
1

CS540 Intro to AI
Uninformed Search

University of Wisconsin-Madison
Spring 2024

Announcements
• Homework:
– HW7 extended, due on Tuesday Apr. 9 at 11 AM

• Class roadmap: Thursday, Apr. 4 Search I: Un-Informed search

Tuesday, Apr. 9 Search II: Informed search

3

Many AI problems can be
formulated as search.

How to make a sequence of decisions to reach a
desired goal.

Leverage computation and a known model of world
dynamics to make decisions.

“How the world changes in response to agent actions”

4

5

http://xkcd.com/1134/

6

http://xkcd.com/1134/

7

The search problem

• State space S : all valid configurations
• Initial state I = {(CSWF,)} ⊆ S
• Goal state G = {(,CSWF)} ⊆ S
• Successor function succs(s) ⊆ S : states reachable in

one step from state s
▪ succs((CSWF,)) = {(CW, SF)}
▪ succs((CWF,S)) = {(CW,FS), (W,CFS), (C, WFS)}

• Cost(s,s’)=1 for all steps. (weighted later)
• The search problem: find a solution path from a state

in I to a state in G.
▪ Optionally minimize the cost of the solution.

C S W F

8

A directed graph in state space

CSWF, CW,SF CWF, S

W, CFS

C, WSF

WFS, C

CSF, W

S, CFW SF, CW , CSWF

C S W F

start goal

9

Search examples
• 8-puzzle

• States = 3x3 array configurations
• Actions / Operators = up to 4 kinds of movement
• Cost = 1 for each move

10

Search examples

• Water jugs: how to get 1?

State = (x,y), where x = number of gallons of water in the 5-gallon jug and
y is gallons in the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

5 25

11

Search examples

• Water jugs: how to get 1?

State = (x,y), where x = number of gallons of water in the 5-gallon jug and
y is gallons in the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

Operators
(x,y) -> (0,y) ; empty 5-gal jug
(x,y) -> (x,0) ; empty 2-gal jug
(x,2) and x<=3 -> (x+2,0) ; pour 2-gal into 5-gal
(x,0) and x>=2 -> (x-2,2) ; pour 5-gal into 2-gal
(1,0) -> (0,1) ; empty 5-gal into 2-gal

5 25

12

Search examples
• Route finding (State? Successors? Cost weighted)

14

A directed graph in state space

• In general there will be many generated, but un-expanded states at any
given time

• One has to choose which one to expand next

CSWF, CW,SF CWF, S

W, CFS

C, WSF

WFS, C

CSF, W

S, CFW SF, CW , CSWF

C S W F

start goal

15

Different search strategies
• The generated, but not yet expanded states form the

fringe (OPEN).
• The essential difference is which one to expand first.
• Deep or shallow?

CSWF, CW,SF CWF, S

W, CFS

C, WSF

WFS, C

CSF, W

S, CFW SF, CW , CSWF

start goal

16

Uninformed search on trees
• Uninformed means we only know:

– The goal test
– The succs() function

• But not which non-goal states are better: that would
be informed search (next topic).

• For now, we also assume succs() graph is a tree.
▪ Won’t encounter repeated states.
▪ We will relax it later.

• Many search strategies:
• We will see BFS, UCS, DFS, IDS

• Differ by what un-expanded nodes to expand

17

Breadth-first search (BFS)
Expand the shallowest node first
• Examine states one step away from the initial states
• Examine states two steps away from the initial states
• and so on…
ripple

goal

18

Breadth-first search (BFS)
Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

19

Breadth-first search (BFS)

queue (fringe, OPEN)
 [A] 

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

20

Breadth-first search (BFS)

queue (fringe, OPEN)
 [CB]  A

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

21

Breadth-first search (BFS)

queue (fringe, OPEN)
 [EDC]  B

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

22

Breadth-first search (BFS)

queue (fringe, OPEN)
[GFED]  C

If G is a goal, we've seen it, but
we don't stop!

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

23

Breadth-first search (BFS)

queue
[] G

... until much later we pop G.
 Looking foolish?

Indeed. But let’s be
consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Search tree

24

Breadth-first search (BFS)

queue
[] G

... until much later we pop G.

We need back pointers to
recover the solution path.

Looking foolish?
Indeed. But let’s be
consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Search tree

25

Performance of BFS
• Assume:

▪ the graph may be infinite.
▪ Goal(s) exists and is only finite steps away.

• Will BFS find at least one goal?
• Will BFS find the least cost goal?
• Time complexity?

▪ # states generated
▪ Goal d edges away
▪ Branching factor b

• Space complexity?
▪ # states stored

goal

26

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)
▪ The queue / fringe (smaller, but still O(bd))

27

What’s in the fringe (queue) for BFS?
• Convince yourself this is O(bd)

goal

28

Performance of search algorithms on trees

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth

29

Q1-1: You are running BFS on a finite tree-structured state space
graph that does not have a goal state. What is the behavior of BFS?

1. Visit all N nodes, then
return one at random

2. Visit all N nodes, then
stop and return “failure”

3. Visit all N nodes, then
return the node farthest
from the initial state

4. Get stuck in an infinite
loop

30

Q1-1: You are running BFS on a finite tree-structured state space
graph that does not have a goal state. What is the behavior of BFS?

1. Visit all N nodes, then
return one at random

2. Visit all N nodes, then
stop and return “failure”

3. Visit all N nodes, then
return the node farthest
from the initial state

4. Get stuck in an infinite
loop

31

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)
▪ The queue / fringe (smaller, but still O(bd))

Solution:
Uniform-cost

search

32

Uniform-cost search

• Find the least-cost goal

• Each node has a path cost from start (= sum of
edge costs along the path).

• Expand the least cost node first.

• Use a priority queue instead of a normal queue

▪ Always take out the least cost item

33

Example

S

A B C

D E G

1
5 8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

1: (S,0), [(A,1), (B,5), (C,8)]
2: (A,1), [(B,5), (C,8), (D,4), (E,8),
(G,10)]
3: (D,4), [(B,5), (C,8), (E,8), (G,10)]
4: (B,5), [(C,8), (E,8), (G,9)]
5: (C,8), [(E,8), (G,9)]
6: (E,8), [(G,9)]
7: (G,9), []: Success!

34

Uniform-cost search (UCS)
• Complete and optimal (if edge costs ≥ ε > 0)
• Time and space: can be much worse than

BFS
▪ Let C* be the cost of the least-cost goal
▪ O(bC*/ ε)

goal

35

Performance of search algorithms on trees

O(bC*/ε)O(bC*/ε)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth

36

Q1-2: You are running UCS in the state space graph below. You just called
the successor function on node D. What is the cost of node F?

1. 2

2. 7

3. 8

4. 9

I

A B C

E

10
2

3

66

D

1

F

37

Q1-2: You are running UCS in the state space graph below. You just called
the successor function on node D. What is the cost of node F?

1. 2

2. 7

3. 8

4. 9

I

A B C

E

10
2

3

66

D

1

F

The cost is simply the sum of the edge costs along the
path from the initial state to D and then to F.

38

Q1-3: You are running UCS in the state space graph below. You just
expanded (visited) node C. What node will the search expand next?

1. A

2. D

3. E

4. F

I

A B C

E

10
2

3

66

D

1

F

39

Q1-3: You are running UCS in the state space graph below. You just
expanded (visited) node C. What node will the search expand next?

1. A

2. D

3. E

4. F

I

A B C

E

10
2

3

66

D

1

F

UCS has the property that it will always
check a smaller cost node before larger
cost node.

I and B have smaller cost than C, so they
must have been expanded before C. D
has smaller cost than E F A, so D must
be expanded before E F A.

40

General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)
 # problem describes the start state, operators, goal test, and
 # operator costs
 # queueing-function is a comparator function that ranks two states
 # general-search returns either a goal node or "failure"

 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
 problem.OPERATORS))
 # succ(s)=EXPAND(s, OPERATORS)
 # Note: The goal test is NOT done when nodes are generated
 # Note: This algorithm does not detect loops
 end

41

Performance of BFS
Four measures of search algorithms:
• Completeness (not finding all goals): yes, BFS will

find a goal.
• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.
• Time complexity (worst case): goal is the last node

at radius d.
▪ Have to generate all nodes at radius d.
▪ b + b2 + … + bd ~ O(bd)

• Space complexity (bad)
▪ Back pointers for all generated nodes O(bd)
▪ The queue / fringe (smaller, but still O(bd))

Solution:
Uniform-cost

search

Solution:
Depth-first

search

42

Depth-first search
Expand the deepest node first
1. Select a direction, go deep to the end
2. Slightly change the end
3. Slightly change the end some more…
fan

goal

43

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)
1. A, [B, C]
2. B, [D, E, C]
3. D, [E, C]
4. E, [C]
5. C, [F, G]
6. F, [G]
7. G

44

What’s in the fringe for DFS?

goal c.f. BFS O(bd)

• m = maximum depth of graph from start
• m(b-1) ~ O(mb)
(Space complexity)

• “backtracking search” even less space
▪ generate siblings (if applicable)

45

What’s wrong with DFS?
• Infinite tree: may not find goal (incomplete)
• May not be optimal
• Finite tree: may visit almost all nodes, time

complexity O(bm)

goal

goal

c.f. BFS O(bd)

46

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/ε)O(bC*/ε)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

47

Q2-1: You are running DFS in the state space graph below. DFS expands nodes
left to right. G is the goal state. The state space graph is infinite (the path after D

does not terminate). What is the behavior of DFS?

1. Get stuck in
an infinite
loop

2. Return A

3. Return G

4. Return
“failure”

48

Q2-1: You are running DFS in the state space graph below. DFS expands nodes
left to right. G is the goal state. The state space graph is infinite (the path after D

does not terminate). What is the behavior of DFS?

1. Get stuck in
an infinite
loop

2. Return A

3. Return G

4. Return
“failure”

49

Q2-2: You need to search a randomly generated state space graph with one goal,
uniform edges costs, d=2, and m=100. Considering worst case behavior, do you

select BFS or DFS for your search?

1. BFS

2. DFS

50

Q2-2: You need to search a randomly generated state space graph with one goal,
uniform edges costs, d=2, and m=100. Considering worst case behavior, do you

select BFS or DFS for your search?

1. BFS

2. DFS

DFS might get stuck going down
one branch indefinitely

51

How about this?
1. DFS, but stop if path length > 1.
2. If goal not found, repeat DFS, stop if path length > 2.
3. And so on…
fan within ripple

goal

goal

52

Iterative deepening

• Search proceeds like BFS, but fringe is like
DFS
▪ Complete, optimal like BFS
▪ Small space complexity like DFS
▪ Time complexity like BFS

• Preferred uninformed search method

53

Example

S

A B C

D E G

1
5 8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

54

Nodes expanded by:

• Breadth-First Search: S A B C D E G
Solution found: S A G

• Uniform-Cost Search: S A D B C E G
Solution found: S B G (This is the only uninformed search that worries

about costs.)
• Depth-First Search: S A D E G

Solution found: S A G

• Iterative-Deepening Search: S A B C S A D E G
Solution found: S A G

57

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/ε)O(bC*/ε)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

O(bd)O(bd)Y, if 1YIterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

58

If state space graph is not a tree
• The problem: repeated states

• Ignore the danger of repeated states: wasteful
(BFS) or impossible (DFS). Can you see why?

• How to prevent it?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

59

If state space graph is not a tree

• We have to remember already-expanded states

(CLOSED).

• When we take out a state from the fringe (OPEN),

check whether it is in CLOSED (already expanded).

▪ If yes, throw it away.

▪ If no, expand it (add successors to OPEN), and

move it to CLOSED.

60

Q3-1: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by BFS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

61

Q3-1: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by BFS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

62

Q3-2: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by UCS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

63

Q3-2: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by UCS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

64

Q3-3: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by DFS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

65

Q3-3: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by DFS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

66

Q3-4: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by IDS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

67

Q3-4: Consider the state space graph below. Goal states have bold borders.
Nodes are expanded left to right when there are ties. What solution path is

returned by IDS?

1. IADFH

2. IADFJ

3. IAG

4. ICEG

68

What you should know

• Problem solving as search: state, successors, goal test
• Uninformed search

▪ Breadth-first search
•Uniform-cost search

▪ Depth-first search
▪ Iterative deepening

• Can you unify them using the same algorithm, with different priority
functions?

• Performance measures
▪ Completeness, optimality, time complexity, space complexity

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Q1-1: You are running BFS on a finite tree-structured state space graph that does not have a goal state. What is the behavior of BFS?
	Q1-1: You are running BFS on a finite tree-structured state space graph that does not have a goal state. What is the behavior of BFS?
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Q1-2: You are running UCS in the state space graph below. You just called the successor function on node D. What is the cost of node F?
	Q1-2: You are running UCS in the state space graph below. You just called the successor function on node D. What is the cost of node F?
	Q1-3: You are running UCS in the state space graph below. You just expanded (visited) node C. What node will the search expand next?
	Q1-3: You are running UCS in the state space graph below. You just expanded (visited) node C. What node will the search expand next?
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Q2-1: You are running DFS in the state space graph below. DFS expands nodes left to right. G is the goal state. The state space graph is infinite (the path after D does not terminate). What is the behavior of DFS?
	Q2-1: You are running DFS in the state space graph below. DFS expands nodes left to right. G is the goal state. The state space graph is infinite (the path after D does not terminate). What is the behavior of DFS?
	Q2-2: You need to search a randomly generated state space graph with one goal, uniform edges costs, d=2, and m=100. Considering worst case behavior, do you select BFS or DFS for your search?
	Q2-2: You need to search a randomly generated state space graph with one goal, uniform edges costs, d=2, and m=100. Considering worst case behavior, do you select BFS or DFS for your search?
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Q3-1: Consider the state space graph below. Goal states have bold borders. Nodes are expanded left to right when there are ties. What solution path is returned by BFS?
	Q3-1: Consider the state space graph below. Goal states have bold borders. Nodes are expanded left to right when there are ties. What solution path is returned by BFS?
	Q3-2: Consider the state space graph below. Goal states have bold borders. Nodes are expanded left to right when there are ties. What solution path is returned by UCS?
	Q3-2: Consider the state space graph below. Goal states have bold borders. Nodes are expanded left to right when there are ties. What solution path is returned by UCS?
	Q3-3: Consider the state space graph below. Goal states have bold borders. Nodes are expanded left to right when there are ties. What solution path is returned by DFS?
	Q3-3: Consider the state space graph below. Goal states have bold borders. Nodes are expanded left to right when there are ties. What solution path is returned by DFS?
	Q3-4: Consider the state space graph below. Goal states have bold borders. Nodes are expanded left to right when there are ties. What solution path is returned by IDS?
	Q3-4: Consider the state space graph below. Goal states have bold borders. Nodes are expanded left to right when there are ties. What solution path is returned by IDS?
	Slide Number 68

