
CS 540 Introduction to Artificial Intelligence
Review

University of Wisconsin-Madison
Spring 2024

Final Information
• Time: May 7th 10:05 AM-12:05 PM
• Location (by section**):

– Noland 132: Section 001
– Engineering Hall 1800: Section 003
– Microbial Sciences 1220: Section 002
**To find your section go to MyUW->Course Schedule->It will say “LEC 00_”. Do
not use canvas to find your section (everyone will see CS540 001 since we
merged the canvas site for all three sections).

• Format: The final exam will be entirely multiple choice.
• Cheat sheet: you will be allowed a cheat sheet of a single piece of paper

(8.5" x 11", front and back). The exam will focus on conceptual and
applied AI reasoning.

• Calculator: fine if it doesn’t have an Internet connection
• Detailed topic list + practice:

https://piazza.com/class/lrjf9oinrox1zf/post/833

https://piazza.com/class/lrjf9oinrox1zf/post/833

Neural Networks

How to classify
Cats vs. dogs?

Single-layer
Perceptron

Multi-layer
Perceptron

Training of neural
networks

Convolutional
neural networksNeural networks can also be used for regression.

- Typically, no activation on outputs, mean squared error loss function.

https://courses.d2l.ai/berkeley-stat-157/index.html

Perceptron
• Given input , weight and bias , perceptron outputs:

𝑜𝑜 = 𝜎𝜎 𝐰𝐰⊤𝐱𝐱 + 𝑏𝑏 𝜎𝜎(𝑥𝑥) = {1 if 𝑥𝑥 > 0
0 otherwise

𝐱𝐱 𝐰𝐰 𝑏𝑏

Input

Cats vs. dogs?

Activation function

Output (0 or 1)

𝑤𝑤1𝑤𝑤2

𝑤𝑤𝑑𝑑

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑑𝑑

Single Hidden Layer

Output

Hidden layer

Input
m neurons

Cats vs. dogs?
How to classify

𝑚𝑚 × 𝑑𝑑
𝑑𝑑 × 1

𝑚𝑚 × 1 𝑚𝑚 × 1

𝐱𝐱 ∈ ℝ𝑑𝑑

𝐖𝐖 𝐛𝐛

Element-wise
activation function

Key elements: linear operations + Nonlinear activations

Neural networks with one hidden layer

Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

𝐱𝐱 ∈ ℝ𝑑𝑑

𝑝𝑝(𝑦𝑦|𝐱𝐱) = softmax(𝐟𝐟)

=
exp𝑓𝑓𝑦𝑦(𝑥𝑥)
∑𝑖𝑖𝑘𝑘exp𝑓𝑓𝑖𝑖(𝑥𝑥)

Hidden layer

Input

m neurons

Output

𝑓𝑓𝑘𝑘

…
𝑓𝑓1

How to train a neural network?

Update the weights W to minimize the loss function

𝐿𝐿 =
1

|𝐷𝐷|
∑
𝑖𝑖
ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)

Use gradient descent!
Output

Hidden layer

Input
m neurons

Gradient Descent

• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1, 2, …

• Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
𝜕𝜕𝐿𝐿

𝜕𝜕𝐰𝐰𝑡𝑡−1

= 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐷𝐷|
∑
𝐱𝐱∈𝐷𝐷

𝜕𝜕ℓ(𝐱𝐱𝑖𝑖,𝑦𝑦𝑖𝑖)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat until converges

D can be very
large. Expensive

per iteration

𝐰𝐰0

𝐰𝐰1
𝐰𝐰2

Minibatch Stochastic Gradient Descent

• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1, 2, …

• Randomly sample a subset (mini-batch) 𝐵𝐵 ⊂ 𝐷𝐷
Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐵𝐵|
∑
𝐱𝐱∈𝐵𝐵

𝜕𝜕ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat

Calculate Gradient (on one data point)

• Want to compute
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕𝑤𝑤11

• Data point: ((𝑥𝑥1, 𝑥𝑥2),𝑦𝑦)

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)

Use chain rule!

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝜕𝜕)
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦 =

1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦

• By chain rule:

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝜕𝜕)
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦 =

1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦

• By chain rule: 𝑥𝑥1

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝜕𝜕) = 𝜎𝜎(𝜕𝜕)(1 − 𝜎𝜎(𝜕𝜕))

• By chain rule: �𝑦𝑦(1 − �𝑦𝑦)𝑥𝑥1

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝜕𝜕) = 𝜎𝜎(𝜕𝜕)(1 − 𝜎𝜎(𝜕𝜕))

• By chain rule: (
1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦) �𝑦𝑦(1 − �𝑦𝑦)𝑥𝑥1

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝜕𝜕) = 𝜎𝜎(𝜕𝜕)(1 − 𝜎𝜎(𝜕𝜕))

• By chain rule: (�𝑦𝑦 − 𝑦𝑦)𝑥𝑥1

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝜕𝜕) = 𝜎𝜎(𝜕𝜕)(1 − 𝜎𝜎(𝜕𝜕))

• By chain rule:

Make it deeper

Calculate Gradient (on one data point)

• By chain rule: (1)

Calculate Gradient (on one data point)

• By chain rule: (1)

Numerical Stability

Gradients for Neural Networks

• Compute the gradient of the loss w.r.t.

𝜕𝜕ℓ
𝜕𝜕𝐖𝐖𝑡𝑡 =

𝜕𝜕ℓ
𝜕𝜕𝐡𝐡𝑑𝑑

𝜕𝜕𝐡𝐡𝑑𝑑

𝜕𝜕𝐡𝐡𝑑𝑑−1
…
𝜕𝜕𝐡𝐡𝑡𝑡+1

𝜕𝜕𝐡𝐡𝑡𝑡
𝜕𝜕𝐡𝐡𝑡𝑡

𝜕𝜕𝐖𝐖𝑡𝑡

ℓ 𝐖𝐖𝑡𝑡

Multiplication of many
matrices

{
Wikipedia

Two Issues for Deep Neural Networks
�
𝑖𝑖=𝑡𝑡

𝑑𝑑−1
𝜕𝜕𝐡𝐡𝑖𝑖+1

𝜕𝜕𝐡𝐡𝑖𝑖

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10

Issues with Gradient Exploding

• Value out of range: infinity value (NaN)
• Sensitive to learning rate (LR)

• Not small enough LR larger gradients
• Too small LR No progress
• May need to change LR dramatically during training

Gradient Vanishing

• Use sigmoid as the activation function

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥 𝜎𝜎′(𝑥𝑥) = 𝜎𝜎(𝑥𝑥)(1 − 𝜎𝜎(𝑥𝑥))

Small
gradients

Small
gradients

Issues with Gradient Vanishing

• Gradients with value 0
• No progress in training
o No matter how to choose learning rate

• Severe with bottom layers (those near the input)
o Only top layers (near output) are well trained
o No benefit to make networks deeper

How to stabilize training?

Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range
• E.g. in [1e-6, 1e3]

• Multiplication plus
• Architecture change (e.g., ResNet)

• Normalize
• Batch Normalization, Gradient clipping

• Proper activation functions

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible.

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Generalization &
Regularization

How good are
the models?

Training Error and Generalization Error

• Training error: model error on the training data
• Generalization error: model error on new data
• Example: practice a future exam with past exams

• Doing well on past exams (training error) doesn’t
guarantee a good score on the future exam
(generalization error)

Influence of Model Complexity

Also known as
“Test loss”

* Recent research has challenged this view for some types of models.

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data?

A. Training loss is low and generalization loss is high.
B. Training loss is low and generalization loss is low.
C. Training loss is high and generalization loss is high.
D. Training loss is high and generalization loss is low.
E. None of these.

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data?

A. Training loss is low and generalization loss is high.
B. Training loss is low and generalization loss is low.
C. Training loss is high and generalization loss is high.
D. Training loss is high and generalization loss is low.
E. None of these.

Quiz Break: Adding more layers to a multi-layer
perceptron may cause ______.

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.
C. Underfitting.
D. Higher test loss.
E. None of these.

Quiz Break: Adding more layers to a multi-layer
perceptron may cause ______. (Multiple
answers)

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.
C. Underfitting.
D. Higher test loss.
E. None of these.

How to regularize the model for better
generalization?

Weight
Decay

Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value
range

• Often do not regularize bias b
• Doing or not doing has little difference in

practice
• A small means more regularization

𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏)subject to ∥ 𝐰𝐰 ∥2≤ 𝐵𝐵

𝐵𝐵

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

• Hyper-parameter controls regularization importance
• : no effect

𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

𝜆𝜆 = 0
𝜆𝜆 → ∞,𝐰𝐰∗ → 𝟎𝟎

𝜆𝜆

Illustrate the Effect on Optimal Solutions

𝐰𝐰
˜ ∗

𝐰𝐰∗

𝐰𝐰∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

𝐰𝐰
˜ ∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏)

Dropout
Hinton et al.

Apply Dropout
• Often apply dropout on the output of hidden fully-connected layers

courses.d2l.ai/berkeley-stat-157

Dropout

Dropout
Hinton et al.

Convolutional Neural
Networks (CNNs)

How to classify
Cats vs. dogs?

36M floats in a RGB
image!

Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output

Hidden layer
Input

100 neurons

Fully Connected Networks

Where is
Waldo?

• Translation
Invariance

• Locality

Why Convolution?

2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

2-D Convolution Layer

• input matrix
• kernel matrix
• b: scalar bias
• output matrix

• W and b are learnable parameters

𝐘𝐘 = 𝐗𝐗 ⋆𝐖𝐖 + 𝑏𝑏

𝐗𝐗:𝑚𝑚ℎ × 𝑚𝑚𝑤𝑤
𝐖𝐖: 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤

𝐘𝐘: (𝑚𝑚ℎ − 𝑘𝑘ℎ + 1) × (𝑚𝑚𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 1)

2-D Convolution Layer with Stride and Padding

• Stride is the #rows/#columns per slide
• Padding adds rows/columns around input
• Output shape

⌊(𝑚𝑚ℎ − 𝑘𝑘ℎ + 𝑝𝑝ℎ + 𝑠𝑠ℎ)/𝑠𝑠ℎ⌋ × ⌊(𝑚𝑚𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 𝑝𝑝𝑤𝑤 + 𝑠𝑠𝑤𝑤)/𝑠𝑠𝑤𝑤⌋

StridePad

Kernel/filter size

Input size

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels
(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)

+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a 2D kernel for each channel, and then sum results over

channels

One 3D kernel

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Also call each 3D kernel a “filter”, which produce only one

output channel (due to summation over channels)

One filter
(3 channels)

RGB (3 input channels)

Multiple filters (in one layer)
• Apply multiple filters on the input
• Each filter may learn different features about the input
• Each filter (3D kernel) produces one output channel

RGB (3 input channels)

A different filter

Multiple Output Channels

• The # of output channels = # of filters
• Input
• Kernel
• Output

𝐗𝐗: 𝑐𝑐𝑖𝑖 × 𝑚𝑚ℎ × 𝑚𝑚𝑤𝑤
𝐖𝐖: 𝑐𝑐𝑜𝑜 × 𝑐𝑐𝑖𝑖 × 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤
𝐘𝐘: 𝑐𝑐𝑜𝑜 × 𝑚𝑚ℎ × 𝑚𝑚𝑤𝑤

𝐘𝐘𝑖𝑖,:,: = 𝐗𝐗 ⋆𝐖𝐖𝑖𝑖,:,:,:

for 𝑚𝑚 = 1, … , 𝑐𝑐𝑜𝑜

Pooling

Pooling

2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

2-D Max Pooling

• Returns the maximal value in the
sliding window

max(0,1,3,4) = 4

Padding, Stride, and Multiple Channels

• Pooling layers have similar padding
and stride as convolutional layers

• No learnable parameters
• Apply pooling for each input channel

to obtain the corresponding output
channel

#output channels = #input channels

Padding, Stride, and Multiple Channels

• Pooling layers have similar padding
and stride as convolutional layers

• No learnable parameters
• Apply pooling for each input channel

to obtain the corresponding output
channel

#output channels = #input channels

Average Pooling

• Max pooling: the strongest pattern signal in a window
• Average pooling: replace max with mean in max pooling

• The average signal strength in a window

Max pooling Average pooling

83

⌊(𝑚𝑚ℎ − 𝑘𝑘ℎ + 𝑝𝑝ℎ + 𝑠𝑠ℎ)/𝑠𝑠ℎ⌋ × ⌊(𝑚𝑚𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 𝑝𝑝𝑤𝑤 + 𝑠𝑠𝑤𝑤)/𝑠𝑠𝑤𝑤⌋

84

Evolution of CNNs
ImageNet competition (error rate)

Credit: Stanford CS 231n

Simple Idea: Add More Layers
VGG: 19 layers. ResNet: 152 layers. Add more layers…
sufficient?
• No! Some problems:

– i) Vanishing gradients: more layers ➔ more likely
– ii) Instability: deeper models are harder to optimize

Reflected in training error:

He et al: “Deep Residual Learning for Image Recognition”

Idea: Identity might be hard to learn, but zero is
easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

x

f(x)

Residual Connections

f(x)

x

+f(x) + x

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now
need to learn f(x) = 0 ➔ easier

Uninformed Search

89

Breadth-first search (BFS)
Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

90

Breadth-first search (BFS)

queue (fringe, OPEN)
 [A]

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

91

Breadth-first search (BFS)

queue (fringe, OPEN)
 [CB] A

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

92

Breadth-first search (BFS)

queue (fringe, OPEN)
 [EDC] B

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

93

Breadth-first search (BFS)

queue (fringe, OPEN)
[GFED] C

If G is a goal, we've seen it, but we don't stop!

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree

94

Breadth-first search (BFS)

queue
[] G

... until much later we pop G.

Looking foolish?
Indeed. But let’s
be consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Search tree

95

Breadth-first search (BFS)

queue
[] G

... until much later we pop G.

We need back pointers to recover the solution path.

Looking foolish?
Indeed. But let’s
be consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Search tree

96

Performance of search algorithms on trees

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth

97

Uniform-cost search

• Find the least-cost goal

• Each node has a path cost from start (= sum of edge
costs along the path).

• Expand the least cost node first.

• Use a priority queue instead of a normal queue

▪ Always take out the least cost item

98

Example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

1: (S,0), [(A,1), (B,5), (C,8)]
2: (A,1), [(B,5), (C,8), (D,4), (E,8),
(G,10)]
3: (D,4), [(B,5), (C,8), (E,8), (G,10)]
4: (B,5), [(C,8), (E,8), (G,9)]
5: (C,8), [(E,8), (G,9)]
6: (E,8), [(G,9)]
7: (G,9), []: Success!

99

Performance of search algorithms on trees

O(bC*/ε)O(bC*/ε)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth

100

Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3. s = pop()
4. if (s==goal) success!
5. T = succs(s)
6. push(T)
7. endWhile

stack (fringe)

1. A, [B, C]
2. B, [D, E, C]
3. D, [E, C]
4. E, [C]
5. C, [F, G]
6. F, [G]
7. G

101

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/ε)O(bC*/ε)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

102

Iterative deepening

• Search proceeds like BFS, but fringe is like DFS
▪ Complete, optimal like BFS
▪ Small space complexity like DFS
▪ Time complexity like BFS

• Preferred uninformed search method

103

Example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

104

Nodes expanded by:

• Breadth-First Search: S A B C D E G
Solution found: S A G

• Uniform-Cost Search: S A D B C E G
Solution found: S B G (This is the only uninformed search that

worries about costs.)
• Depth-First Search: S A D E G

Solution found: S A G

• Iterative-Deepening Search: S A B C S A D E G
Solution found: S A G

105

Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first
search

O(bC*/ε)O(bC*/ε)YYUniform-cost
search2

O(bd)O(bd)Y, if 1YBreadth-first
search

O(bd)O(bd)Y, if 1YIterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

Informed Search

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal (recall game heuristic)

start s
goal

g(s)

start s
goal

g(s) h(s)

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

OPEN
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)
C(8+3) D(4+inf) E(8+inf) G(9+0)
C(8+3) D(4+inf) E(8+inf)

CLOSED
-
S(0+8)
S(0+8) A(1+7)
S(0+8) A(1+7) B(5+4)
S(0+8) A(1+7) B(5+4) G(9+0)

G → B → S

Games

Games Setup

Games setup: multiple agents

– Now: interactions between agents
– Still want to maximize utility
– Strategic decision making.

World

Player 1

Player 2

Player 3

Mathematical description of simultaneous games.
• n players {1,2,…,n}
• Player i chooses strategy ai from action space Ai.
• Strategy profile: a = (a1, a2, …, an)
• Player i gets rewards ui (a)

– Note: reward depends on other players!

• We consider the simple case where all reward
functions are common knowledge.

Normal Form Game

Ex: Prisoner’s Dilemma

•2 players, 2 actions: yields 2x2 payoff matrix
•Strategy set: {Stay silent, betray}

Example of Normal Form Game

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0
Betray 0, −3 −2, −2

Let’s analyze such games. Some strategies are
better than others!
• Strictly dominant strategy: if ai strictly better than b

regardless of what other players do, ai is strictly
dominant

• I.e., 𝑢𝑢𝑖𝑖 𝑎𝑎𝑖𝑖 , 𝑎𝑎−𝑖𝑖 > 𝑢𝑢𝑖𝑖(𝑏𝑏, 𝑎𝑎−𝑖𝑖), ∀𝑏𝑏 ≠ 𝑎𝑎𝑖𝑖 ,∀𝑎𝑎−𝑖𝑖

• Sometimes a dominant strategy does not exist!

Strictly Dominant Strategies

All of the other entries of a
excluding i

Back to Prisoner’s Dilemma
• Examine all the entries: betray strictly dominates
• Check:

Strictly Dominant Strategies Example

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2

a* is a (strictly) dominant strategy equilibrium
(DSE), if every player i has a strictly dominant
strategy 𝑎𝑎𝑖𝑖∗

• Rational players will play at DSE, if one exists.

Dominant Strategy Equilibrium

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0
Betray 0, −3 −2, −2

Player i’s best response to strategy to 𝑎𝑎−𝑖𝑖𝐵𝐵𝐵𝐵(𝑎𝑎−𝑖𝑖) =
arg𝑚𝑚𝑎𝑎𝑥𝑥

𝑏𝑏
𝑢𝑢𝑖𝑖(𝑏𝑏,𝑎𝑎−𝑖𝑖)

BR(player2=silent) = betray
BR(player2=betray) = betray

𝑎𝑎𝑖𝑖∗ is the dominant strategy for player i, if
𝑎𝑎𝑖𝑖∗ = 𝐵𝐵𝐵𝐵 𝑎𝑎−𝑖𝑖 ,∀ 𝑎𝑎−𝑖𝑖

Dominant Strategy: Absolute Best Responses

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0
Betray 0, −3 −2, −2

Dominant Strategy Equilibrium does not always
exist.

Dominant Strategy Equilibrium

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2

a* is a Nash equilibrium if no player has an
incentive to unilaterally deviate

Nash Equilibrium

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2

a* is a Nash equilibrium:
 ∀𝑚𝑚,∀𝑏𝑏 ∈ 𝐴𝐴𝑖𝑖:𝑢𝑢𝑖𝑖(𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖∗) ≥ 𝑢𝑢𝑖𝑖(𝑏𝑏, 𝑎𝑎−𝑖𝑖∗)
 (no player has an incentive to unilaterally deviate)
• Equivalently, for each player i:

 𝑎𝑎𝑖𝑖∗ ∈ 𝐵𝐵𝐵𝐵 𝑎𝑎−𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑥𝑥𝑏𝑏 𝑢𝑢𝑖𝑖(𝑏𝑏, 𝑎𝑎−𝑖𝑖∗)
• Compared to DSE (a DSE is a NE, the other

direction is generally not true):
 𝑎𝑎𝑖𝑖∗ = 𝐵𝐵𝐵𝐵 𝑎𝑎−𝑖𝑖 ,∀ 𝑎𝑎−𝑖𝑖

Nash Equilibrium: Best Response to Each Other

a* is a Nash equilibrium:
 ∀𝑚𝑚,∀𝑏𝑏 ∈ 𝐴𝐴𝑖𝑖:𝑢𝑢𝑖𝑖(𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖∗) ≥ 𝑢𝑢𝑖𝑖(𝑏𝑏, 𝑎𝑎−𝑖𝑖∗)
 (no player has an incentive to unilaterally deviate)
• Pure Nash equilibrium:

• A pure strategy is a deterministic choice (no
randomness).

• Later: we will consider mixed strategies
• In pure Nash equilibrium, players can only play

pure strategies.

Nash Equilibrium: Best Response to Each Other

Finding (pure) Nash Equilibria by hand

• As player 1: For each column, find the best
response, underscore it.

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2

Finding (pure) Nash Equilibria by hand

• As player 2: For each row, find the best
response, upper-score it.

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2

Finding (pure) Nash Equilibria by hand

• Entries with both lower and upper bars are
pure NEs.

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2

So far, pure strategy: each player picks a
deterministic strategy. But:

Pure Nash Equilibrium may not exist

Player 2

Player 1
rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0

Can also randomize actions: “mixed”
• Player i assigns probabilities xi to each action

• Now consider expected rewards

Mixed Strategies

𝑢𝑢𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥−𝑖𝑖 = 𝐸𝐸𝑎𝑎𝑖𝑖~𝑥𝑥𝑖𝑖,𝑎𝑎−𝑖𝑖~𝑥𝑥−𝑖𝑖𝑢𝑢𝑖𝑖 𝑎𝑎𝑖𝑖 ,𝑎𝑎−𝑖𝑖 = �
𝑎𝑎𝑖𝑖

�
𝑎𝑎−𝑖𝑖

𝑥𝑥𝑖𝑖 𝑎𝑎𝑖𝑖 𝑥𝑥−𝑖𝑖 𝑎𝑎−𝑖𝑖 𝑢𝑢𝑖𝑖 𝑎𝑎𝑖𝑖 , 𝑎𝑎−𝑖𝑖

Example: 𝑥𝑥1∗(⋅) = 𝑥𝑥2∗(⋅) = 1
3

, 1
3

, 1
3

Mixed Strategy Nash Equilibrium

Player 2

Player 1
rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards at leaves
• Find strategies: perform search over the tree

• Nash equilibrium still well-defined
– Backward induction

Wiki

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

H
150

I
100

α=-∞

Minimax algorithm in execution

Minimax algorithm in execution

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-∞

β=+∞

H
150

I
100

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-∞

β=200

H
150

I
100

The execution on the
terminal nodes is omitted.

Minimax algorithm in execution

S

A
100

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-∞

β=100

H
150

I
100

Minimax algorithm in execution

S

A
100

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=100

β=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

α=100

β=+∞A
100

C
200

D
100

H
150

I
100

Minimax algorithm in execution

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=120A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=-∞

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G
150

β=20A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution

S

B
20

E
120

F
20

max

min

max

min

G
150

A
100

C
200

D
100

α=100

H
150

I
100

Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players
play optimally
– Max’s turn, take max of children
– Min’s turn, take min of children

• Can implement this as depth-first search: minimax algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is a terminal state)
then return (terminal value of s)
else

α := – infinity
for each s’ in Succ(s)

α := max(α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else

β := infinity
for each s’ in Succs(s)

β := min(β , Max-value(s’))
return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)

Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2
moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?
• A. 23
• B. 65
• C. 41
• D. 2

Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2
moves. Player B then has one move.
How many nodes are there in the minimax tree, including termination
nodes (leaves)?
• A. 23
• B. 65 (1 + 4 + 4*3 + 4*3*2 + 4*3*2 = 65. Note the root and leaf

nodes.)
• C. 41
• D. 2

Reinforcement Learning

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at,
and not previous actions or states.

• Reward function: r(st)
• Policy: , action to take at a particular state.

Discounting Rewards

One issue: these are infinite series. Convergence?
• Solution

• Discount factor γ between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence

Values and Policies

•

All the states we
could go to

Transition probability Expected rewards

Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards Credit L. Lazbenik

Bellman Equations

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Credit L. Lazbenik

Richard Bellman: Inventor of dynamic programming.

Q-Learning

• Our next reinforcement learning algorithm.
• Does not require knowing r or P. Learn from data of

the form:{(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑎𝑎𝑡𝑡 , 𝑠𝑠𝑡𝑡+1)}.
• Learns an action-value function Q*(s,a) that tells us

the expected value of taking a in state s.
• Note: 𝑉𝑉∗(𝑠𝑠) = 𝑚𝑚𝑎𝑎𝑥𝑥

𝑎𝑎
𝑄𝑄∗(𝑠𝑠, 𝑎𝑎).

• Optimal policy is formed as 𝜋𝜋∗(𝑠𝑠) = arg𝑚𝑚𝑎𝑎𝑥𝑥
𝑎𝑎
𝑄𝑄∗(𝑠𝑠,𝑎𝑎)

Q-Learning Iteration

How do we get Q(s,a)?
• Iterative procedure

Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on the
estimated Q!

Learning rate

Q-Learning

Learning rate

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences– Pros: • Get a more accurate model of the environment• Discover higher-reward states than the ones found so far– Cons: • When exploring, not maximizing your utility• Something bad might happen• Exploitation: go with the best strategy found so far– Pros:• Maximize reward as reflected in the current utility estimates• Avoid bad stuff– Cons: • Might prevent you from discovering the true optimal strategy

Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation
• With probability ε, take a random action; else the action with

the highest (current) Q(s,a) value.

Q-learning Algorithm
Input: step size 𝛼𝛼, exploration probability 𝜖𝜖
1. set Q(s,a) = 0 for all s, a.
2. For each episode:
3. Get initial state s.
4. While (s not a terminal state):
5. Perform a = 𝜖𝜖-greedy(Q, s), receive r, s’
6. 𝑄𝑄(𝑠𝑠,𝑎𝑎) = (1 − 𝛼𝛼)𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛼𝛼(𝑎𝑎 + 𝛾𝛾𝑚𝑚𝑎𝑎𝑥𝑥

𝑎𝑎′
𝑄𝑄(𝑠𝑠′,𝑎𝑎′))

7. 𝑠𝑠 ← 𝑠𝑠′
8. End While
9. End For

Explore: take action to
see what happens.

Update action-value
based on result.

Thank you and good luck!

	CS 540 Introduction to Artificial IntelligenceReview
	Final Information
	Neural Networks
	How to classify
	Perceptron
	Single Hidden Layer
	Neural networks with one hidden layer
	Slide Number 8
	Multi-class classification
	Slide Number 10
	How to train a neural network?
	Gradient Descent
	Minibatch Stochastic Gradient Descent
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Numerical Stability
	Gradients for Neural Networks
	Two Issues for Deep Neural Networks
	Issues with Gradient Exploding
	Gradient Vanishing
	Issues with Gradient Vanishing
	How to stabilize training?
	Stabilize Training: Practical Considerations
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Generalization & Regularization
	How good are the models?
	Training Error and Generalization Error
	Influence of Model Complexity
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	How to regularize the model for better generalization?
	Weight Decay
	Squared Norm Regularization as Hard Constraint
	Squared Norm Regularization as Soft Constraint
	Squared Norm Regularization as Soft Constraint
	Illustrate the Effect on Optimal Solutions
	Dropout
	Apply Dropout
	Dropout
	Dropout
	Convolutional Neural Networks (CNNs)
	How to classify
	Slide Number 65
	Slide Number 66
	Why Convolution?
	2-D Convolution
	2-D Convolution Layer
	2-D Convolution Layer with Stride and Padding
	Multiple Input Channels
	Multiple Input Channels
	Multiple Input Channels
	Multiple filters (in one layer)
	Multiple Output Channels
	Pooling
	Pooling
	2-D Max Pooling
	2-D Max Pooling
	Padding, Stride, and Multiple Channels
	Padding, Stride, and Multiple Channels
	Average Pooling
	Slide Number 83
	Slide Number 84
	Evolution of CNNs
	Simple Idea: Add More Layers
	Residual Connections
	Uninformed Search
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Informed Search
	Uninformed vs Informed Search
	Recap and Examples
	Recap and Examples
	Games
	Games Setup
	Normal Form Game
	Example of Normal Form Game
	Strictly Dominant Strategies
	Strictly Dominant Strategies Example
	Dominant Strategy Equilibrium
	Dominant Strategy: Absolute Best Responses
	Dominant Strategy Equilibrium
	Nash Equilibrium
	Nash Equilibrium: Best Response to Each Other
	Nash Equilibrium: Best Response to Each Other
	Finding (pure) Nash Equilibria by hand
	Finding (pure) Nash Equilibria by hand
	Finding (pure) Nash Equilibria by hand
	Pure Nash Equilibrium may not exist
	Mixed Strategies
	Mixed Strategy Nash Equilibrium
	Sequential-Move Games
	Slide Number 130
	Minimax algorithm in execution
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Our Approach So Far
	Slide Number 144
	Break & Quiz
	Break & Quiz
	Reinforcement Learning
	Building The Theoretical Model
	Markov Decision Process (MDP)
	Discounting Rewards
	Values and Policies
	Obtaining the Optimal Policy
	Bellman Equations
	Q-Learning
	Q-Learning Iteration
	Q-Learning
	Exploration Vs. Exploitation
	Q-Learning: ε-Greedy Behavior Policy
	Q-learning Algorithm
	Thank you and good luck!

