VA AT T

CS 540 Introduction to Artificial Intelligence
Reinforcement Learning |

University of Wisconsin-Madison
Spring 2024

Announcements

Homework:
— HWS9 due on Tuesday 23" at 11 AM

Tuesday, Apr. 23 Reinforcement Learning Il

Class roadmap:

Thursday, Apr. 25t Advanced Search

Outline

* Introduction to reinforcement learning
— Basic concepts, mathematical formulation, MDPs, policies.

* Learning policies
— Q-learning, action-values, exploration vs exploitation.

Back to Our General Model

We have an agent interacting with the world

\:‘:/ Actions m
Observations

Agent

* Agent receives a reward based on state of the world
— Goal: maximize reward / utility ($$9)

— Note: data consists of actions & observations
* Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

0o =
‘2;@;3 Google DeepMind §03 AlphaGo Policy network Value network
4 Challenge Match

8-15 March 2016

Py, @ls) v (5)

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

DQN Rewards

Input

004 002 000 o0z 004
Timestep

ﬂ Image convolutions

Hidden layers

Qutput Qualues

Mnih et al, “Human-level control through deep reinforcement learning”

02 04 06 0§ 10
Timestep

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Dimensions

= Minecraft

3D
ViZDoom
s = - = DM Lab
—— Fadr
ALE
2D
Montezuma's
Revenge

Single-agent

Quake 111 Ng
Arena CTF \.’_

StarCraft
Dota2

Number of

. agents
Multi-agent

Shao et al, "A Survey of Deep Reinforcement Learning in Video

Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp objects!)

?‘
r
2 &N
-

.

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning — Lessons We’ve Learned "

Building The Theoretical Model

Basic setup:) .
Actions
* Set of states, S)
] Observations
e Set of actions, A Agent

* Information: at time t, observe state s, € S. Get reward r,

* Agent makes choice g, € A. State changes to s,,, continue
Goal: find a map from states to actions that maximize rewards.

t

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

« State setS. Initial state s, Action set A
* Reward function: r(s,)

« State transition model: P(s¢11]St, at)

— Markov assumption: transition probability only depends on s, and a,,
and not earlier history (previous actions or states)

e More generally: 7(s¢, a;), potentially random
* Policy: 7(s) : S — A action to take at a particular state

ao ai a2
So —> 81 —=> 89 —> ...

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

f@i

r(s) = —0.04 for every
®©) non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

0.1 0.1

1| START r(s) = —0.04 for every
non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

3 - e - + 1 0.8
) f f - 0.1 0.1
1 ? - - -
r(s) = —0.04 for every

1 2 3 4 non-terminal state

Back to MDP Setup

The formal mathematical model:
« State setS. Initial state s, Action set A
* State transition model: P(s;.1|s¢,a)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

_ How do we find
* Reward function: r(s,) / tho best poficy?

* Policy: 7T(8) .S — A action to take at a particular state.

ao a1 a2
S —>S1 —=> 89 — ...

Reinforcement Learning Challenges

Credit-assignment:
- May take many actions before reward is received. Which ones were most
important?

- Example: You study 15 minutes a day all semester. The morning of the
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it

the studying or the yogurt that led to the A?
Exploration vs. Exploitation:
- Transition probabilities and reward may be unknown to the learner.

- Should you keep trying actions that led to reward in the past or try new
actions that might lead to even more reward?

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value
* B. The policy maps states to actions

e C.The probability of next state can depend on current and
previous states

 D. The solution of MDP is to find a policy that maximizes the
cumulative rewards

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value
* B. The policy maps states to actions

C. The probability of next state can depend on current and
previous states

 D. The solution of MDP is to find a policy that maximizes the
cumulative rewards

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

A. The reward function must output a scalar value (True: need to be able to
compare)

B. The policy maps states to actions (True: a policy tells you what action to
take for each state).

C. The probability of next state can depend on current and previous states
(False: Markov assumption).

D. The solution of MDP is to find a policy that maximizes the cumulative
rewards (True: want to maximize rewards overall).

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from sy produced by following that policy:

Utility of sequence

VT(sy) = z P(sequence)U (sequence)

sequences
starting from sq Probability of sequence

when following 7

Called the value function (for =, s)

Discounting Rewards

One issue: these are possibly infinite series.
Convergence?

e Solution: discount future rewards.

U(s0,51--) = 1(s0) +77(s1) +7°7(=) 4r(se)

>0

* Discount factory between 0 and 1
— Set according to how important present is versus future
— Note: has to be less than 1 for convergence

From Value to Policy

Now that V™ (s,) is defined, what a should we take?

* First, let T* be the optimal policy for V™ (sy), and V" (s;) its
expected utility.

 What’s the expected utility following an action?

— Specifically, action a in state s?

ZP(S’|S,@)V*(S’)

LY

All the states we 1;sition probability Expected rewards
could go to

Slight Problem...

Now we can get the optimal policy by doing

m*(s) = argmax, Z P(s'|s,a)V*(s)

S

 So we need to know V*(s) (and P).
— But it was defined in terms of the optimal policy!
— So we need some other approach to get V*(s).

— Instead, learn about the utility of actions directly.

Bellman Equation

Let’s walk over one step for the value function:

Vis)=r(s)+7 max Z P(s'|s,a)V*(s)

T\SY }

Current state Discounted expected
reward future rewards

* Richard Bellman: inventor of dynamic programming

Bellman Equation

Let’s walk over one step for the value function:

= 1(s) + *ymgxz P(s'|s,a)V*(s)

L }
T |

Current state Discounted expected
reward future rewards

A

A s

Credit L. Lazbenik

Value Iteration

Q: how do we find V*(s)?
« Why do we want it? Can use it to get the best policy

* Know: reward r(s), transition probability P(s’|s,a)

— Knowing r and P is the “planning” problem. In reality r and P must be
estimated from interactions : “reinforcement learning”

* Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Visa(s) = 1(s) + ymax Y P(s'ls, a)Vi()

Value Iteration: Demo

Value |terat|on 5tep 1 0.100
1|:|"r'r1"r1"r'r'r'r'r'r'r'r1' — T T T T Y T T T T 1
-+++++++++++++++++++++++-|
R L R E T 4
A E E E R E E R T E T 0.075
R E E E E E E E R E E E R E EEE Y]
R E R R R T E Y
A L E L E R E L E E E E E E EE EEEEEEEE Y
A A I T T T T T I N I R R - 0.050
I E E L E R E R L E E E E E R E E R E Y]
R L E R T Y
R E E E L E N o O I
A L R R R R T A A A e - 0.025
L
O R E E N I T A R
R E L E E L E E N T o T I o 0.000
N L E E L E T T I I A T A -
R L E R R T E Y
NAREE LR R R R LR EEERER
L E T E Y L _0.025
R E E L E R E R L L E E E E EE E R E Y]
e + + +++ + R+
I A T I I I I L X
R R E L E E L E K T I I A T L _0.050
HEEEEEE R E RS N R E R R R EE N YN R
R R R E N I T A i
R E E L E L E T o T I o
F+ ++ ++++++ R A —0.075
R L E R R T EE Y
R E L E E E R E E E EE R E E R E Y]
Dha_&_a_&_a_&_a_a_&_a_u_&_a_&_a_&_a_a_&_a_u_a_a_“_&_i
0 2) B 8 10 —0.100

Source: POMDPBGallery Julia Package

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let y be the discounting factor. Let r: m(A) = n(B) = move (i.e., an
“always move” policy). What is the value function V" (A)?

- AO
* B.1/(1-y)
« C.1/(1-y?)

- D.1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let y be the discounting factor. Let r: m(A) = n(B) = move (i.e., an
“always move” policy). What is the value function V" (A)?

¢« A0
* B.1/(1-y)

- C.1/(1-y%)
+ D.1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let y be the discounting factor. Let r: m(A) = n(B) = move (i.e., an
“always move” policy). What is the value function V" (A)?

¢« A0
* B.1/(1-y)

* C.1/(1-y?) (States: A,B,A,B,... rewards 1,0, ¥2,0, 4,0, ...)
e D.1

Q-Learning

Our next reinforcement learning algorithm.

Does not require knowing r or P. Learn from data of the
form:{(s¢, at, 13, Se+1)}-

Learns an action-value function Q*(s,a) that tells us the
expected value of taking a in state s.

* Note: V*(s) = maxQ~(s, a).
a

Optimal policy is formed as t*(s) = argmaxQ™(s, a)
a

The Q*(s,a) function

e Starting from state s, perform (perhaps suboptimal)
action a. THEN follow the optimal policy

Q"(s,a) =71(s) +yXP(s'[s,a)V"(s")

* Equivalent to

Q*(s,a) =7r(s) + yz;P(S’|S, a)maqu*(s’, a’)

Q-Learning lteration

How do we get Q(s,a)?

* |terative procedure
Q(8¢, ar) + Q(s¢,a¢) + afr(se) + vmng(SHh a) — Q(s¢,at)]

Learning rate

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Q-Learning

Estimate Q*(s,a) from data {(s;, as, 7%, S¢+1) }:

1. Initialize Q(.,.) arbitrarily (eg all zeros)
1. Except terminal states Q(Sicrminals-)=0

2. lterate over data until Q(.,.) converges:

Q(spar) « (1 —a)Q(spar) +a(ry +vy max Q(st+1,b))

/

Learning rate

Exploration Vs. Exploitation

General question!
* Exploration: take an action with unknown consequences

— Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

— Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

— Pros:
* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

— Cons:
* Might prevent you from discovering the true optimal strategy

Q-Learning: e-Greedy Behavior Policy

Getting data with both exploration and exploitation

* With probability €, take a random action; else the action with
the highest (current) Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > e
a =
random a € A otherwise

Q-learning Algorithm

Input: step size a, exploration probability €

1. set Q(s,a) =0 for all s, a.

2. For each episode:

3. Getinitial state s. Explore: take action
4. While (s not a terminal state): to see what happens.

5 Perform a = e-greedy(Q, s), receiver, s’

_ . ! !
6 Q(s,a)=(1—a)Q(s,a) + a(r + ymac,le(s ,a'))
7 S « S’ Update action-value
8
9

 End While based on result.
. End For

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

* A.Visit every state and try every action

 B. Perform at least 20,000 iterations.

e C. Re-start with different random initial table values.
* D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

* A. Visit every state and try every action

 B. Perform at least 20,000 iterations.

e C. Re-start with different random initial table values.
* D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

e A. Visit every state and try every action

* B. Perform at least 20,000 iterations. (No: this is dependent on the
particular problem, not a general constant).

e C. Re-start with different random initial table values. (No: this is not
necessary in general).

* D. Prioritize exploitation over exploration. (No: insufficient exploration
means potentially unupdated state action pairs).

Summary

Reinforcement learning setup
Mathematical formulation: MDP
Bellman Equation

Value lteration Algorithm

The Q-learning Algorithm

	Slide 1: CS 540 Introduction to Artificial Intelligence Reinforcement Learning I
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Back to Our General Model
	Slide 5: Examples: Gameplay Agents
	Slide 6: Examples: Video Game Agents
	Slide 7: Examples: Video Game Agents
	Slide 8: Examples: Robotics
	Slide 9: Building The Theoretical Model
	Slide 10: Markov Decision Process (MDP)
	Slide 11: Example of MDP: Grid World
	Slide 12: Example of MDP: Grid World
	Slide 13: Grid World Abstraction
	Slide 14: Grid World Optimal Policy
	Slide 15: Back to MDP Setup
	Slide 16: Reinforcement Learning Challenges
	Slide 17: Break & Quiz
	Slide 18: Break & Quiz
	Slide 19: Break & Quiz
	Slide 20: Defining the Optimal Policy
	Slide 21: Discounting Rewards
	Slide 22: From Value to Policy
	Slide 23: Slight Problem…
	Slide 24: Bellman Equation
	Slide 25: Bellman Equation
	Slide 26: Value Iteration
	Slide 27: Value Iteration: Demo
	Slide 28: Break & Quiz
	Slide 29: Break & Quiz
	Slide 30: Break & Quiz
	Slide 31: Q-Learning
	Slide 32: The Q*(s,a) function
	Slide 33: Q-Learning Iteration
	Slide 34: Q-Learning
	Slide 35: Exploration Vs. Exploitation
	Slide 36: Q-Learning: ε-Greedy Behavior Policy
	Slide 37: Q-learning Algorithm
	Slide 39: Break & Quiz
	Slide 40: Break & Quiz
	Slide 41: Break & Quiz
	Slide 42: Summary

