

CS 540 Introduction to Artificial Intelligence **Probability**

University of Wisconsin-Madison Spring 2024

Announcements

- HW 1 released:
 - Writing assignment---nothing too stressful

• Class roadmap:

Thursday Jan. 25	Probability	_
Tuesday Jan. 30	Linear Algebra	
Thursday Feb. 1	Statistics	
Tuesday Feb. 6	Logic	
Thursday Feb. 8	NLP	

Mostly Foundations

Probability: What is it good for?

Language to express uncertainty

In AI/ML Context

• Quantify predictions

[p(lion), p(tiger)] = [0.98, 0.02]

[p(lion), p(tiger)] = [0.43, 0.57]

[p(lion), p(tiger)] = [0.01, 0.99]

* If we know for sure the photo must contain either a lion or a tiger

Model Data Generation

• Model complex distributions

StyleGAN2 (Kerras et al '20)

Win At Poker

Wisconsin Ph.D. student Ye Yuan 5th in WSOP
 Not unusual: probability began
 as study of gambling techniques

Cardano

Liber de ludo aleae Book on Games of Chance 1564!

pokernews.com

Outline

• Basics: definitions, axioms, RVs, joint distributions

• Independence, conditional probability, chain rule

• Bayes' Rule and Inference

Basics: Outcomes & Events

• Outcomes: possible results of an experiment

$$\Omega = \underbrace{\{1, 2, 3, 4, 5, 6\}}_{\text{outcomes}}$$

• Events: subsets of outcomes we're interested in

$$\underbrace{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega}_{\text{events}}$$

Always include \emptyset, Ω

Basics: Probability Distribution

- •. We have outcomes and events.
- Assign **probabilities**: for each event $E, P(E) \in [0,1]$

Back to our example: $\underbrace{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega}_{\text{events}}$ $P(\{1, 3, 5\}) = 0.2, P(\{2, 4, 6\}) = 0.8$

Basics: Axioms

- Rules for probability:
 - For all events $E, P(E) \ge 0$
 - Always, $P(\emptyset) = 0, P(\Omega) = 1$
 - For disjoint events, $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

• Easy to derive other laws. Ex: non-disjoint events

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Visualizing the Axioms: I

• Axiom 1: for all events $E, P(E) \ge 0$

Visualizing the Axioms: II

• Axiom 2: $P(\emptyset) = 0, P(\Omega) = 1$

Visualizing the Axioms: III

• Axiom 3: disjoint $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Visualizing the Axioms

• Also, other laws:

- Q 1.1: We toss a biased coin. If P(heads) = 0.7, then
 P(tails) = ?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

- Q 1.1: We toss a biased coin. If P(heads) = 0.7, then
 P(tails) = ?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

- **Q 1.2**: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

- **Q 1.2**: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

- **Q 1.3**: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. 26/52
- B. 4/52
- C. 30/52
- D. 28/52

- **Q 1.3**: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. 26/52
- B. 4/52
- C. 30/52
- D. 28/52

Basics: Random Variables

- Intuitively: a number *X* that's random
- Mathematically: map random outcomes to real values

$$X:\Omega\to\mathbb{R}$$

- Why?
 - Previously, everything is a set.

Real values are easier to work with

Basics: CDF & PDF

• Can still work with probabilities:

$$P(X=3)$$

• Cumulative Distribution Func. (CDF)

$$F_X(x) := P(X \le x)$$

• Density / mass function $p_X(x)$

Wikipedia CDF

Basics: Expectation & Variance

Another advantage of RVs are ``summaries''

• Expectation: $E[X] = \sum_{a} a \times P(x = a)$ - The "average"

• Variance: $Var[X] = E[(X - E[X])^2]$

A measure of "spread"

Basics: Joint Distributions

- Move from one variable to several
- Joint distribution: P(X = a, Y = b)
 - Why? Work with **multiple** types of uncertainty that correlate with each other

Basics: Marginal Probability

• Given a joint distribution P(X = a, Y = b)

- Get the distribution in just one variable:

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

- This is the "marginal" distribution.

24	Pating fre						
1632	0. m.						1
001: 1	ginger ober					. 14	0
2	& Prace of Grouse and		16	" 7			
11	Packing Ver 20	æ	3			19	
Dec " 11	Dinner at Club-			20	4	2	6,
	Coffice				1.		6
12	Breaksast					1	6:
13	Bro Chest					1	6
	or ita nyarr					1	1
"	star 11 th				*	.4	01
14	Break fall				"	1	6
15	Breakfast					1	6 4
1833	114						
Jan 20	Sea at him chil						6
20	Breaklast					1	6.
~9	And the second					1	0,
71. 24	10 hords				"	1	",
reo 19	Joba Water -				"	"	0
23	Granged					1	6.
March 2.	2 In Julubes 3			s de la	**	/	"
April 30	Bundle of asparagus				"	"	10
Mar 1?	* Breakfast		1	6			
	Mailin			6		2	
11	Jere a	1			"	1	1
14	1				"	1	'
June 1	Jew			i	"	/	
			-	Ð	/	19	11
in a new						1	

Jerry's super blurry camera

- One pixel, 1-bit color sensor (green=trees, white=snow)
- Model T: comes with 1-bit temperature sensor (hot, cold)

Basics: Marginal Probability

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

$$[P(\text{hot}), P(\text{cold})] = \left[\frac{195}{365}, \frac{170}{365}\right]$$

Probability Tables

• Write our distributions as tables

- # of entries? 4.
 - If we have n variables with k values, we get k^n entries
 - **Big!** For a 1080p screen, 12 bit color, size of table: $10^{7490589}$
 - No way of writing down all terms

Independence

• Independence between RVs:

P(X,Y) = P(X)P(Y)

- Why useful? Go from k^n entries in a table to $\sim kn$
- Expresses joint as **product** of marginals

• requires domain knowledge

Conditional Probability

• For when we know something (i.e. Y=b),

$$P(X = a | Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$

$$\boxed{\begin{array}{r} P(Y = b) \\ \hline hot & 150/365 & 45/365 \\ \hline cold & 50/365 & 120/365 \\ \hline expression \\ \hline P(cold | white) = \frac{P(cold, white)}{P(white)} = \frac{120}{45 + 120} = 0.73$$

Conditional independence

require domain knowledge

P(X, Y|Z) = P(X|Z)P(Y|Z)

Chain Rule

- Apply repeatedly, $P(A_1, A_2, \dots, A_n)$
 - $= P(A_1)P(A_2|A_1)P(A_3|A_2, A_1)\dots P(A_n|A_{n-1}, \dots, A_1)$
- Note: still big!
 - If some **conditional independence**, can factor!
 - Leads to probabilistic graphical models

Q 2.1: Given joint distribution table:

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

What is the probability the temperature is hot given the weather is cloudy?

- A. 40/365
- B. 2/5
- C. 3/5

D. 195/365

Q 2.1: Back to our joint distribution table:

	Sunny	Cloudy	Rainy
hot	150/365	40/365	5/365
cold	50/365	60/365	60/365

What is the probability the temperature is hot given the weather is cloudy?

- A. 40/365
- **B.** 2/5
- C. 3/5

D. 195/365

Q 2.2: Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?

- A. 0.3
- B. 0.06
- C. 0.24
- D. 0.2

Q 2.2: Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?

- A. 0.3
- B. 0.06
- C. 0.24

D. 0.2

Reasoning With Conditional Distributions

- Evaluating probabilities:
 - Wake up with a sore throat.
 - Do I have the flu?
- Logic approach: $S \to F$
 - Too strong.
- Inference: compute probability given evidence P(F|S)
 - Can be much more complex!

Using Bayes' Rule

- Want: P(F|S)
- **Bayes' Rule:** $P(F|S) = \frac{P(F,S)}{P(S)} = \frac{P(S|F)P(F)}{P(S)}$
- Parts:
 - P(S) = 0.1 Sore throat rate
 - P(F) = 0.01 Flu rate
 - P(S|F) = 0.9 Sore throat rate among flu sufferers

So: P(F|S) = 0.09

Using Bayes' Rule

- Interpretation P(F|S) = 0.09
 - Much higher chance of flu than normal rate (0.01).
 - Very different from P(S|F) = 0.9
 - 90% of folks with flu have a sore throat
 - But, only 9% of folks with a sore throat have flu
- Idea: **update** probabilities from

evidence

wiseGEEK

• Fancy name for what we just did. Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- *H* is the hypothesis
- *E* is the evidence

• Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} \longleftarrow \text{Prior}$$

• Prior: estimate of the probability without evidence

• Terminology: $P(H|E) = \frac{P(E|H)P(H)}{P(E)}$

• Likelihood: probability of evidence given a hypothesis

• Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$
t Posterior

• Posterior: probability of hypothesis given evidence.

Two Envelopes Problem

- We have two envelopes:
 - E_1 has two black balls, E_2 has one black, one red
 - The **red** one is worth \$100. Others, zero
 - Open an envelope, see one ball. Then, can switch (or not).
 - You see a black ball. Switch?

Two Envelopes Solution

- Let's solve it. $P(E_1|\text{Black ball}) = \frac{P(\text{Black ball}|E_1)P(E_1)}{P(\text{Black ball})}$
- Now plug in: $P(E_1|\text{Black ball}) = \frac{1 \times \frac{1}{2}}{P(\text{Black ball})}$

 $P(E_2|\text{Black ball}) = \frac{\frac{1}{2} \times \frac{1}{2}}{P(\text{Black ball})}$

Naïve Bayes

• Conditional Probability & Bayes:

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1, \dots, E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

 If we further make the conditional independence assumption (a.k.a. Naïve Bayes)

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H) \cdots P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

Naïve Bayes

• Expression

 $P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$

- *H*: some class we'd like to infer from evidence
 - We know prior P(H)
 - Estimate $P(E_i|H)$ from data! ("training")
 - Very similar to envelopes problem.

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

- A. 5/104
- B. 95/100
- C. 1/100
- D. 1/2

Q 3.1: 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

Α.	5/104	S : Spam NS: Not Spam DS: Detected as Spam
В. С. D.	95/100 1/100 1/2	P(S) = 50 % spam email P(NS) = 50% not spam email P(DS NS) = 5% false positive, detected as spam but not spam P(DS S) = 99% detected as spam and it is spam

Applying Bayes Rule P(NS|DS) = (P(DS|NS)*P(NS)) / P(DS) = (P(DS|NS)*P(NS)) / (P(DS|NS)*P(NS) + P(DS|S)*P(S)) = 5/104

Q 3.2: A fair coin is tossed three times. Find the probability of getting 2 heads and a tail

- A. 1/8
- B. 2/8
- C. 3/8
- D. 5/8

Q 3.2: A fair coin is tossed three times. Find the probability of getting 2 heads and a tail

- A. 1/8
- B. 2/8
- C. 3/8
- D. 5/8

Readings

- Vast literature on intro probability and statistics.
- Local classes: Math/Stat 431
- Suggested reading:

Probability and Statistics: The Science of Uncertainty, Michael J. Evans and Jeff S. Rosenthal

http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf

(Chapters 1-3, excluding "advanced" sections)