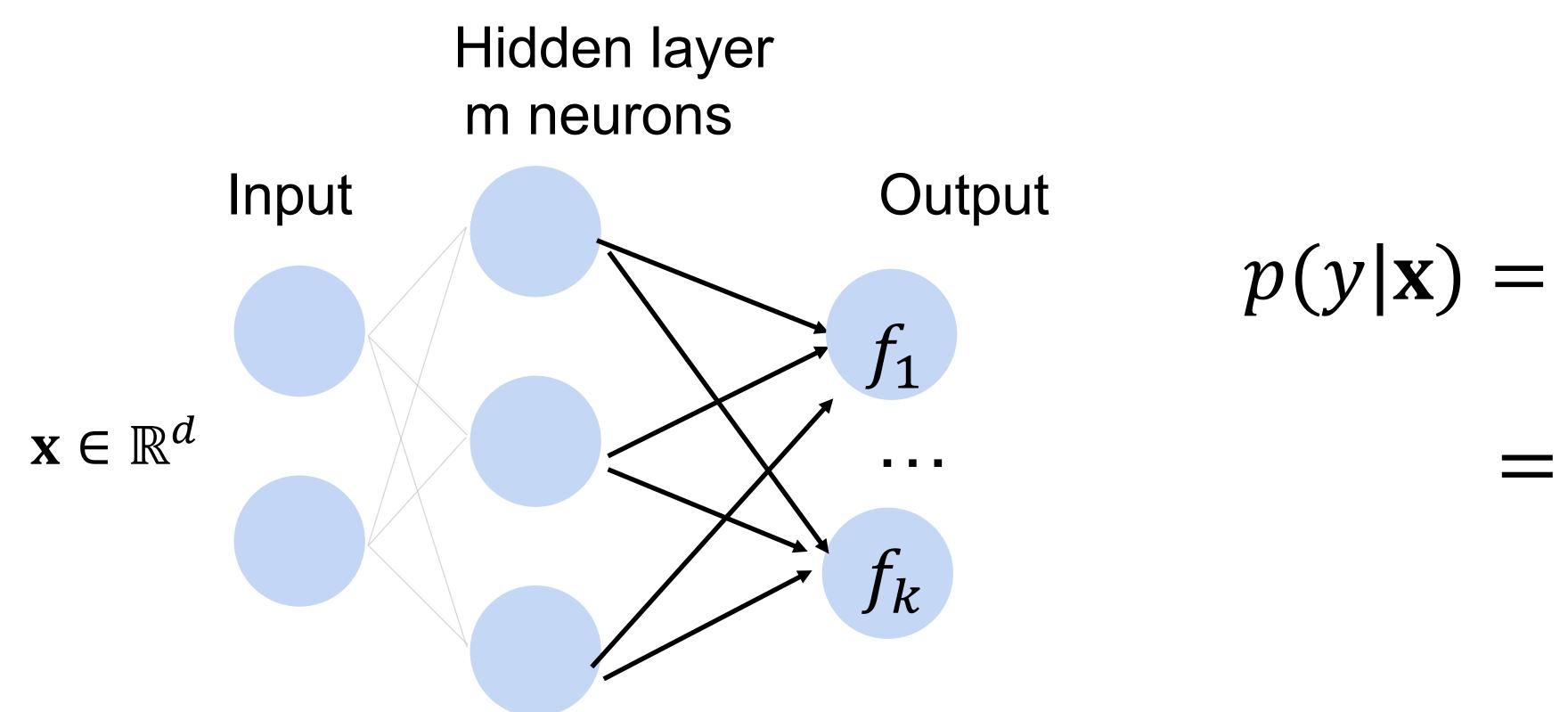
$$p(y = 1 \mid \mathbf{x}) = \frac{1}{1 + e^{-f}}$$





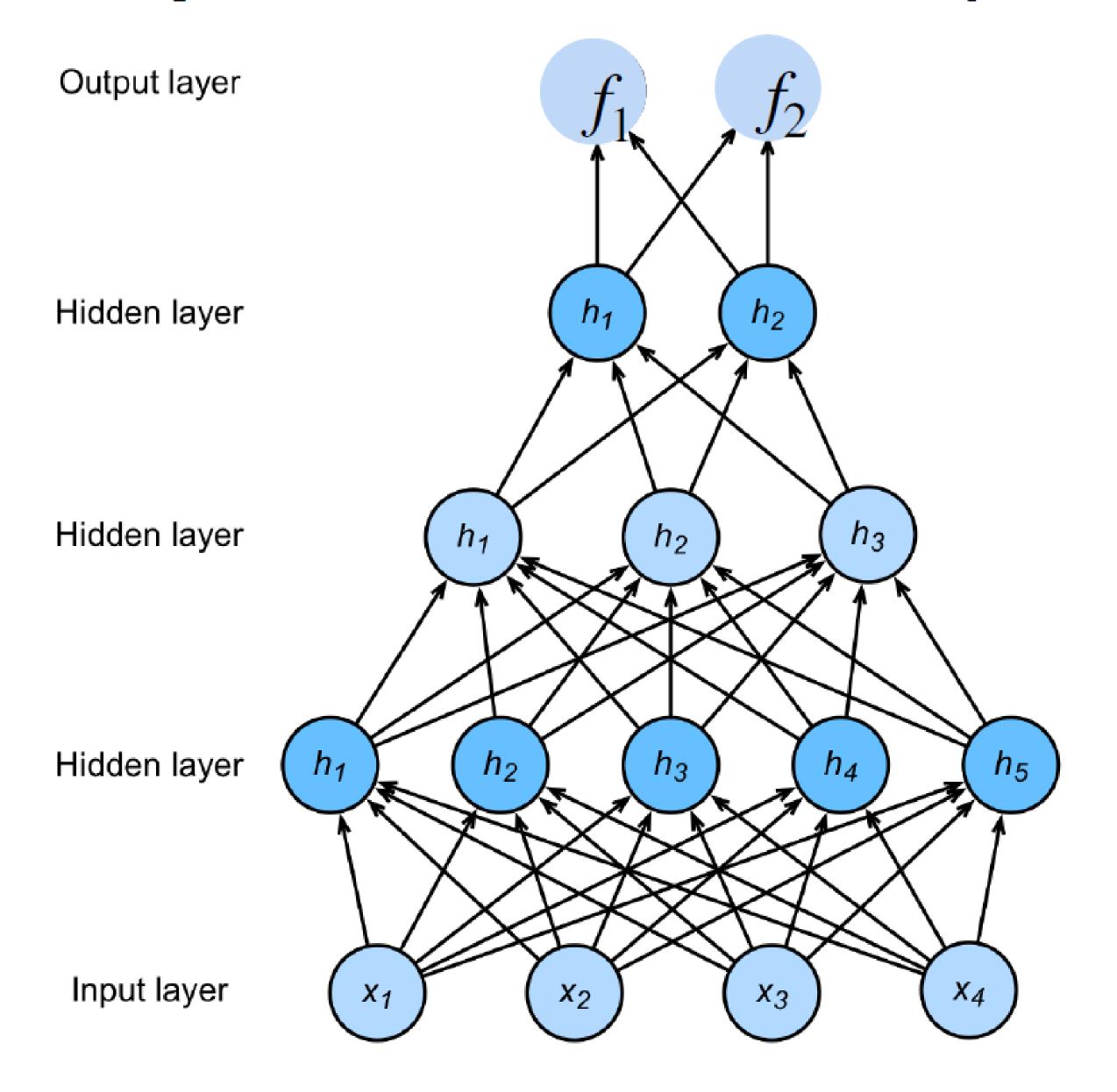
Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)



$$p(y|\mathbf{x}) = softmax(\mathbf{f})$$
$$= \frac{\exp f_y(x)}{\sum_{i}^{k} \exp f_i(x)}$$

Deep neural networks (DNNs)



$$\mathbf{h}_1 = \sigma(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$

$$\mathbf{h}_2 = \sigma(\mathbf{W}_2\mathbf{h}_1 + \mathbf{b}_2)$$

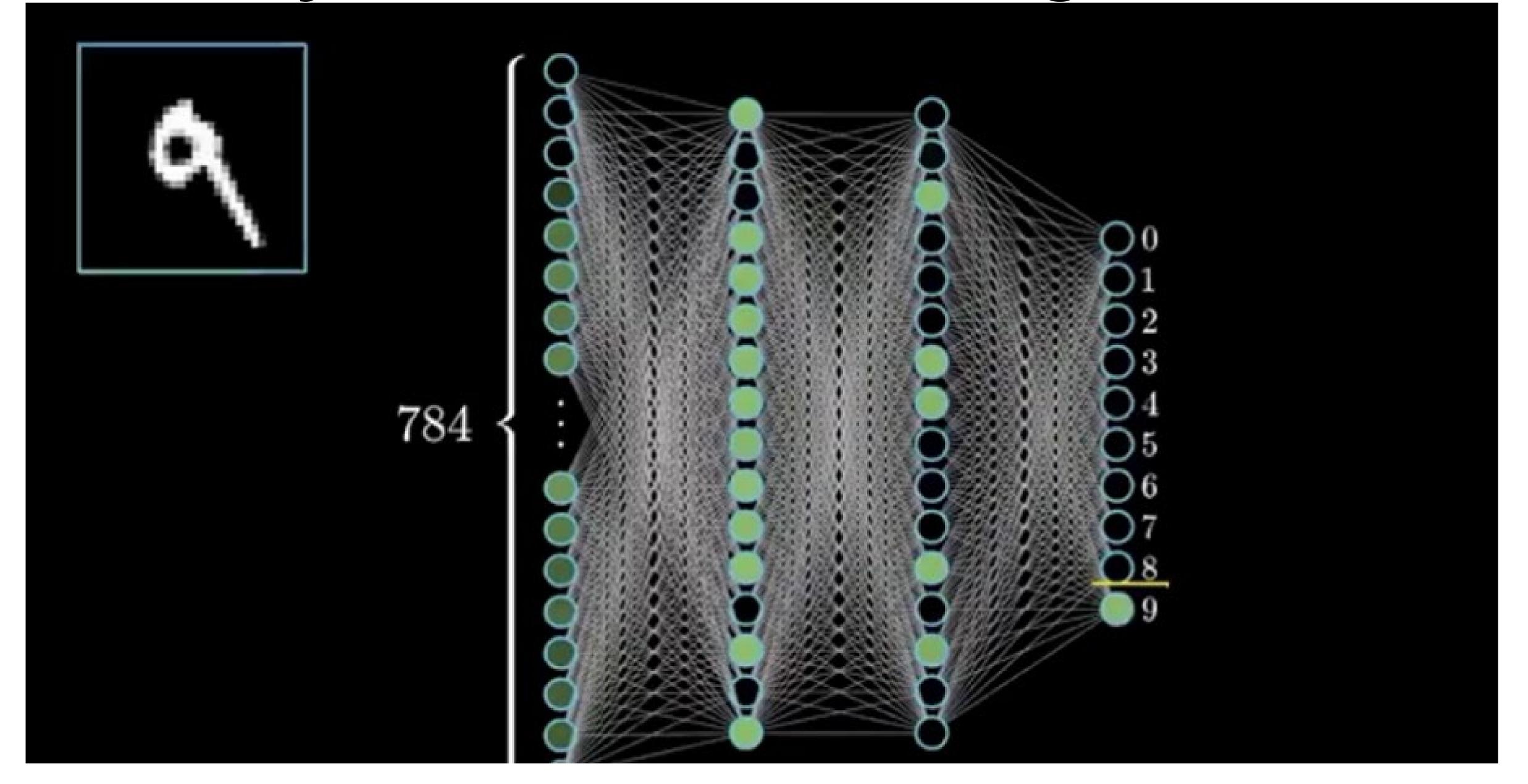
$$\mathbf{h}_3 = \sigma(\mathbf{W}_3\mathbf{h}_2 + \mathbf{b}_3)$$

$$\mathbf{f} = \mathbf{W}_4\mathbf{h}_3 + \mathbf{b}_4$$

$$\mathbf{y} = \text{softmax}(\mathbf{f})$$

NNs are composition of nonlinear functions

Classify MNIST handwritten digits



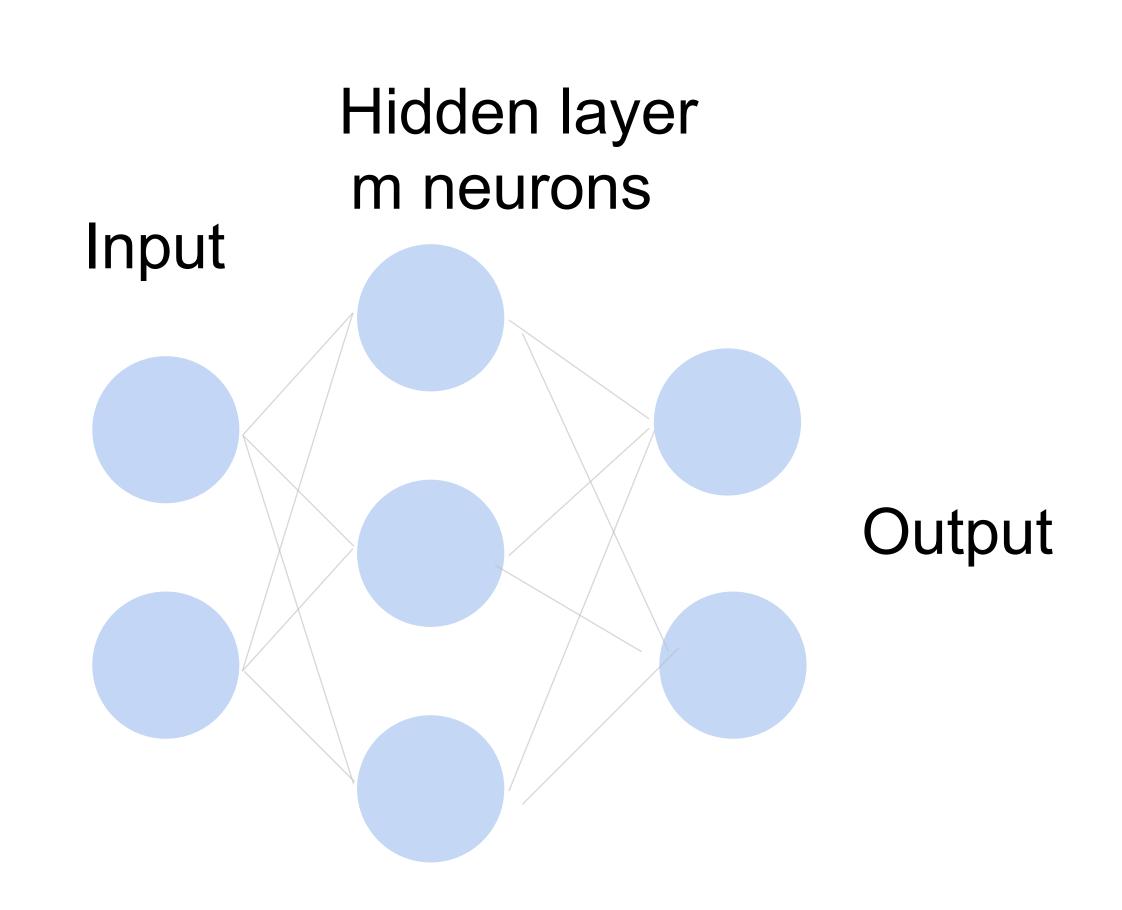
How to train a neural network?

Loss function:
$$\frac{1}{|D|} \sum_{i} \ell(\mathbf{x}_{i}, y_{i})$$

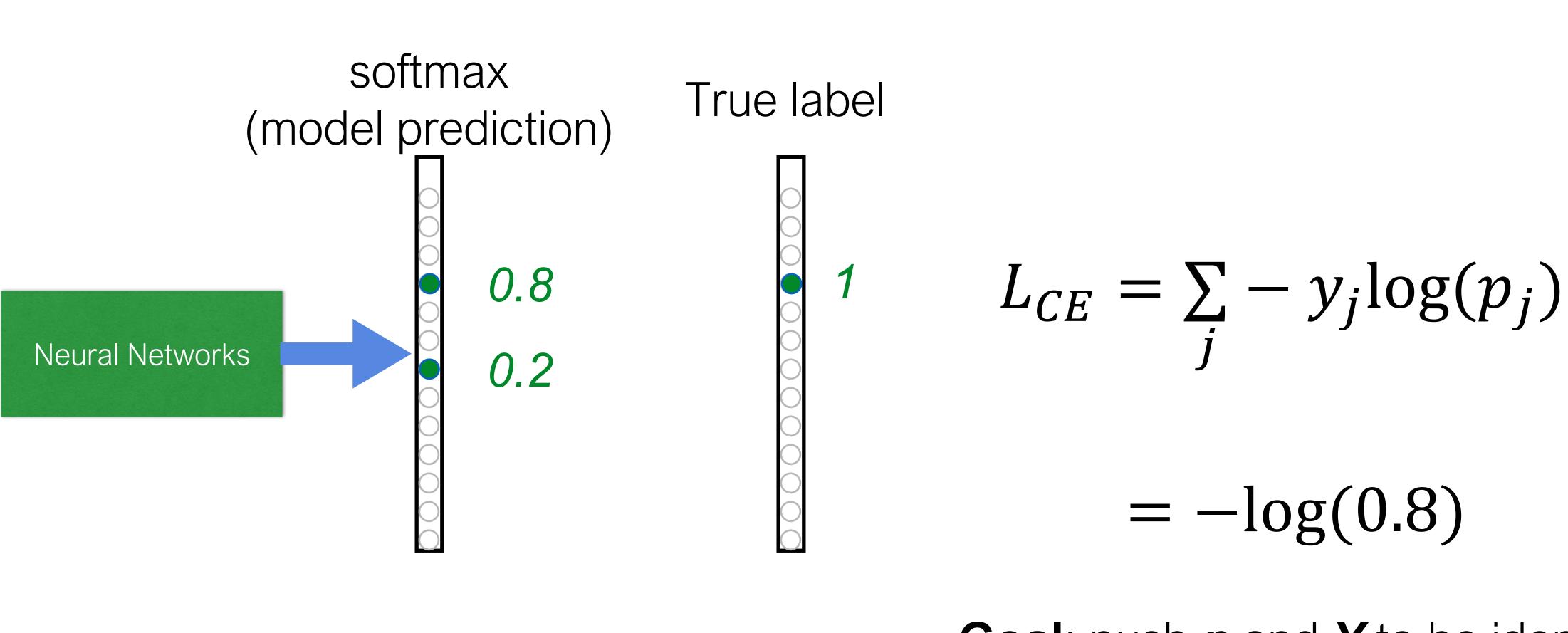
Per-sample loss:

$$\ell(\mathbf{x}, y) = \sum_{j=1}^{K} -y_j \log p_j$$

Also known as cross-entropy loss or softmax loss



Cross-Entropy Loss



P

Y

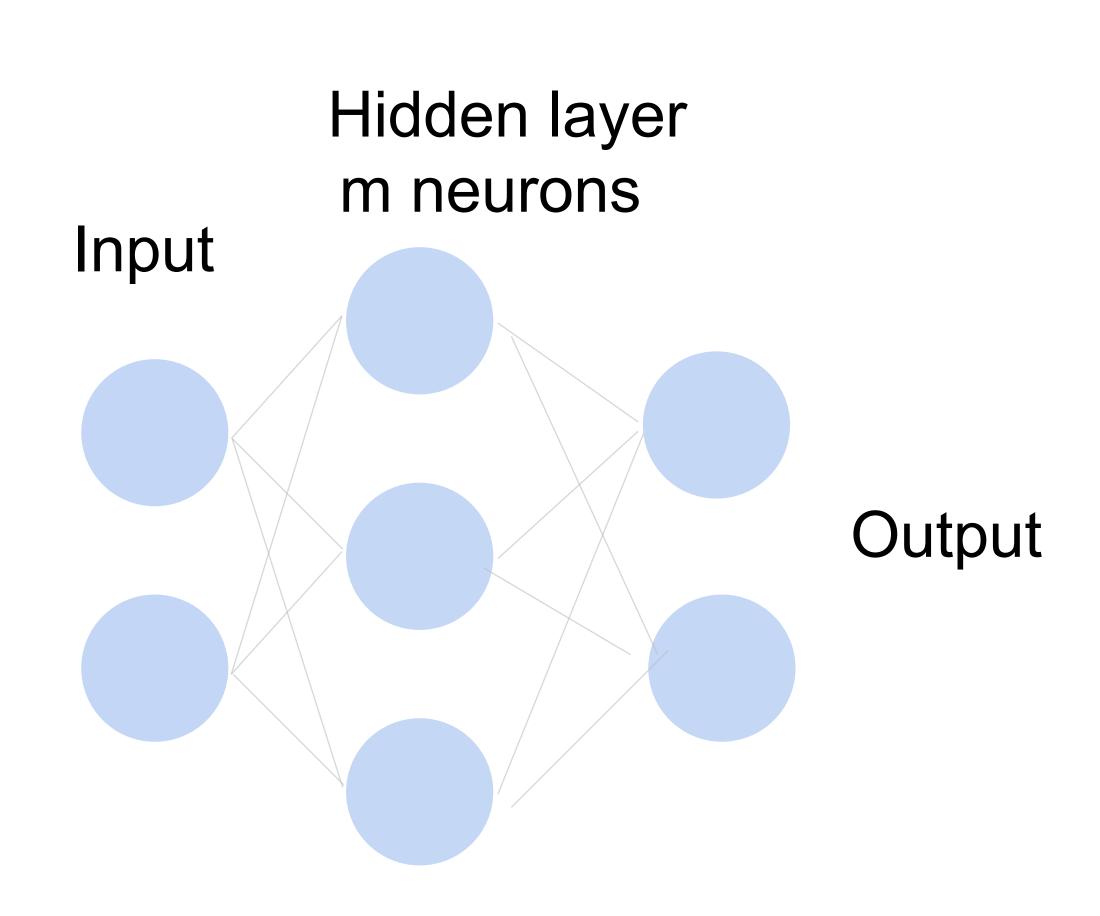
Goal: push p and Y to be identical

How to train a neural network?

Update the weights W to minimize the loss function

$$L = \frac{1}{|D|} \sum_{i} \ell(\mathbf{x}_i, y_i)$$

Use gradient descent!

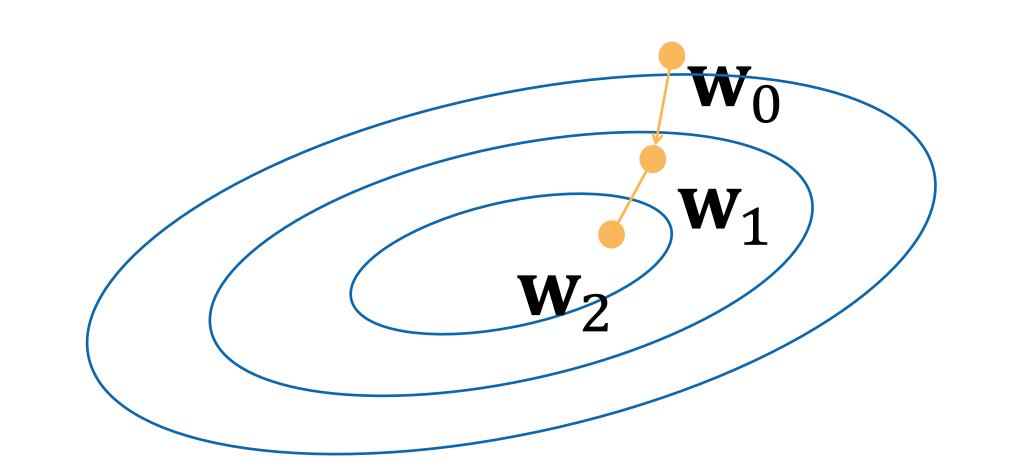


Gradient Descent

- Choose a learning rate $\alpha > 0$
- Initialize the model parameters w_0
- For t = 1, 2, ...

$$\mathbf{w}_{t} = \mathbf{w}_{t-1} - \alpha \frac{\partial L}{\partial \mathbf{w}_{t-1}}$$
 D can be very large. Expensive per iteration
$$= \mathbf{w}_{t-1} - \alpha \frac{1}{|D|} \sum_{\mathbf{x} \in D} \frac{\partial \ell(\mathbf{x}_{i}, y_{i})}{\partial \mathbf{w}_{t-1}}$$

Repeat until converges



Minibatch Stochastic Gradient Descent

- Choose a learning rate $\alpha > 0$
- Initialize the model parameters w_0
- For t = 1, 2, ...
 - Randomly sample a subset (mini-batch) $B \subset D$ Update parameters:

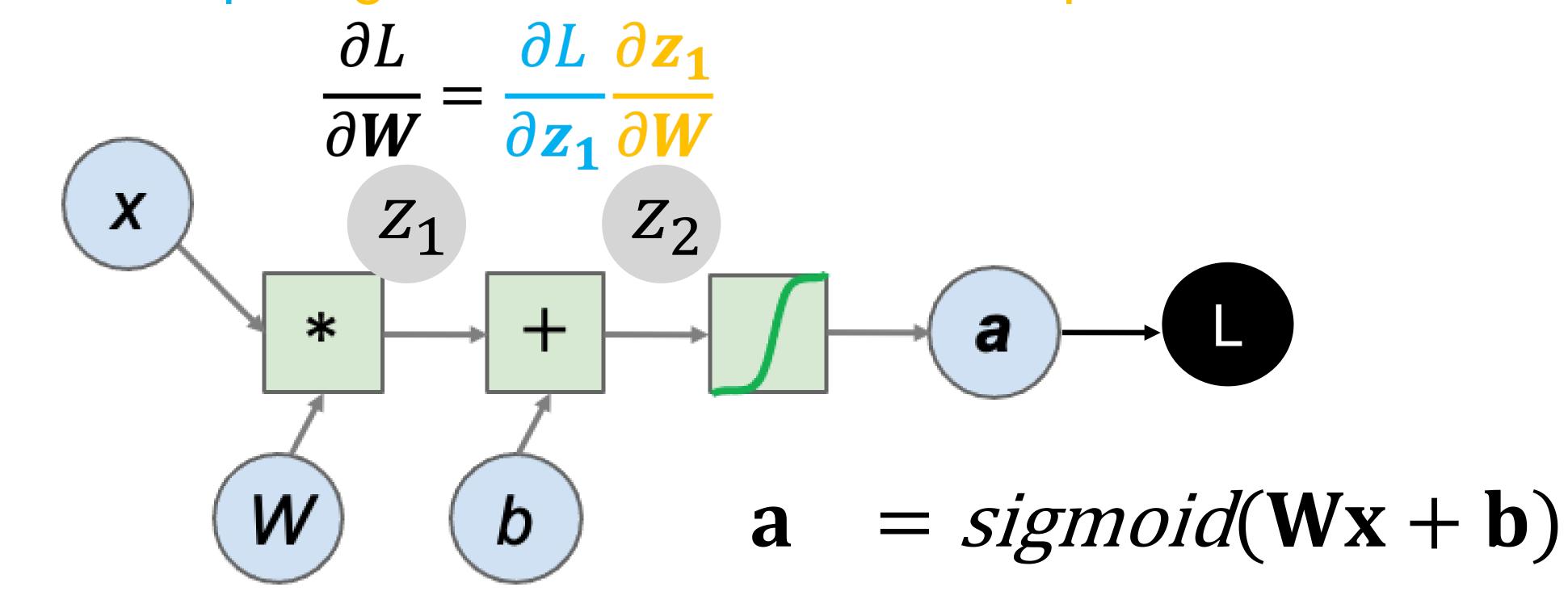
$$\mathbf{w}_{t} = \mathbf{w}_{t-1} - \alpha \frac{1}{|B|} \sum_{\mathbf{x} \in B} \frac{\partial \ell(\mathbf{x}_{i}, y_{i})}{\partial \mathbf{w}_{t-1}}$$

Repeat

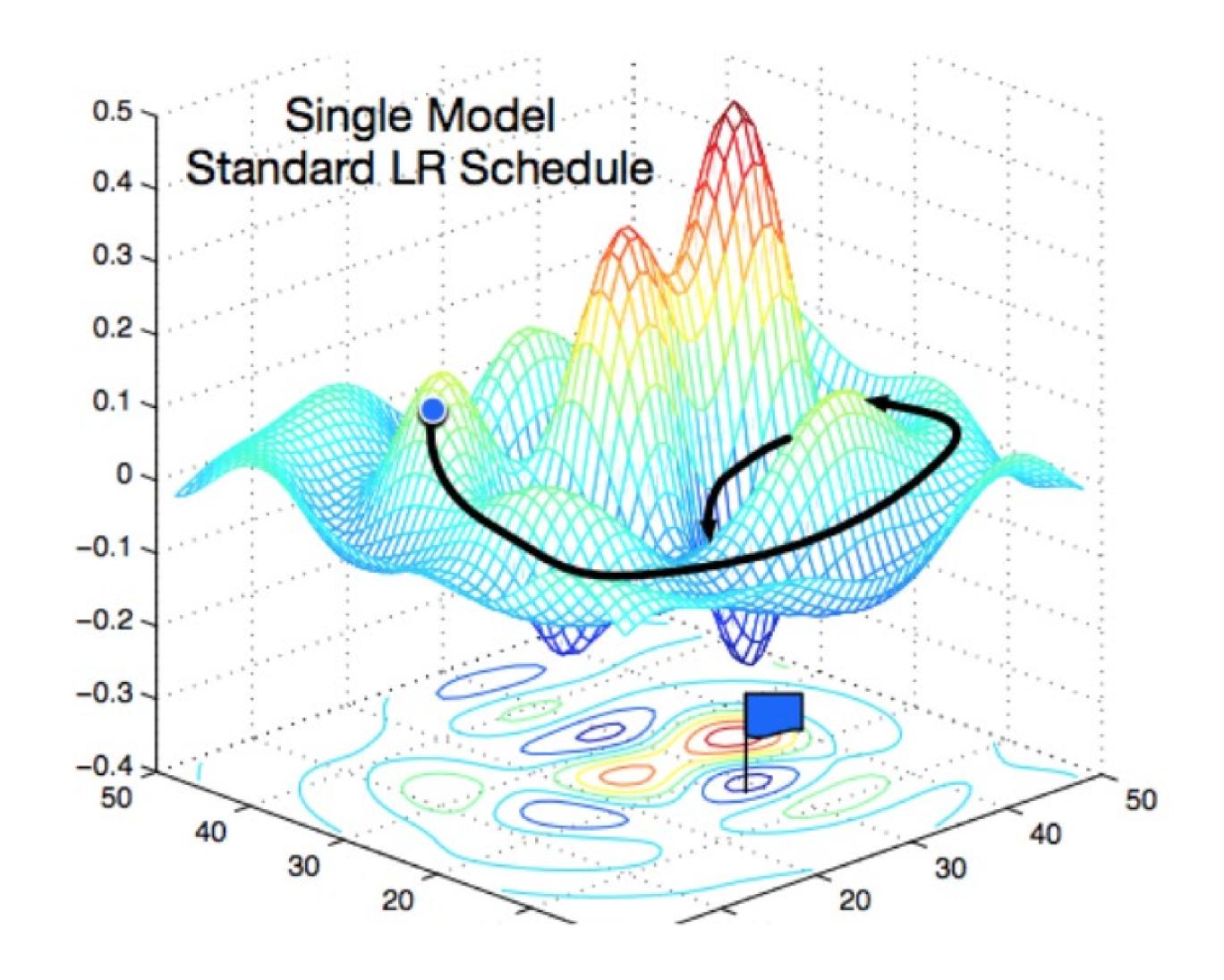
Calculate gradient: backpropagation with chain rule

- Define a loss function L, must compute $\frac{\partial L}{\partial \mathbf{W}}$, $\frac{\partial L}{\partial b}$ for all weights and biases.
- Gradient to a variable =

gradient on the top x gradient from the current operation



Non-convex Optimization



[Gao and Li et al., 2018]

How to classify Cats vs. dogs?

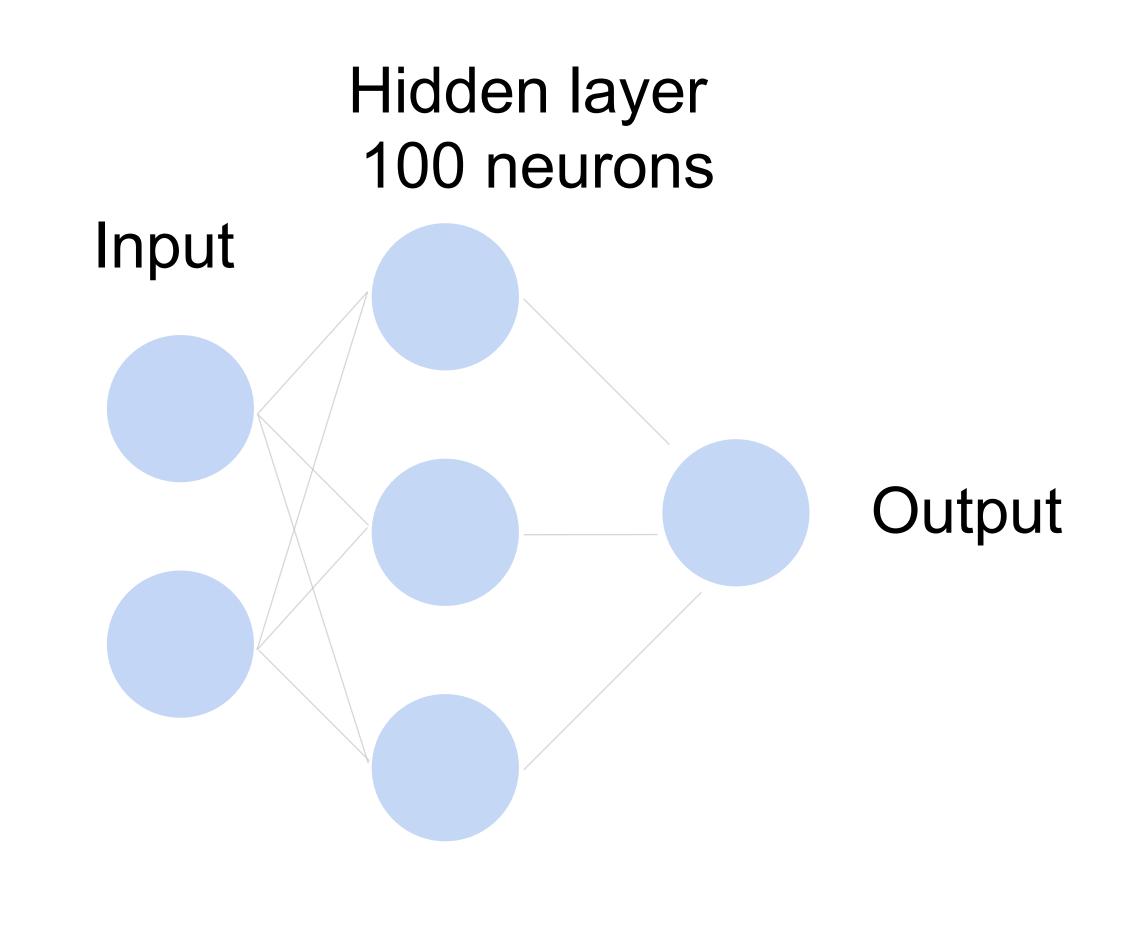
12MP

wide-angle and telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?



~ 36M elements x 100 = ~3.6B parameters!

Convolutions come to rescue!

Where is Waldo?

Why Convolution?

- TranslationInvariance
- Locality

2-D Convolution

Input

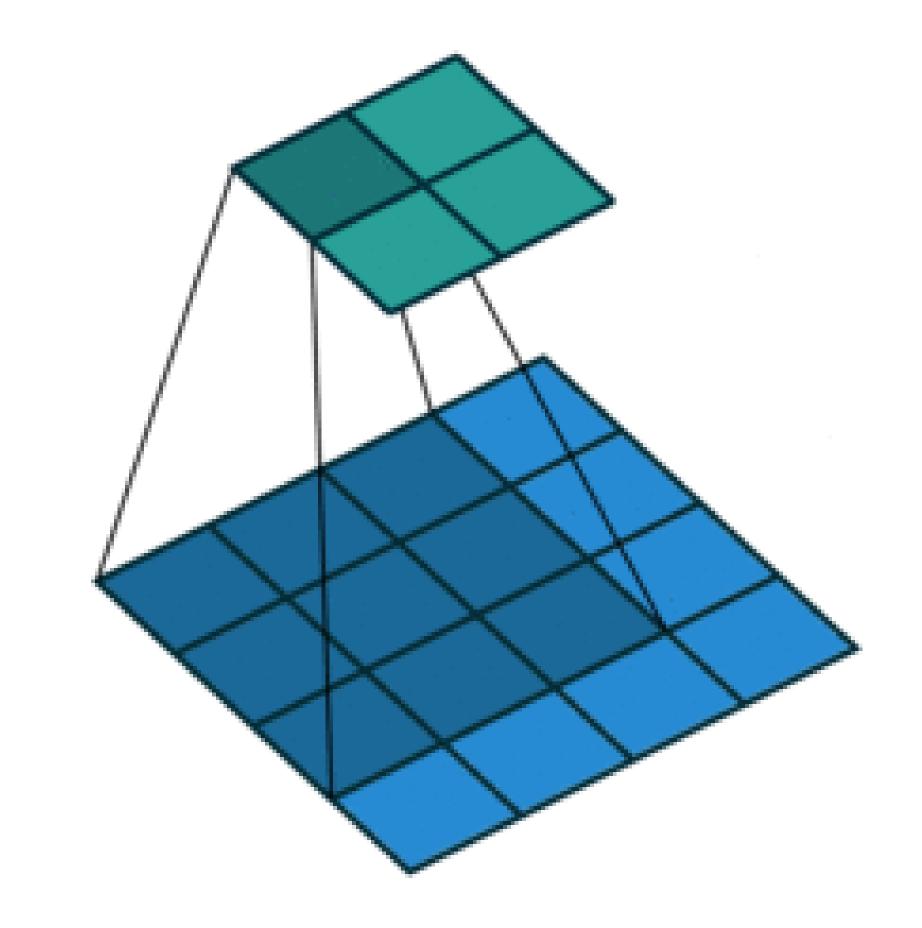
0	1	2
3	4	5
6	7	8

Kernel

Output

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,$$

 $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,$
 $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,$
 $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$



(vdumoulin@ Github)

2-D Convolution Layer

0	1	2	*	Λ	1		19	25
3	4	5		2	ر ا		37	<u>73</u>
6	7	8			3		31	43

- $\mathbf{X}: n_h \times n_w$ input matrix
- W: $k_h \times k_w$ kernel matrix
- b: scalar bias
- Y: $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix

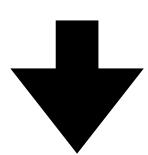
$$Y = X * W + b$$

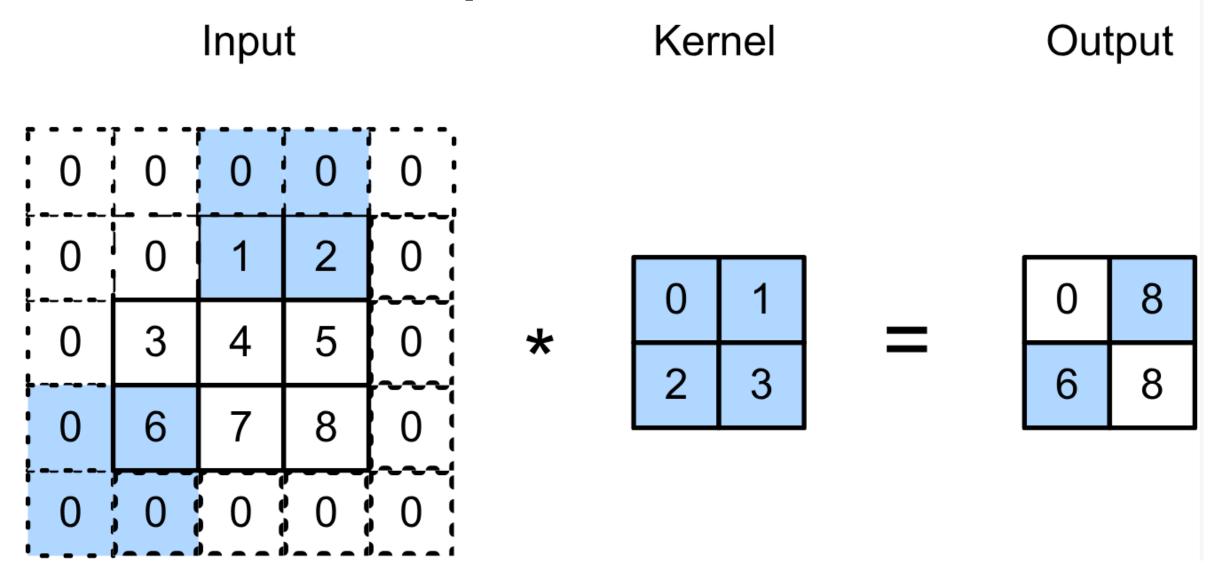
• W and b are learnable parameters

2-D Convolution Layer with Stride and Padding

- Stride is the #rows/#columns per slide
- Padding adds rows/columns around input
- Output shape

Kernel/filter size





$$\lfloor (n_h - k_h + p_h + s_h)/s_h \rfloor \times \lfloor (n_w - k_w + p_w + s_w)/s_w \rfloor$$

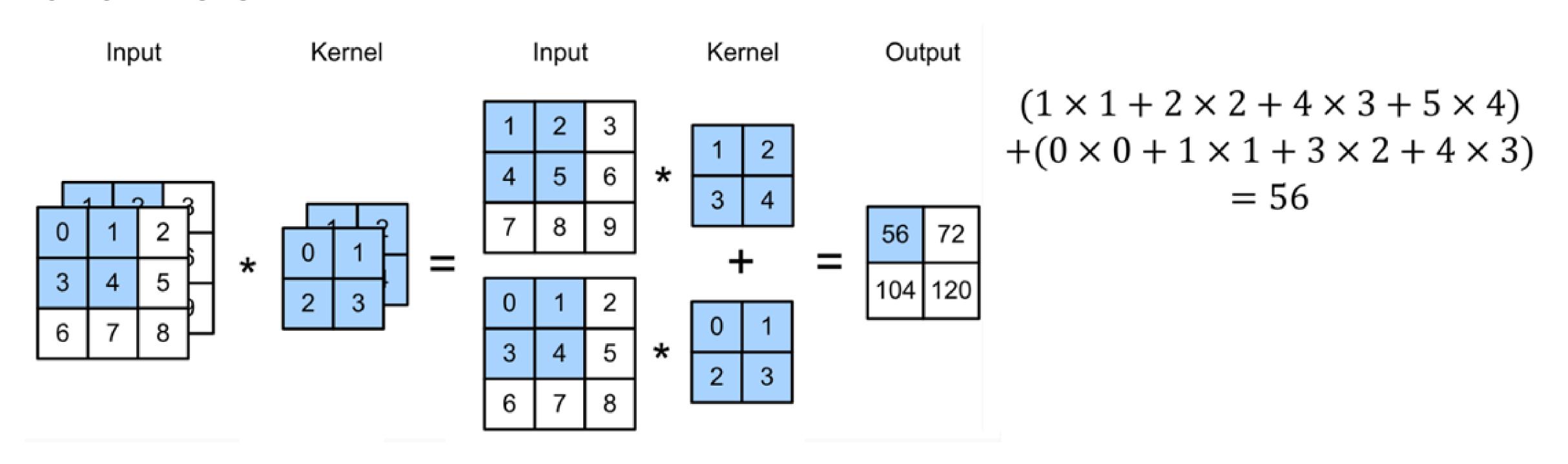
Input size

Pad

Stride

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels



Multiple Input Channels

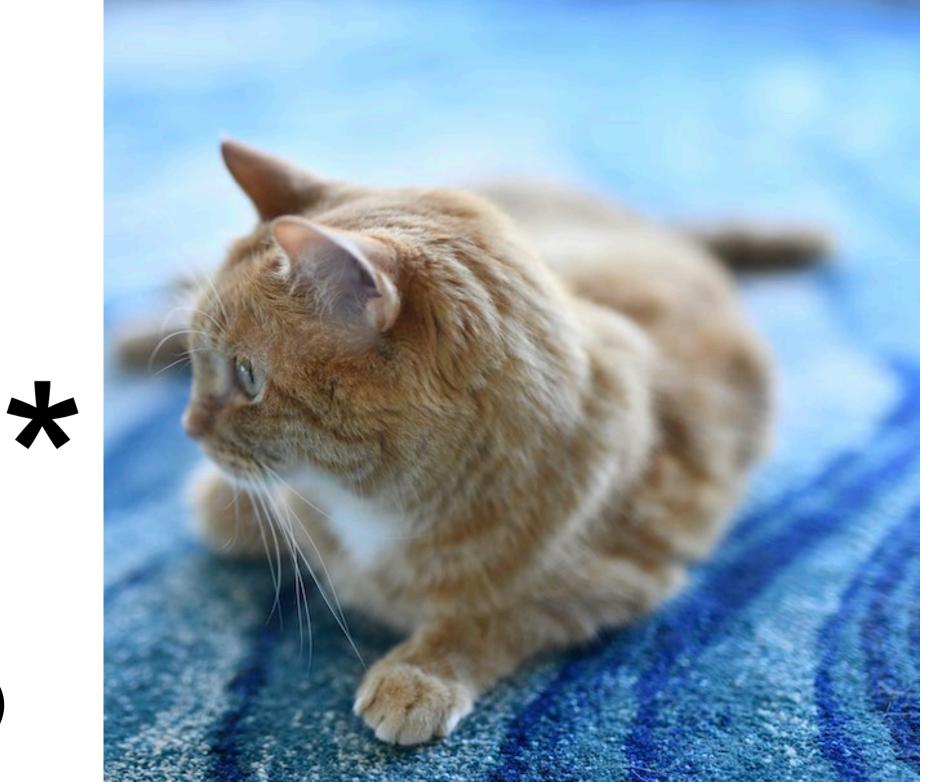
Input and kernel can be 3D, e.g., an RGB image have 3 channels

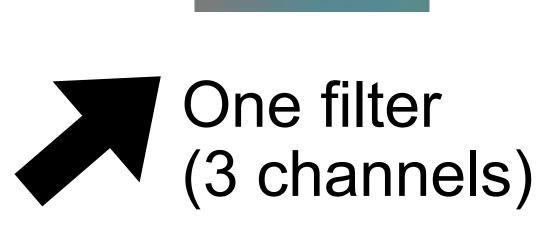
Have a 2D kernel for each channel, and then sum results over

channels One 3D kernel

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Also call each 3D kernel a "filter", which produce only one output channel (due to summation over channels)

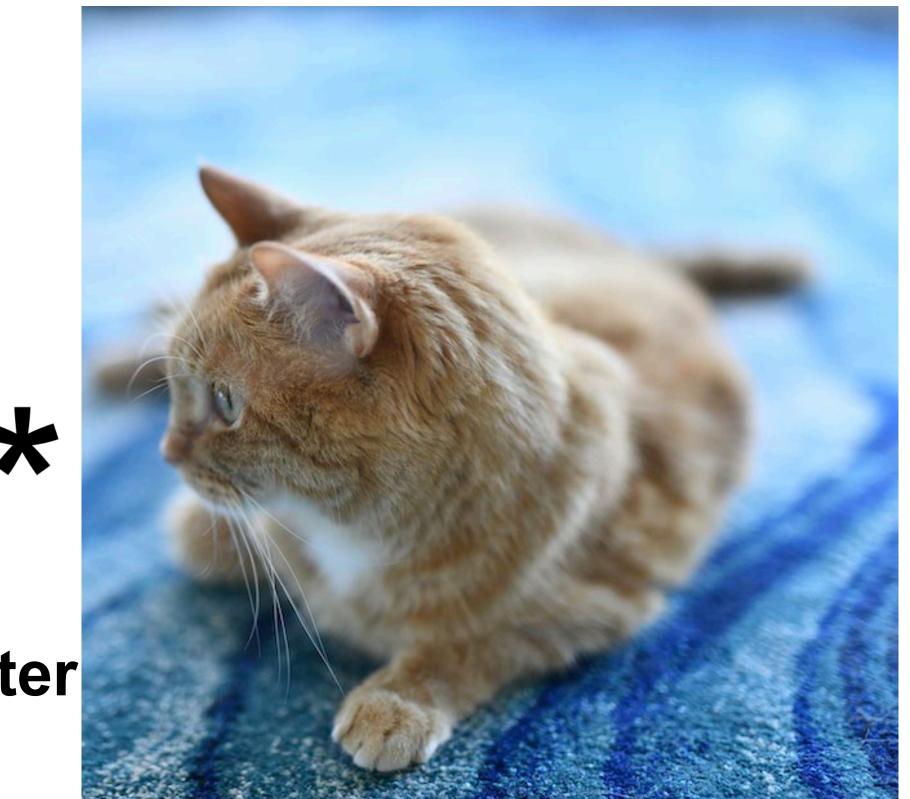




RGB (3 input channels)

Multiple filters (in one layer)

- Apply multiple filters on the input
- Each filter may learn different features about the input
- Each filter (3D kernel) produces one output channel

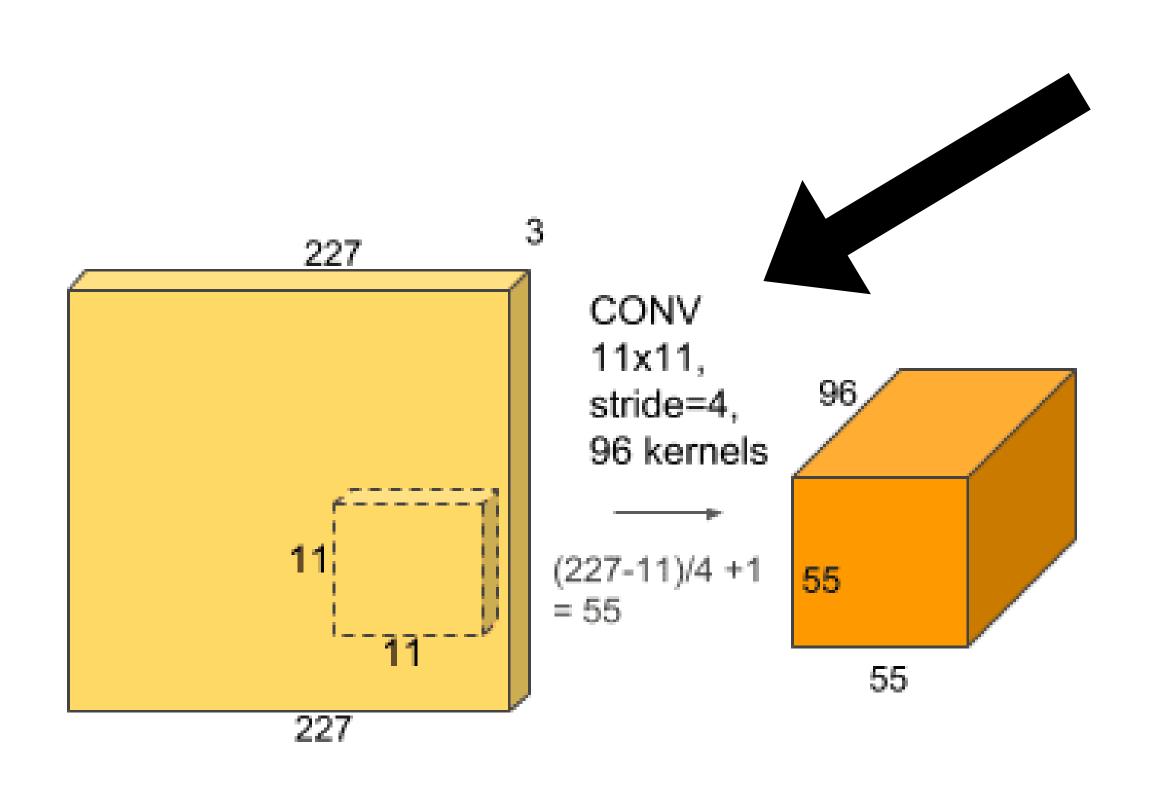


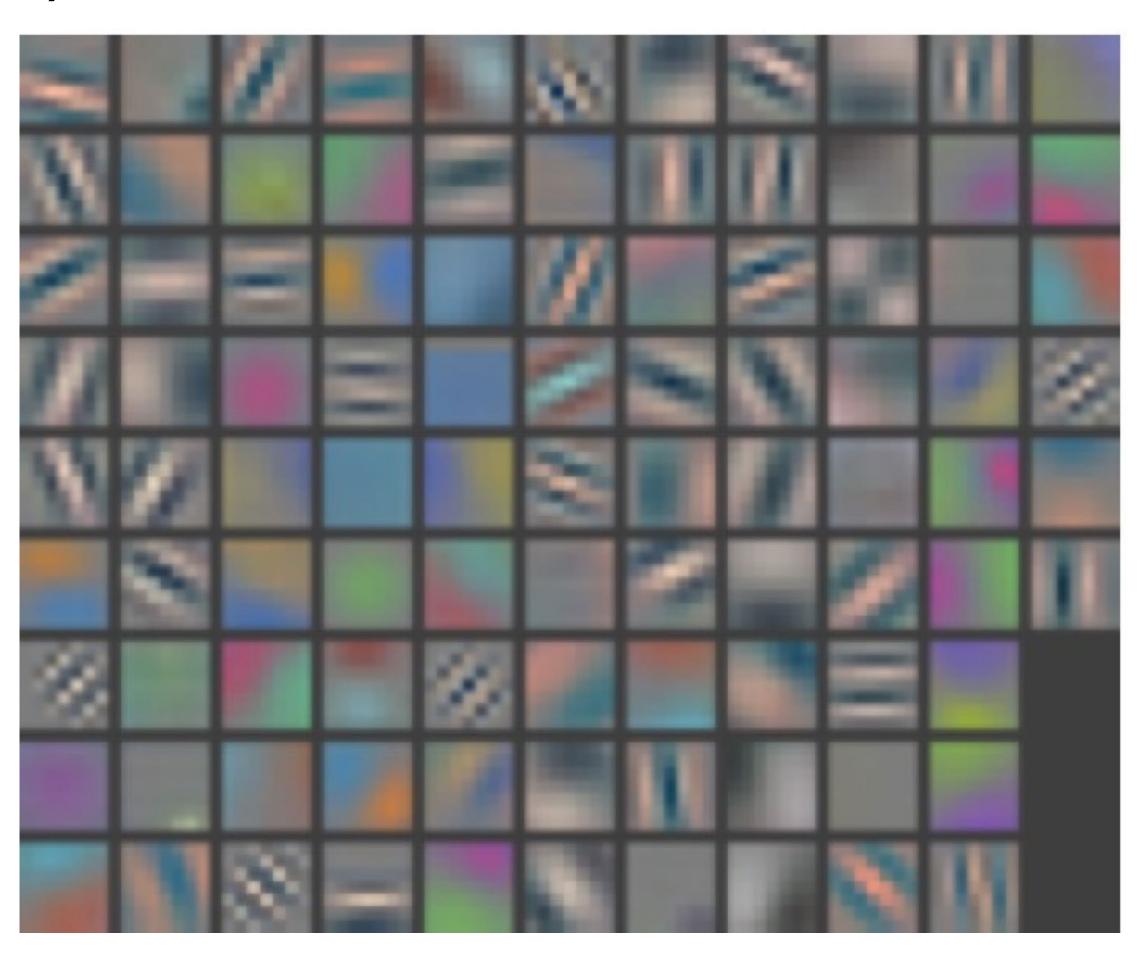
RGB (3 input channels)

Conv1 Filters in AlexNet

• 96 filters (each of size 11x11x3)

Gabor filters





Figures from Visualizing and Understanding Convolutional Networks by *M. Zeiler and R. Fergus*

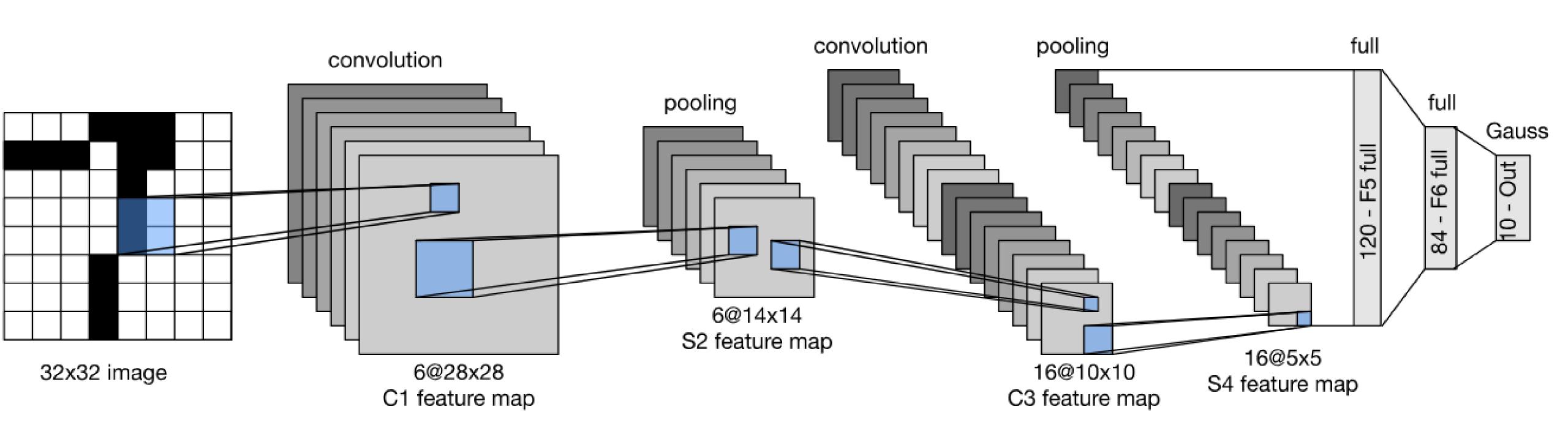
Multiple Output Channels

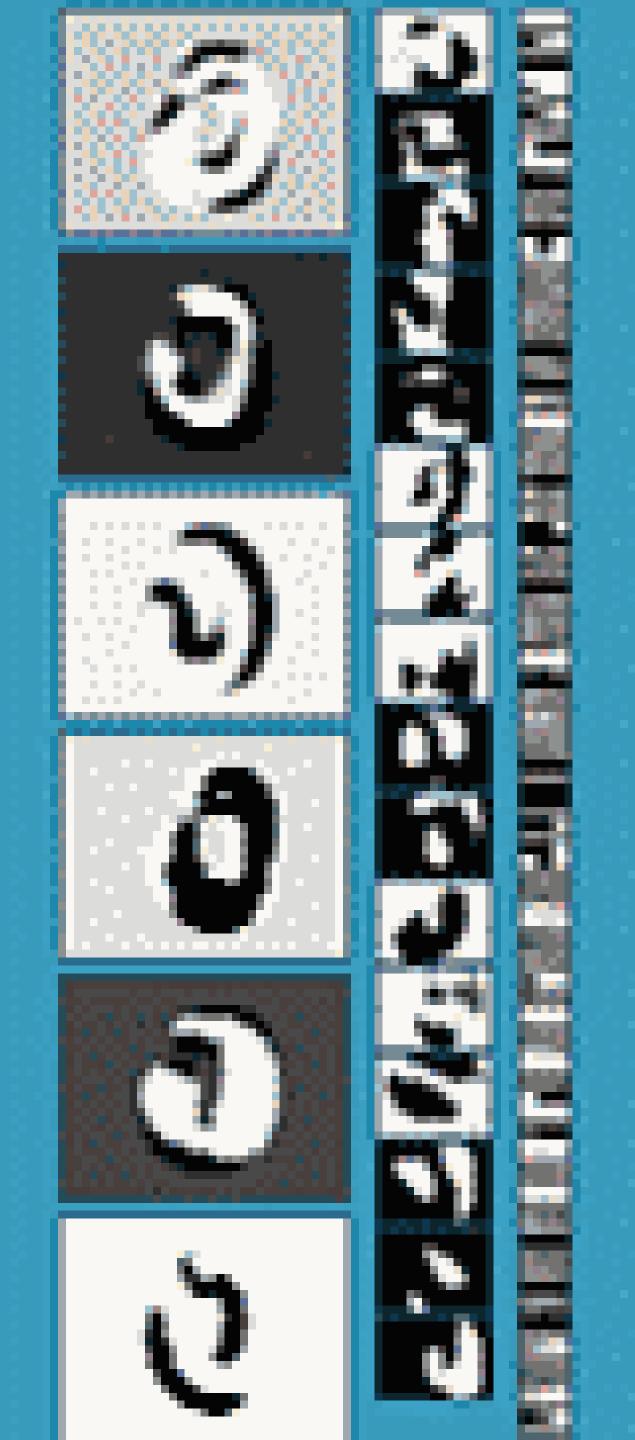
- The # of output channels = # of filters
- Input $X: c_i \times n_h \times n_w$
- Kernel W: $c_o \times c_i \times k_h \times k_w$
- Output Y: $c_o \times m_h \times m_w$

$$\mathbf{Y}_{i,::} = \mathbf{X} * \mathbf{W}_{i,::,:}$$
 $for i = 1, ..., c_o$

Convolutional Neural Networks

LeNet Architecture



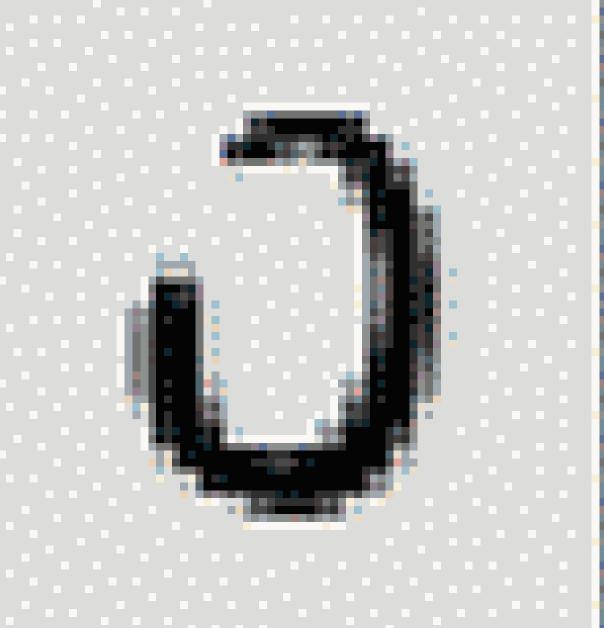


LeNet 5

RESEARCH

answer:

0



Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

Quiz break

Which one of the following is NOT true?

- A. LeNet has two convolutional layers
- B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB input
- C. Pooling is performed right after convolution
- D. Pooling layer does not have learnable parameters

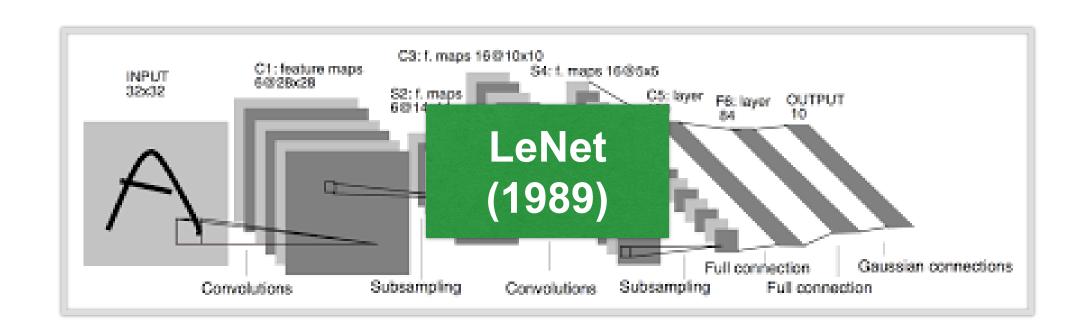
Quiz break

Which one of the following is NOT true?

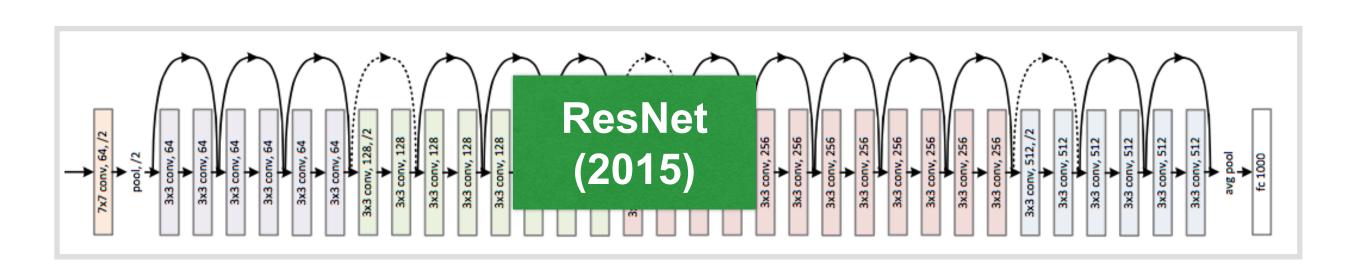
- A. LeNet has two convolutional layers
- B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB input
- C. Pooling is performed right after convolution
- D. Pooling layer does not have learnable parameters

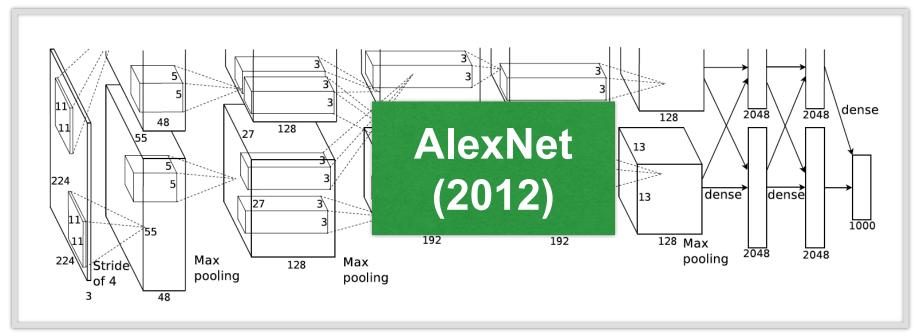
Pooling is performed after ReLU: conv -> relu -> pooling

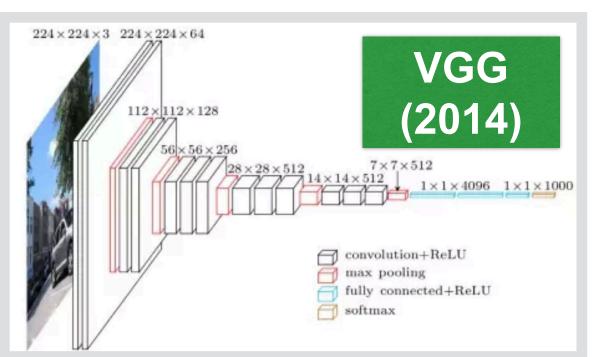
Evolution of neural net architectures

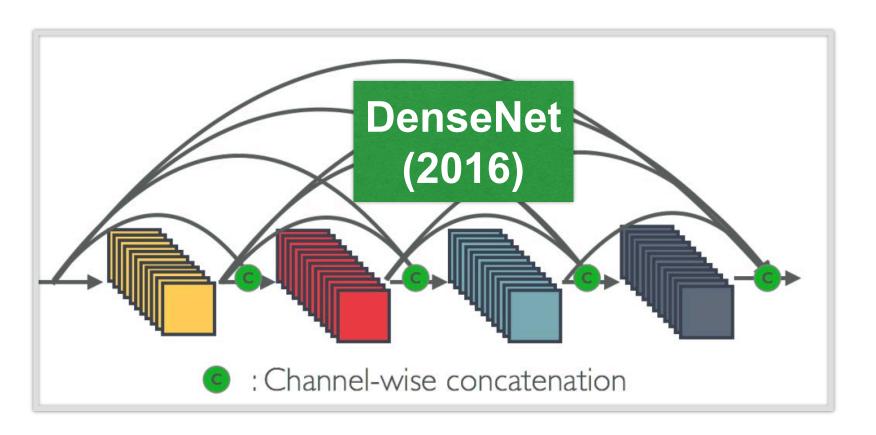


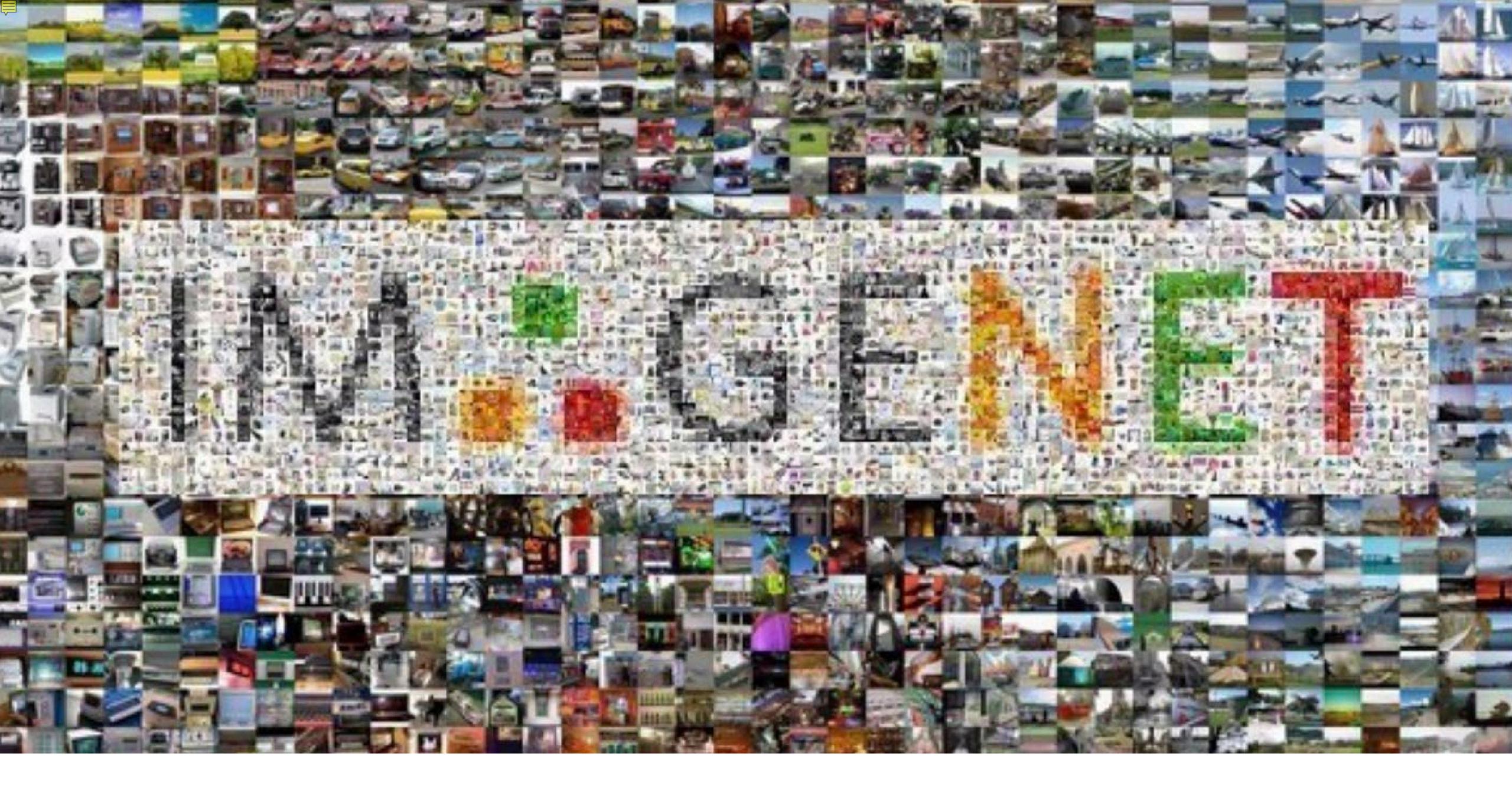






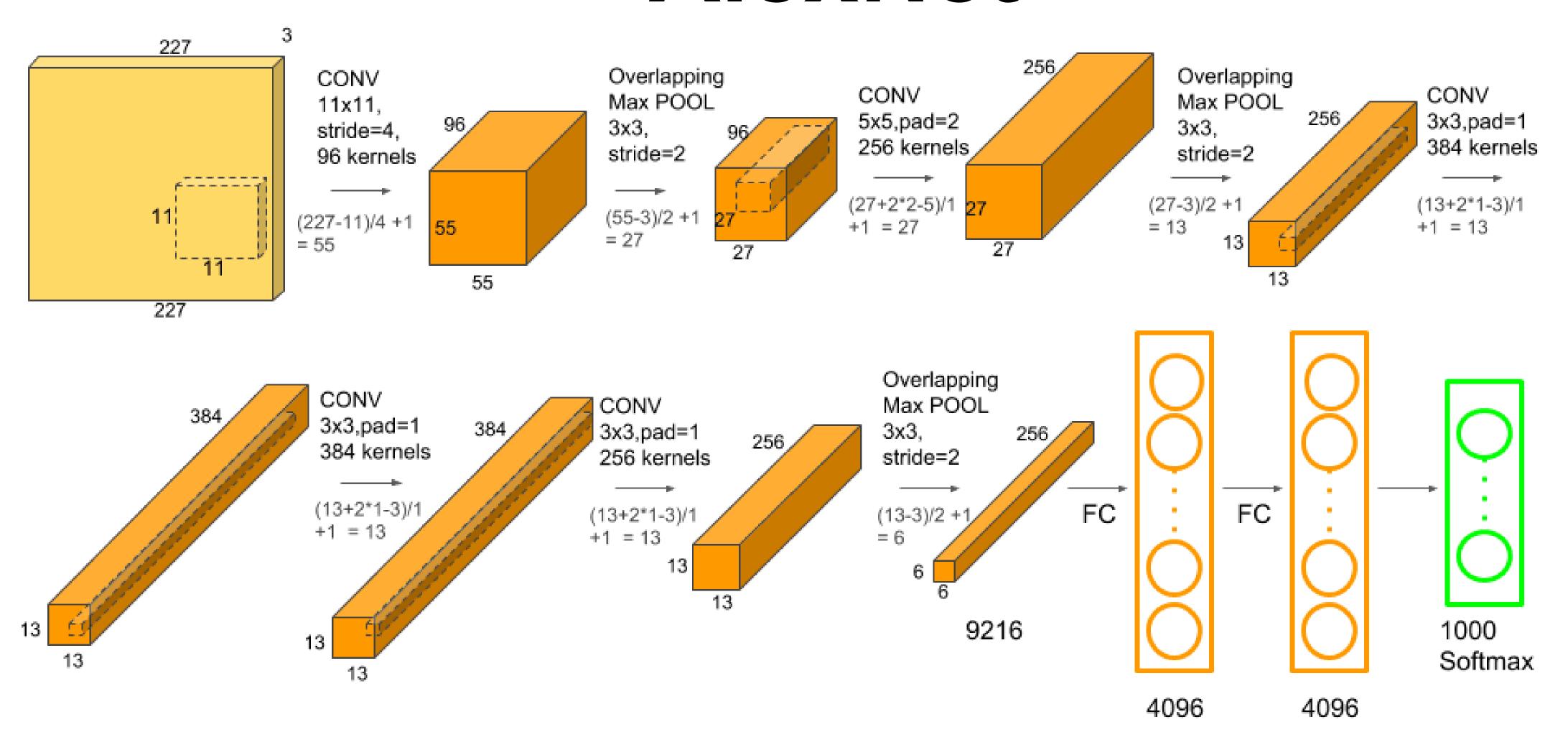






Deng et al. 2009

AlexNet

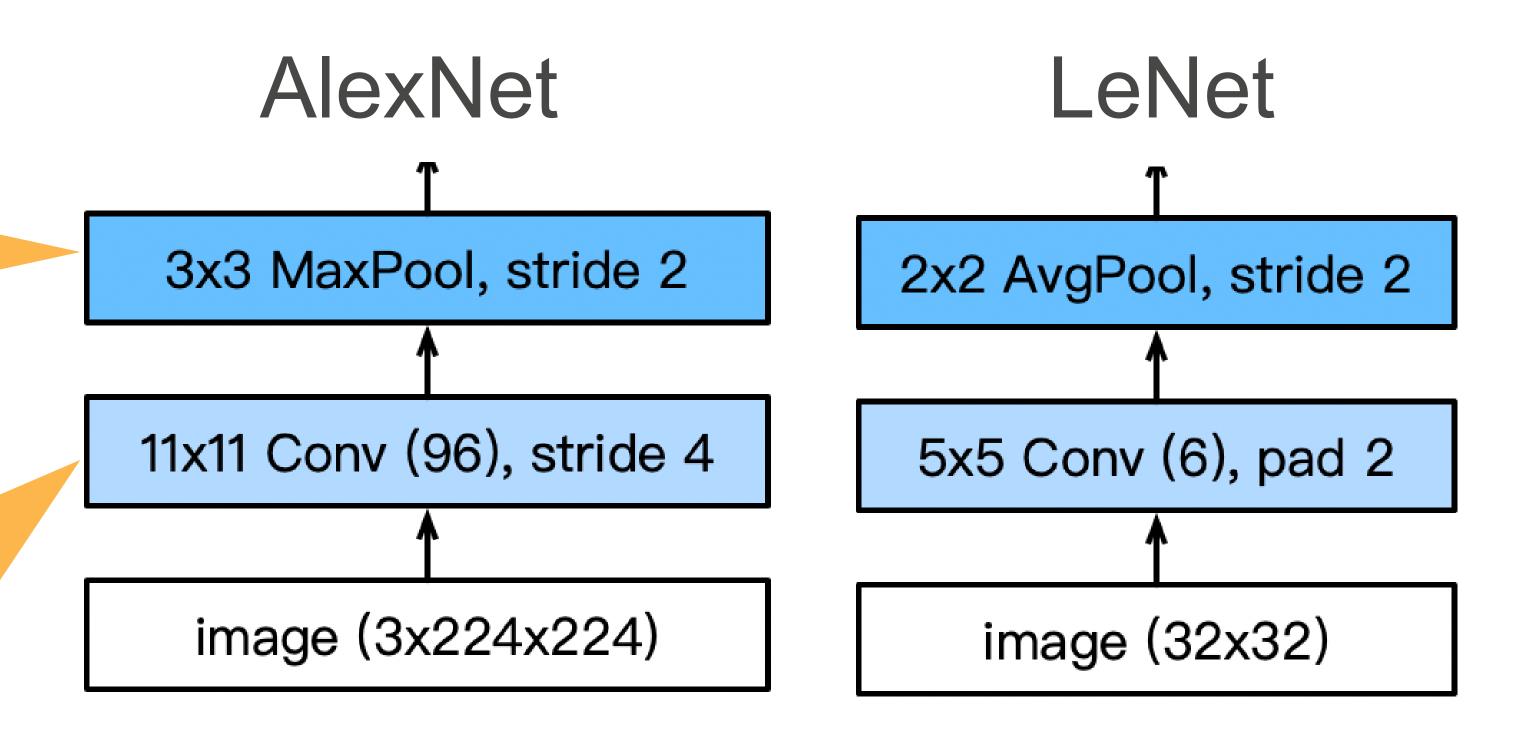


[Krizhevsky et al. 2012]

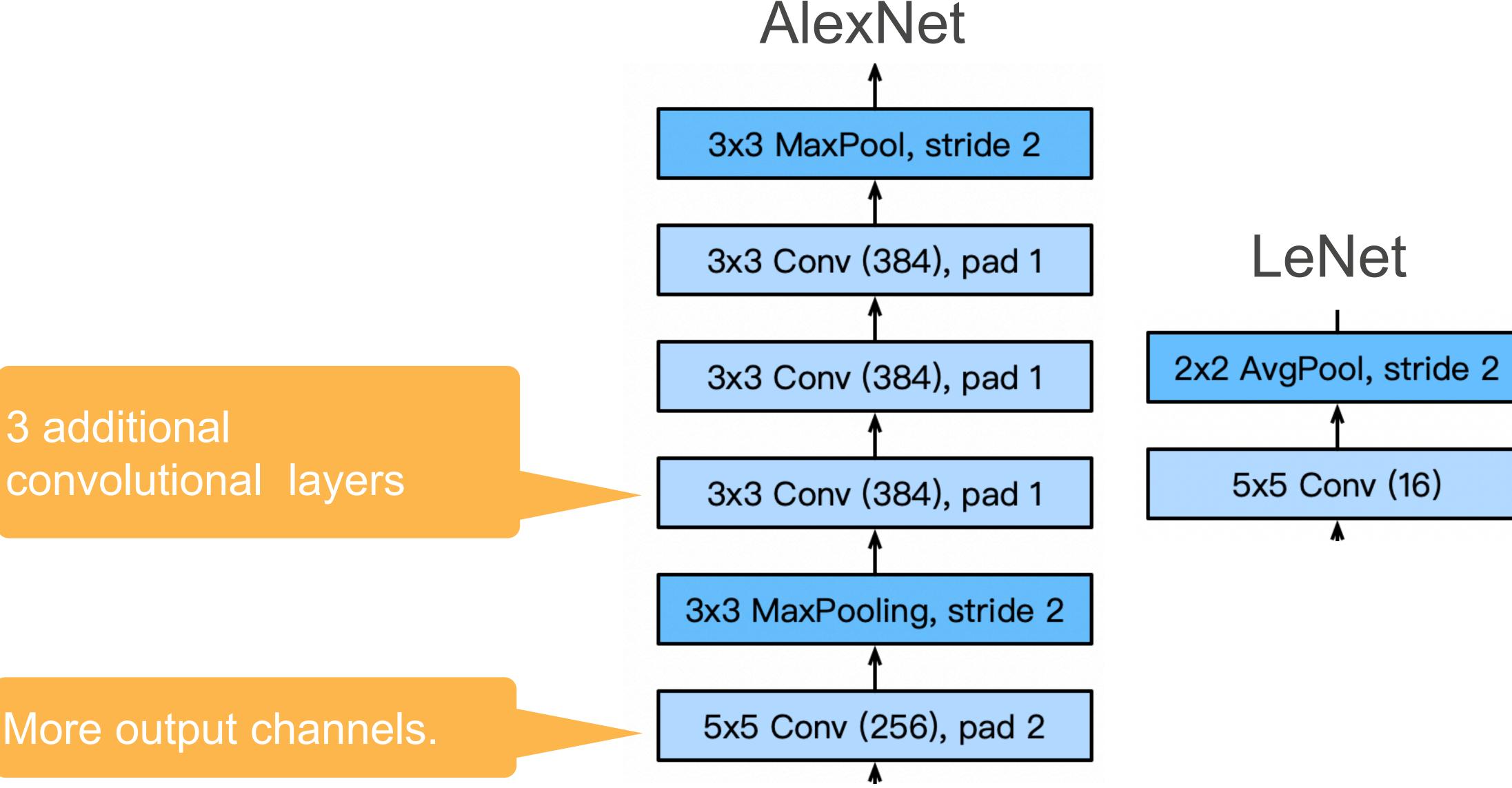
AlexNet vs LeNet Architecture

Larger pool size, change to max pooling

Larger kernel size, stride because of the increased image size, and more output channels.



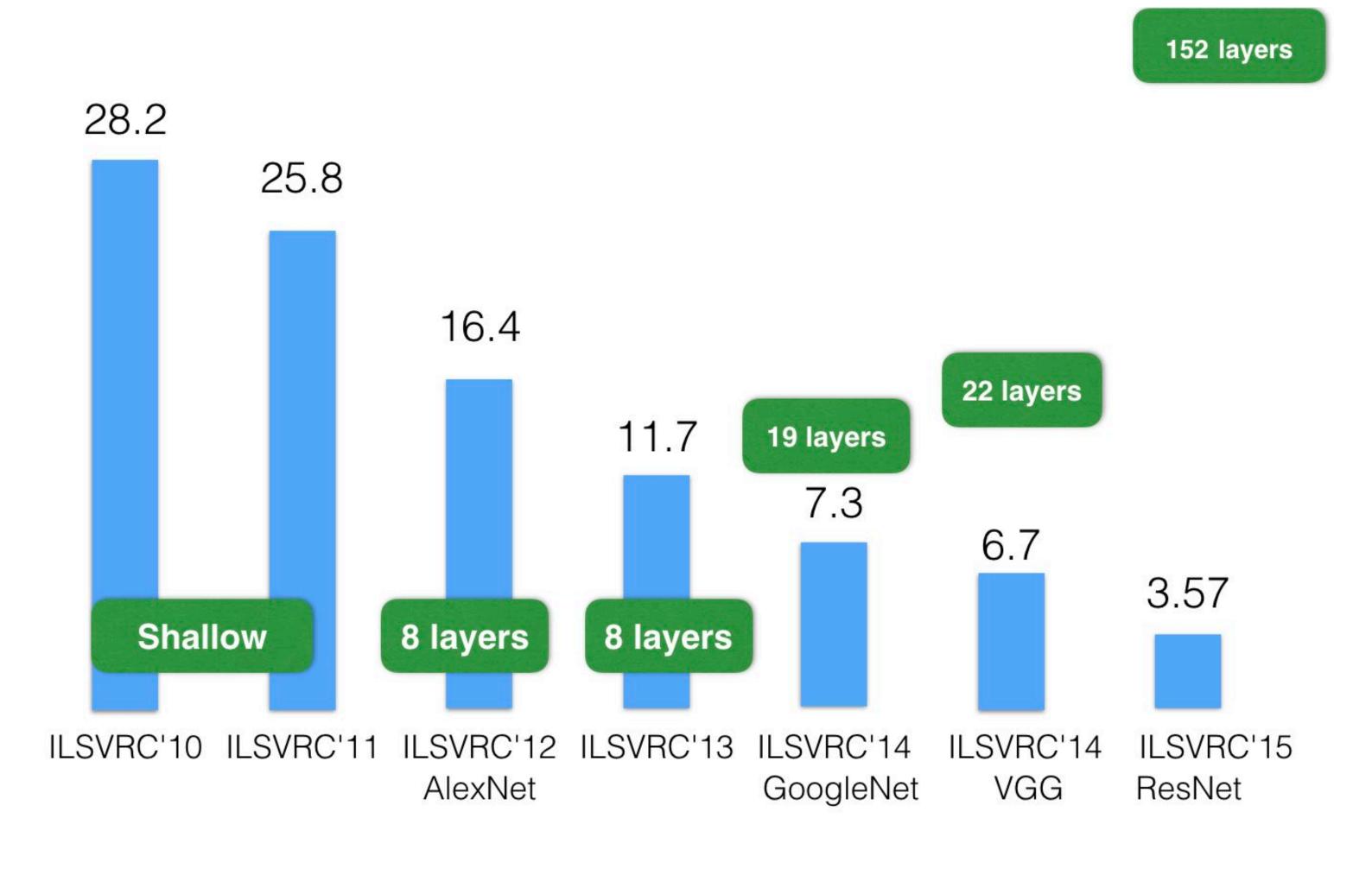
AlexNet Architecture



More output channels.

3 additional

ResNet: Going deeper in depth

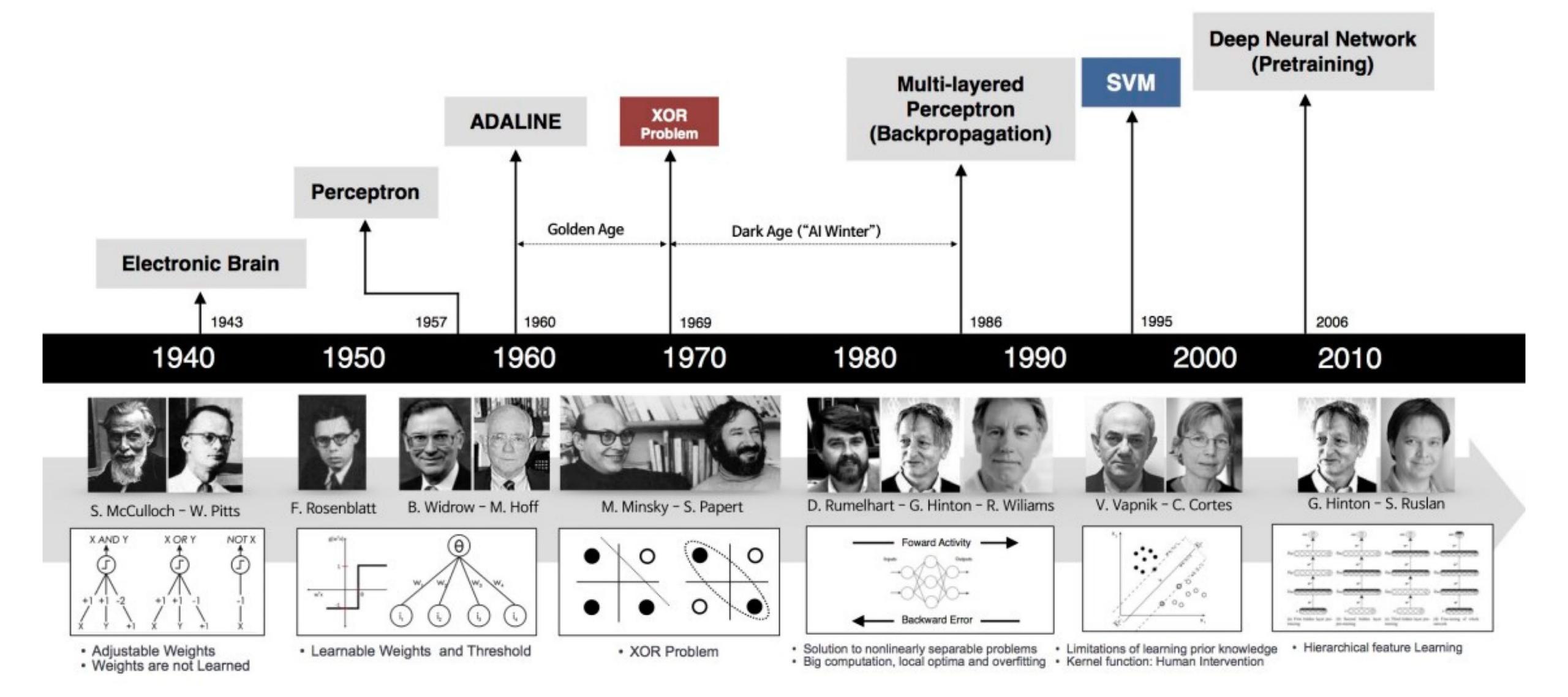


ImageNet Top-5 error%

Other neural network architectures

- Convolutional neural networks are one of many special types of layers.
 - Main use is for processing images.
 - Also can be useful for handling time series.
- Other common architectures:
 - Recurrent neural networks: hidden activations are a function of input and activations from previous inputs. Designed for sequential data such as text.
 - Graph neural networks: take graph data as input.
 - Transformers: take sequences as input and learn what parts of input to pay attention to.

Brief history of neural networks



What we've learned today...

- Modeling a single neuron
 - Linear perceptron
 - Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks
 - Loss function (cross entropy)
 - Backpropagation and SGD
- Convolutional neural networks
 - Convolution, pooling, stride, padding
 - Basic architectures (LeNet etc.)
 - More advanced architectures (AlexNet, ResNet etc)

Thank you!

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html