
CS 540 Introduction to Artificial Intelligence
Search III: Advanced Search (aka Optimization)

University of Wisconsin-Madison

Spring 2024

Announcements

• Homework: HW 10 released and due on Tuesday Apr. 30th at 11 am

• Course evaluation: Ends May 3rd

• Final Information: next slide

• Class roadmap:

Thursday, Apr. 25th Advanced Search

Tuesday, Apr. 30th Ethics and Trust in AI

Thursday, May 2nd Review

Final Information
• Time: May 7th 10:05 AM-12:05 PM
• Location (by section**):

– Noland 132: Section 001
– Engineering Hall 1800: Section 003
– Microbial Sciences 1220: Section 002
**To find your section go to MyUW->Course Schedule->It will say “LEC 00_”. Do not use canvas
to find your section (everyone will see CS540 001 since we merged the canvas site for all three
sections).

• Format: The final exam will be entirely multiple choice.
• Cheat sheet: you will be allowed a cheat sheet of a single piece of paper (8.5" x

11", front and back). The exam will focus on conceptual and applied AI
reasoning.

• Calculator: fine if it doesn’t have an Internet connection
• Detailed topic list + practice: https://piazza.com/class/lrjf9oinrox1zf/post/833
• May 2nd lecture: purely review and possibly bonus information

https://piazza.com/class/lrjf9oinrox1zf/post/833

4

Advanced Search Overview

Problem Setting

Hill Climbing Genetic
Algorithms

How is a search problem defined?

What is difference between two?

Fitness
Population
Cross-over
Mutation

Neighbors
Local vs. global optima

How different from other search types?

Outline

• Advanced Search & Hill-climbing
– More difficult problems, basics, local optima, variations

• Simulated Annealing
– Basic algorithm, temperature, tradeoffs

• Genetic Algorithms
– Basics of evolution, fitness, natural selection

Search vs. Optimization

Before: wanted a path from start state to goal state
• Uninformed search, informed search

New setting: optimization
• States s have values f(s)
• Want: Find s with optimal value f(s) (i.e, optimize over states)
• Challenging settings: too many states for previous search

approaches, but maybe not a differentiable function for
gradient descent.

Wiki TuringFin

Examples: n Queens

A classic puzzle:
• Place 8 queens on 8 x 8 chessboard so that no two have same

row, column, or diagonal.
• Can generalize to n x n chessboard.

• What are states s? Values f(s)?
– State: configuration of the board
– f(s): # of non-conflicting queens

Wiki

Examples: TSP

Famous graph theory problem.
• Get a graph G = (V,E). Goal: a path that visits each node exactly

once and returns to the initial node (a tour).
– State: a particular tour (i.e., ordered list of nodes)
– f(s): total weight of the tour
(e.g., total miles traveled)

J. Yu

Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)
• Recall our logic lecture. Conjunctive normal form

– Goal: find if satisfactory assignment exists.
– State: assignment to variables
– f(s): # satisfied clauses

(A ∨ ¬B ∨ C) ∧ (¬A ∨ C ∨ D) ∧ (B ∨ D ∨ ¬E) ∧ (¬ C ∨ ¬ D ∨ ¬E) ∧ (¬ A ∨ ¬C ∨
E)

Wiki

Hill Climbing
One approach to such optimization problems
• Basic idea: start at one state, move to a neighbor with a better

f(s) value, repeat until no neighbors have better f(s) value.

• Q: how do we define neighbor?
– Not as obvious as our successors in search
– Problem-specific
– As we’ll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:
• Look at the most-conflicting column (ties? right-most one)
• Move queen in that column vertically to a different location

…

s
f(s)=6

Neighborhood of s

f=6

f=5

Defining Neighbors: TSP

For TSP, can do something similar:
• Define neighbors by small changes
• Example: 2-change: A-E and B-F

A-B-C-D-E-F-G-H-A

A-E-D-C-B-F-G-H-A

flip

Defining Neighbors: SAT

For Boolean satisfiability,
• Define neighbors by flipping one assignment of one variable
Starting state: (A=T, B=F, C=T, D=T, F=T)

(A=F, B=F, C=T, D=T, E=T)
(A=T, B=T, C=T, D=T, E=T)
(A=T, B=F, C=F, D=T, E=T)
(A=T, B=F, C=T, D=F, E=T)
(A=T, B=F, C=T, D=T, E=F)

A ∨ ¬B ∨ C
¬A ∨ C ∨ D
B ∨ D ∨ ¬E
¬C ∨ ¬ D ∨ ¬E
¬A ∨ ¬C ∨ E

Hill Climbing Neighbors

Q: What’s a neighbor?
• Vague definition: for a given problem structure, neighbors are

states that can be produced by a small change
• Tradeoff!

– Neighborhood too small? Will get struck.
– Neighborhood too big? Not very efficient

• Q: how to pick a neighbor? Greedy
• Q: terminate? When no neighbor has better value

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the best f(t)
3. if f(t) is not better than f(s) THEN stop, return s
4. s ← t. goto 2.

Hill Climbing: Local Optima

Q: Why is it called hill climbing?

L: What’s actually going on. R: What we get to see.

state

f
Global optimum, where

we want to be

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Escaping Local Optima

Simple idea 1: random restarts
• Stuck: pick a random new starting point, re-run.
• Do k times, return best of the k runs.

Simple idea 2: reduce greed
• “Stochastic” hill climbing: randomly select between neighbors.
• Probability of selecting a neighbor should be proportional to

the value of that neighbor.

Hill Climbing: Variations

Q: neighborhood too large?
• Generate random neighbors, one at a time. Take the better

one.

Q: relax requirement to always go up?
• Often useful for harder problems

D. Selsam

Break & Quiz
Q 1.1: Hill climbing and stochastic gradient descent are related by
(i) Both head towards optima
(ii) Both require computing a gradient
(iii) Both will find the global optimum for a convex problem (problem where all

optima have the same value).

• A. (i)
• B. (i), (ii)
• C. (i), (iii)
• D. All of the above

Break & Quiz
Q 1.1: Hill climbing and stochastic gradient descent are related by
(i) Both head towards optima
(ii) Both require computing a gradient
(iii) Both will find the global optimum for a convex problem (problem where all

optima have the same value).

• A. (i)
• B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)
• C. (i), (iii)
• D. All of the above

Simulated Annealing

A more sophisticated optimization approach.
• Idea: allow some downhill moves at first, then be pickier over

time
• Pseudocode:

Pick initial state s; T=1
For k = 0 through K:

T ← T*0.99 (cool down)
Pick a random neighbour t ← neighbor(s)
If f(t) better than f(s), then s ← t
Else with prob. P(f(s), f (t), T) still do s ← t

Output: the best state ever seen

The interesting bit

wikihow.com

Simulated Annealing: Picking Probability

How do we pick probability P? Note 3 parameters.
• Decrease with time
• Decrease with gap |f(s) - f(t)|:

• Temperature cools over time.
– So: high temperature, accept any t
– But, low temperature, behaves like hill-climbing
– Still, |f(s) - f(t)| plays a role: if big, replacement probability low.

Simulated Annealing: Visualization

What does it look like in practice?

Wiki

Simulated Annealing: Picking Parameters

• Have to balance the various parts., e.g., cooling schedule.
– Too fast: becomes hill climbing, stuck in local optima
– Too slow: takes too long.

• Combines with variations (e.g., with random restarts)
– Probably should try hill-climbing first though.

• Inspired by cooling of metals
– We’ll see one more alg. inspired by nature

Break & Quiz
Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

A. Tempt+1= Tempt* 1.25
B. Tempt+1= Tempt

C. Tempt+1= Tempt* 0.8
D. Tempt+1= Tempt* 0.0001

Break & Quiz
Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

A. Tempt+1= Tempt* 1.25
B. Tempt+1= Tempt

C. Tempt+1= Tempt* 0.8
D. Tempt+1= Tempt* 0.0001

Break & Quiz
Q 2.1: Which of the following is likely to give the best cooling
schedule for simulated annealing?

A. Tempt+1= Tempt* 1.25 (No, temperate is increasing)
B. Tempt+1= Tempt (No, temperature is constant)
C. Tempt+1= Tempt* 0.8
D. Tempt+1= Tempt* 0.0001 (Cools too fast---basically hill climbing)

Break & Quiz
Q 2.2: Which of the following would be better to solve with hill climbing rather than
A* search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with

varying processing power
iii. Finding the fastest way through a maze

• A. (i)
• B. (ii)
• C. (i) and (ii)
• D. (ii) and (iii)

Break & Quiz
Q 2.2: Which of the following would be better to solve with hill climbing rather than
A* search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with

varying processing power
iii. Finding the fastest way through a maze

• A. (i)
• B. (ii)
• C. (i) and (ii)
• D. (ii) and (iii)

Break & Quiz
Q 2.2: Which of the following would be better to solve with hill climbing rather than
A* search?
i. Finding the smallest set of vertices in a graph that involve all edges
ii. Finding the fastest way to schedule jobs with varying runtimes on machines with

varying processing power
iii. Finding the fastest way through a maze

• A. (i) (No, (ii) better: huge number of states, don’t care about path)
• B. (ii) (No, (i) complete graph might have too many edges for A*)
• C. (i) and (ii)
• D. (ii) and (iii) (No, (iii) is good for A*: few successors, want path)

Optimization approach based on nature
• Survival of the fittest!

Genetic Algorithms

Evolution Review

Encode genetic information in DNA (four bases)
• A/C/T/G: nucleobases acting as symbols

• Two types of changes
– Crossover: exchange between parents’ codes
– Mutation: rarer random process

• Happens at individual level

Natural Selection

Competition for resources
• Organisms with better fitness ➔ better probability of

reproducing
• Repeated process: fit become larger proportion of population

Goal: use these principles for optimization
– New terminology: state is ‘individual’
– Value f(s) is now the ‘fitness’

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals
• Call this the population
For our n Queens game example, an individual:

(3 2 7 5 2 4 1 1)

Goal of genetic algorithms: optimize using principles inspired by
mechanism for evolution
• Analogous to natural selection, cross-over, and mutation

Genetic Algorithms Setup II

of non-
attacking pairs prob.

reproduction
∝ fitness

Genetic Algorithms Pseudocode

Just one variant:
1. Let s1, …, sN be the current population
2. Let pi = f(si) / Σj f(sj) be the reproduction probability
3. for k = 1; k<N; k+=2

• parent1 = randomly pick according to p
• parent2 = randomly pick another
• randomly select a crossover point, swap strings of

parents 1, 2 to generate children t[k], t[k+1]
4. for k = 1; k<=N; k++

• Randomly mutate each position in t[k] with a small
probability (mutation rate)

5. The new generation replaces the old: { s }{ t }. Repeat

Reproduction probability: pi = f(si) / Σj f(sj)
• Example: Σj f(sj) = 5+20+11+8+6=50
• p1=5/50=10%

Reproduction: Proportional Selection

Example: Scheduling Courses

Let’s run through an example:
• 5 courses: A,B,C,D,E
• 3 time slots: Mon/Wed, Tue/Thu, Fri/Sat
• Students wish to enroll in three courses
• Goal: maximize student enrollment

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

Example: Scheduling Courses

Let’s run through an example:
• State: course assignment to time slot

• Here:
– Courses A, B, E scheduled Mon/Wed
– Course D scheduled Tue/Thu
– Course C scheduled Fri/Sat

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

M M F T M

A B C D E = MMFTM

Example: Scheduling Courses

Value of a state? Say MMFTM

• Here 4+5=9 students can enroll in desired courses

Courses Students Can enroll?
A B C 2 No

A B D 7 No

A D E 3 No

B C D 4 Yes

B D E 10 No

C D E 5 Yes

Example: Scheduling Courses

First step:
• Randomly initialize and evaluate states

• Calculate reproduction probabilities

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

MMFTM = 9

TTFMM = 4

FMTTF = 19

MTTTF = 3

MMFTM = 26%

TTFMM = 11%

FMTTF = 54%

MTTTF = 9%

Example: Scheduling Courses

Next steps:
• Select parents using reproduction probabilities
• Perform crossover
• Randomly mutate new children

Example: Scheduling Courses

Continue:
• Now, get our function values for updated population
• Calculate reproduction probabilities

FMFTT = 11
MMTTF = 13
MMTFF = 4
FTTTF = 0

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

FMFTT = 39%
MMTTF = 46%
MMTFF = 14%
FTTTF = 0%

Variations & Concerns

Many possibilities:
• Parents survive to next generation
• Use ranking instead of exact value of f(s) for reproduction

probabilities (reduce influence of extreme f values)

Some challenges
• Formulating a good state encoding
• Lack of diversity: converge too soon
• Must pick a lot of parameters

Summary

• Challenging optimization problems
– First, try hill climbing. Simplest solution

• Simulated annealing
– More sophisticated approach; helps with local optima

• Genetic algorithms
– Biology-inspired optimization routine

	CS 540 Introduction to Artificial Intelligence
Search III: Advanced Search (aka Optimization)
	Announcements
	Final Information
	Advanced Search Overview
	Outline
	Search vs. Optimization
	Examples: n Queens
	Examples: TSP
	Examples: Satisfiability
	Hill Climbing
	Defining Neighbors: n Queens
	Defining Neighbors: TSP
	Defining Neighbors: SAT
	Hill Climbing Neighbors
	Hill Climbing Algorithm
	Hill Climbing: Local Optima
	Hill Climbing: Local Optima
	Escaping Local Optima
	Hill Climbing: Variations
	Break & Quiz
	Break & Quiz
	Simulated Annealing
	Simulated Annealing: Picking Probability
	Simulated Annealing: Visualization
	Simulated Annealing: Picking Parameters
	Break & Quiz
	Break & Quiz
	Break & Quiz
	Break & Quiz
	Break & Quiz
	Break & Quiz
	Genetic Algorithms
	Evolution Review
	Natural Selection
	Genetic Algorithms Setup I
	Genetic Algorithms Setup II
	Genetic Algorithms Pseudocode
	Reproduction: Proportional Selection
	Example: Scheduling Courses
	Example: Scheduling Courses
	Example: Scheduling Courses
	Example: Scheduling Courses
	Example: Scheduling Courses
	Example: Scheduling Courses
	Variations & Concerns
	Summary

