

CS 540 Introduction to Artificial Intelligence Games I

University of Wisconsin-Madison Spring 2024

Announcements

- Homework:
 - HW8 due on **Tuesday 16th at 11 AM**

• Class roadmap:

Thursday, Apr. 11 th	Games – Part I
Tuesday, Apr. 16 th	Games – Part II
Thursday, Apr. 18 th	Reinforcement Learning

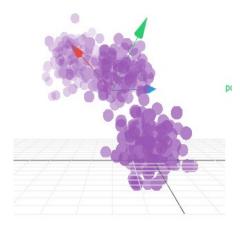
Outline

- Introduction to game theory
 - Properties of games, mathematical formulation
- Simultaneous-Move Games
 - Normal form, strategies, dominance, Nash equilibrium

So Far in The Course

We looked at techniques:

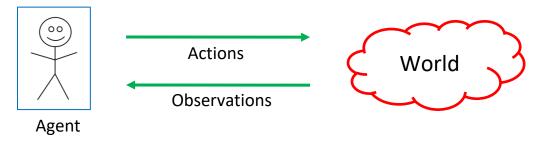
- **Unsupervised:** See data, do something with it. Unstructured.
- **Supervised:** Train a model to make predictions. More structure (labels).
- **Planning and Games**: Much more structure.



indoor

More General Model

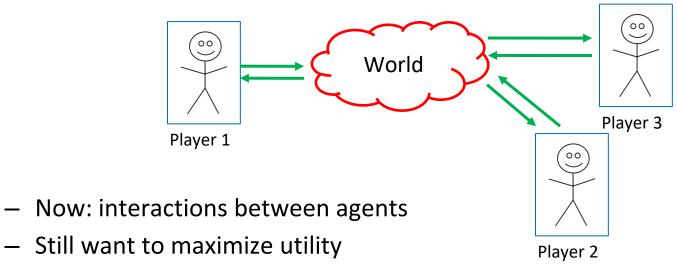
Suppose we have an **agent interacting** with the **world**



- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: now **data** consists of actions, observations, and rewards
 - Setup for decision theory, reinforcement learning, planning

Games: Multiple Agents

Games setup: multiple agents



- Requires **strategic** decision making.

Modeling Games: Properties

Let's work through **properties** of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
- Sequential or simultaneous moves

Property 1: Number of players

1 or more players

- Usually interested in \geq 2 players
- Typically a finite number of players

Property 2: Action Space

Action space: set of possible actions an agent can choose from.

Can be finite or infinite.

Examples:

- Rock-paper-scissors
- Tennis

Property 3: Deterministic or Random

- Is there **chance** in the game?
 - Poker
 - Chess
 - Scrabble

Property 4: Sum of payoffs

• Two basic types: zero sum vs. general sum.

- Zero sum: one player's win is the other's loss
 - Pure competition.
 - Example: rock-paper-scissors

- General sum
 - Example: driving to work, prisoner's dilemma

Property 5: Sequential or Simultaneous Moves

• Simultaneous: all players take action at the same time

- Sequential: take turns
 - But payoff is often only revealed at end of game

Quiz break:

Give the properties of the game shown on the right:

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
- Finite or infinite action-space?
- Sequential or simultaneous?

Normal Form Game

Mathematical description of simultaneous games.

- *n* players {1,2,...,*n*}
- Player *i* chooses strategy *a_i* from action space *A_i*.
- Strategy profile: *a* = (*a*₁, *a*₂, ..., *a*_n)
- Player *i* gets rewards *u_i*(*a*)

- **Note**: reward depends on other players!

• We consider the simple case where all reward functions are common knowledge.

Example of Normal Form Game

Ex: Prisoner's Dilemma

Player 2	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

- 2 players, 2 actions: yields 2x2 payoff matrix
- Strategy set: {Stay silent, betray}

Strictly Dominant Strategies

Let's analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if a_i strictly better than b *regardless* of what other players do, *a_i* is **strictly dominant**
- I.e., $u_i(a_i, a_{-i}) > u_i(b, a_{-i}), \forall b \neq a_i, \forall a_{-i}$

All of the other entries

of a excluding i
 Sometimes a dominant strategy does not exist!

Strictly Dominant Strategies Example

Back to Prisoner's Dilemma

- Examine all the entries: betray strictly dominates
- Check:

Player 2 Player 1	Stay silent	Betray
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

Dominant Strategy Equilibrium

 a^* is a (strictly) dominant strategy equilibrium (DSE), if every player *i* has a strictly dominant strategy a_i^*

• Rational players will play at DSE, if one exists.

Player 2	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

Dominant Strategy: Absolute Best Responses Player *i*'s best response to strategy to $a_{-i}BR(a_{-i}) = \arg\max_{b} u_i(b, a_{-i})$

BR(player2=silent) = betray BR(player2=betray) = betray

Player 2 Player 1	Stay silent	Betray
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

 a_i^* is the dominant strategy for player *i*, if $a_i^* = BR(a_{-i}), \forall a_{-i}$

Dominant Strategy Equilibrium

Dominant Strategy Equilibrium does not always exist.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

Nash Equilibrium

*a** is a Nash equilibrium if no player has an incentive to **unilaterally deviate**

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

Nash Equilibrium: Best Response to Each Other

 a^* is a Nash equilibrium:

 $\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$

(no player has an incentive to unilaterally deviate)

- Equivalently, for each player i: $a_i^* \in BR(a_{-i}^*) = argmax_b u_i(b, a_{-i}^*)$
- Compared to DSE (a DSE is a NE, the other direction is generally not true):

 $a_i^* = BR(a_{-i}), \forall a_{-i}$

Nash Equilibrium: Best Response to Each Other

 a^* is a Nash equilibrium:

 $\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$

(no player has an incentive to unilaterally deviate)

- Pure Nash equilibrium:
 - A **pure strategy** is a deterministic choice (no randomness).
 - Later: we will consider **mixed** strategies
 - In pure Nash equilibrium, players can only play pure strategies.

Finding (pure) Nash Equilibria by hand

• As player 1: For each column, find the best response, underscore it.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

Finding (pure) Nash Equilibria by hand

• As player 2: For each row, find the best response, upper-score it.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

Finding (pure) Nash Equilibria by hand

• Entries with both lower and upper bars are pure NEs.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

Pure Nash Equilibrium may not exist So far, pure strategy: each player picks a deterministic strategy. But:

Player 2 Player 1	rock	paper	scissors
rock	0, 0	-1, 1	<u>1, -1</u>
paper	1, -1	0, 0	-1, 1
scissors	-1, 1	1, -1	0, 0

Mixed Strategies

- Can also randomize actions: "mixed"
- Player *i* assigns probabilities *x_i* to each action

$$x_i(a_i)$$
, where $\sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \ge 0$

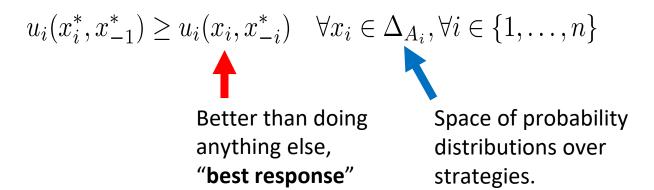
• Now consider **expected rewards**

$$u_i(x_i, x_{-i}) = E_{a_i \sim x_i, a_{-i} \sim x_{-i}} u_i(a_i, a_{-i}) = \sum_{a_i} \sum_{a_{-i}} x_i(a_i) x_{-i}(a_{-i}) u_i(a_i, a_{-i})$$

Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

• This is a Nash equilibrium if



• Intuition: nobody can **increase expected reward** by changing only their own strategy.

Mixed Strategy Nash Equilibrium Example: $x_1^*(\cdot) = x_2^*(\cdot) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Player 2 Player 1	rock	paper	scissors
rock	0, 0	-1, 1	1, -1
paper	1, -1	0, 0	-1, 1
scissors	-1, 1	1, -1	0, 0

Example: Two Finger Morra. Show 1 or 2 fingers. The "even player" wins if the sum is even, and vice versa.

odd even	f1	f2
f1	2, -2	-3, 3
f2	-3, 3	4, -4

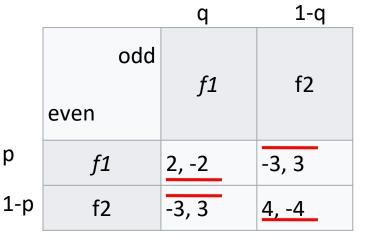
Two Finger Morra. Two-player zero-sum game. No pure NE:

odd even	f1	f2
f1	2, -2	-3, 3
f2	-3, 3	4, -4

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p)By definition, p is best response to $q: u_1(p,q) \ge u_1(p',q) \forall p'$.

Note
$$u_1(p,q) = pu_1(f_1,q) + (1-p)u_1(f_2,q)$$

Average is no greater than components $\rightarrow u_1(p,q) = u_1(f_1,q) = u_1(f_2,q)$



$$u_{1}(f_{1},q) = u_{1}(f_{2},q)$$

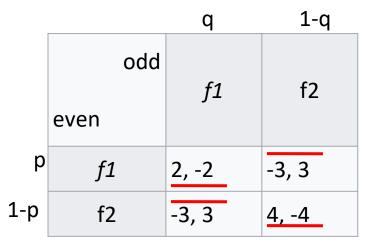
$$2q + (-3)(1-q) = (-3)q + 4(1-q)$$

$$q = \frac{7}{12}$$
Similarly, $u_{2}(p, f_{1}) = u_{2}(p, f_{2})$

$$7$$

$$p = \frac{12}{12}$$

At this NE, even gets -1/12, odd gets 1/12.



Properties of Nash Equilibrium

Major result: (John Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium
 - But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally **hard**.
 - Exception: two-player zero-sum games (can be found with linear programming).

Break & Quiz

- **Q 2.1**: Which of the following is **false?**
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is a Nash equilibrium for rock/paper/scissors
- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.1**: Which of the following is **false**?
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is a Nash equilibrium for rock/paper/scissors
- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.1**: Which of the following is **false**?
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is a Nash equilibrium for rock/paper/scissors
- A. Neither
- B. (i) but not (ii) (i) is indeed false: easy to check that there's no deterministic dominant strategy; (ii) is true: there is a mixed strategy Nash equilibrium
- C. (ii) but not (i)
- D. Both

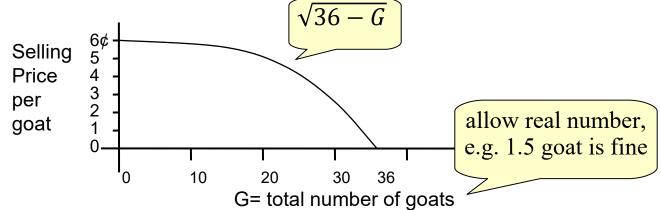
- **Q 2.2**: Which of the following is **true?**
- (i) Nash equilibria require each player to know other players' possible strategies
- (ii) Nash equilibria require rational play
- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.2**: Which of the following is **true?**
- (i) Nash equilibria require each player to know other players' possible strategies
- (ii) Nash equilibria require rational play
- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- Q 2.2: Which of the following is true?
- (i) Nash equilibria require each player to know other players' possible strategies
- (ii) Nash equilibria require rational play
- A. Neither (See below)
- B. (i) but not (ii) (Rational play required: i.e., what if prisoners desire longer jail sentences?)
- C. (ii) but not (i) (The basic assumption of Nash equilibria is knowing all of the strategies involved)
- D. Both

Pure NE in an Infinite game: The tragedy of the Commons

Price per goat



- How many goats should one (out of *n*) rational farmer graze?
- How much would the farmer earn?

Continuous Action Game

- Each farmer has infinite number of strategies $g_i \in [0,36]$
- The value for farmer *i*, when the *n* farmers play at (g₁, g₂, ..., g_n) is

$$u_i(g_1, g_2, \dots, g_n) = g_i \sqrt{36 - \sum_{j \in [n]} g_j}$$

- Assume a pure Nash equilibrium exists.
- Assume (by apparent symmetry) the NE is $(g^*, g^*, ..., g^*)$.

Finding g*

•
$$u_i(g_1, g_2, \dots, g_n) = g_i \sqrt{36 - \sum_j g_j}$$

• g* is the best response to others (g*,..., g*)

$$g^* = argmax_{h \in [0,36]} u_i(g^*, \dots, h, \dots, g^*)$$

= $argmax_h h \sqrt{36 - (n-1)g^* - h}$ i-th argument

Finding g*

$$g^* = argmax_h h \sqrt{36 - (n-1)g^* - h}$$

• Taking derivative w.r.t. *h* of the RHS, setting to 0:

$$g^* = \frac{72 - 2(n-1)g^*}{3}$$

$$g^* = \frac{72}{2n+1}$$
 So what?

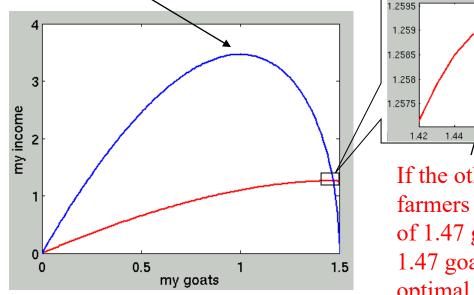
The tragedy of the Commons

 Say there are n=24 farmers. Each would rationally graze g_i* = 72/(2*24+1) = 1.47 goats
 Each would get 1.25¢

But if they cooperate and each grazes only 1 goat
Each would get 3.46¢

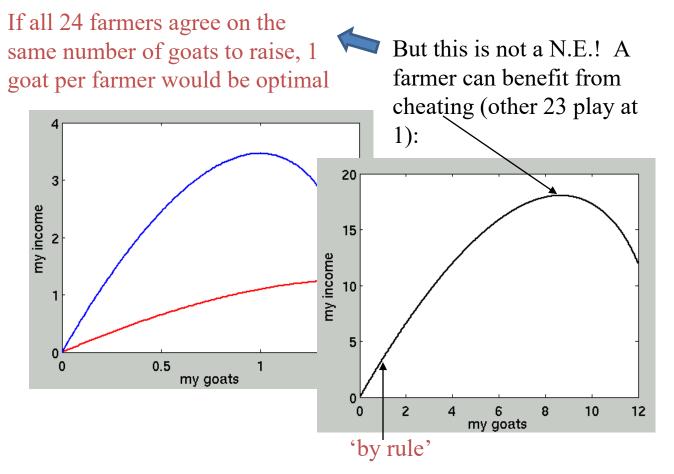
The tragedy of the Commons

If all 24 farmers agree on the same number of goats to raise, 1 goat per farmer would be optimal



1.421.441.461.481.5If the other 23farmers play the N.E.of 1.47 goats each,1.47 goats would beoptimal

The tragedy of the Commons



The tragedy

- Rational behaviors lead to sub-optimal solutions!
- Maximizing individual welfare not necessarily maximizes social welfare
- What went wrong?

Shouldn't have allowed free grazing?

It's not just the real is the use of the atmosphere and the oceans for dumping of pollutants.

Mechanism design: designing the rules of a game

Summary

- Intro to game theory
 - Characterize games by various properties
- Mathematical formulation for simultaneous games
 - Normal form, dominance, Nash equilibria, mixed vs pure