
CS 540 Introduction to Artificial Intelligence

Reinforcement Learning I

University of Wisconsin-Madison
Spring 2024

Announcements

• Homework:
– HW9 due on Tuesday 23rd at 11 AM

• Class roadmap:

Thursday, Apr. 18th Introduction to

Reinforcement Learning

Tuesday, Apr. 23rd Reinforcement Learning II

Thursday, Apr. 25th Advanced Search

Outline

• Introduction to reinforcement learning
– Basic concepts, mathematical formulation, MDPs, policies.

• Learning policies
– Q-learning, action-values, exploration vs exploitation.

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility

– Note: data consists of actions & observations
• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)

Examples: Gameplay Agents

AlphaZero:

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

Mnih et al, “Human-level control through deep reinforcement learning”

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video
Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp objects!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We’ve Learned "

Building The Theoretical Model

Basic setup:
• Set of states, S

• Set of actions, A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions that maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• Reward function: r(st)

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not earlier history (previous actions or states)

• More generally: 𝑟(𝑠𝑡 , 𝑎𝑡), potentially random

• Policy: action to take at a particular state

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

𝒓(𝑠) = −0.04 for every
non-terminal state

Back to MDP Setup

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: action to take at a particular state.

How do we find
the best policy?

Reinforcement Learning Challenges

Credit-assignment:

- May take many actions before reward is received. Which ones were most
important?

- Example: You study 15 minutes a day all semester. The morning of the
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it
the studying or the yogurt that led to the A?

Exploration vs. Exploitation:

- Transition probabilities and reward may be unknown to the learner.

- Should you keep trying actions that led to reward in the past or try new
actions that might lead to even more reward?

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value

• B. The policy maps states to actions

• C. The probability of next state can depend on current and
previous states

• D. The solution of MDP is to find a policy that maximizes the
cumulative rewards

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value

• B. The policy maps states to actions

• C. The probability of next state can depend on current and
previous states

• D. The solution of MDP is to find a policy that maximizes the
cumulative rewards

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value (True: need to be able to
compare)

• B. The policy maps states to actions (True: a policy tells you what action to
take for each state).

• C. The probability of next state can depend on current and previous states
(False: Markov assumption).

• D. The solution of MDP is to find a policy that maximizes the cumulative
rewards (True: want to maximize rewards overall).

Defining the Optimal Policy

For policy p, expected utility over all possible state

sequences from 𝑠0 produced by following that policy:

Called the value function (for p, 𝑠0)

𝑉𝜋 𝑠0 = ෍

sequences
starting from 𝑠0

𝑃 sequence 𝑈(sequence)

Probability of sequence

when following 𝜋

Utility of sequence

Discounting Rewards

One issue: these are possibly infinite series.
Convergence?

• Solution: discount future rewards.

• Discount factor g between 0 and 1
– Set according to how important present is versus future

– Note: has to be less than 1 for convergence

From Value to Policy

Now that 𝑉𝜋 𝑠0 is defined, what 𝑎 should we take?

• First, let 𝜋∗ be the optimal policy for 𝑉𝜋(𝑠0), and 𝑉∗(𝑠0) its
expected utility.

• What’s the expected utility following an action?

– Specifically, action 𝑎 in state 𝑠?

All the states we
could go to

Transition probability Expected rewards

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s) (and P).
– But it was defined in terms of the optimal policy!

– So we need some other approach to get V*(s).

– Instead, learn about the utility of actions directly.

Bellman Equation

Let’s walk over one step for the value function:

• Richard Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

Bellman Equation

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Credit L. Lazbenik

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy

• Know: reward r(s), transition probability P(s’|s,a)
– Knowing r and P is the “planning” problem. In reality r and P must be

estimated from interactions : “reinforcement learning”

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Value Iteration: Demo

Source: POMDPBGallery Julia Package

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1 / (1 -𝛾)

• C. 1 / (1 -𝛾2)

• D. 1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2)

• D. 1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2) (States: A,B,A,B,… rewards 1,0, 𝛾2,0, 𝛾4,0, …)

• D. 1

Q-Learning

• Our next reinforcement learning algorithm.
• Does not require knowing r or P. Learn from data of the

form:{(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}.
• Learns an action-value function Q*(s,a) that tells us the

expected value of taking a in state s.

• Note: 𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎).

• Optimal policy is formed as 𝜋∗(𝑠) = arg𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎)

The Q*(s,a) function

• Starting from state s, perform (perhaps suboptimal)
action a. THEN follow the optimal policy

• Equivalent to

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠) + 𝛾∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑉∗(𝑠′)

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠) + 𝛾∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′, 𝑎′)

Q-Learning Iteration

How do we get Q(s,a)?
• Iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Learning rate

Q-Learning

Learning rate

Exploration Vs. Exploitation

General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might prevent you from discovering the true optimal strategy

Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation
• With probability ε, take a random action; else the action with

the highest (current) Q(s,a) value.

Q-learning Algorithm
Input: step size 𝛼, exploration probability 𝜖
1. set Q(s,a) = 0 for all s, a.

2. For each episode:

3. Get initial state s.

4. While (s not a terminal state):

5. Perform a = 𝜖-greedy(Q, s), receive r, s’

6. 𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′))

7. 𝑠 ← 𝑠′

8. End While

9. End For

Explore: take action
to see what happens.

Update action-value
based on result.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action

• B. Perform at least 20,000 iterations.

• C. Re-start with different random initial table values.

• D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action

• B. Perform at least 20,000 iterations.

• C. Re-start with different random initial table values.

• D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations. (No: this is dependent on the

particular problem, not a general constant).
• C. Re-start with different random initial table values. (No: this is not

necessary in general).
• D. Prioritize exploitation over exploration. (No: insufficient exploration

means potentially unupdated state action pairs).

Summary

• Reinforcement learning setup

• Mathematical formulation: MDP

• Bellman Equation

• Value Iteration Algorithm

• The Q-learning Algorithm

	Slide 1: CS 540 Introduction to Artificial Intelligence Reinforcement Learning I
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Back to Our General Model
	Slide 5: Examples: Gameplay Agents
	Slide 6: Examples: Video Game Agents
	Slide 7: Examples: Video Game Agents
	Slide 8: Examples: Robotics
	Slide 9: Building The Theoretical Model
	Slide 10: Markov Decision Process (MDP)
	Slide 11: Example of MDP: Grid World
	Slide 12: Example of MDP: Grid World
	Slide 13: Grid World Abstraction
	Slide 14: Grid World Optimal Policy
	Slide 15: Back to MDP Setup
	Slide 16: Reinforcement Learning Challenges
	Slide 17: Break & Quiz
	Slide 18: Break & Quiz
	Slide 19: Break & Quiz
	Slide 20: Defining the Optimal Policy
	Slide 21: Discounting Rewards
	Slide 22: From Value to Policy
	Slide 23: Slight Problem…
	Slide 24: Bellman Equation
	Slide 25: Bellman Equation
	Slide 26: Value Iteration
	Slide 27: Value Iteration: Demo
	Slide 28: Break & Quiz
	Slide 29: Break & Quiz
	Slide 30: Break & Quiz
	Slide 31: Q-Learning
	Slide 32: The Q*(s,a) function
	Slide 33: Q-Learning Iteration
	Slide 34: Q-Learning
	Slide 35: Exploration Vs. Exploitation
	Slide 36: Q-Learning: ε-Greedy Behavior Policy
	Slide 37: Q-learning Algorithm
	Slide 39: Break & Quiz
	Slide 40: Break & Quiz
	Slide 41: Break & Quiz
	Slide 42: Summary

