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Final Information
• Time: May 7th 10:05 AM-12:05 PM
• Location (by section**):

– Noland 132: Section 001
– Engineering Hall 1800: Section 003
– Microbial Sciences 1220: Section 002
**To find your section go to MyUW->Course Schedule->It will say “LEC 00_”. Do 
not use canvas to find your section (everyone will see CS540 001 since we 
merged the canvas site for all three sections).

• Format: The final exam will be entirely multiple choice.
• Cheat sheet: you will be allowed a cheat sheet of a single piece of paper 

(8.5" x 11", front and back). The exam will focus on conceptual and 
applied AI reasoning.

• Calculator: fine if it doesn’t have an Internet connection
• Detailed topic list + practice: 

https://piazza.com/class/lrjf9oinrox1zf/post/833

https://piazza.com/class/lrjf9oinrox1zf/post/833


Neural Networks



How to classify 
Cats vs. dogs?

Single-layer 
Perceptron

Multi-layer 
Perceptron

Training of neural 
networks

Convolutional 
neural networksNeural networks can also be used for regression.

- Typically, no activation on outputs, mean squared error loss function.

https://courses.d2l.ai/berkeley-stat-157/index.html


Perceptron
• Given input    , weight     and bias    , perceptron outputs:

𝑜𝑜 = 𝜎𝜎 𝐰𝐰⊤𝐱𝐱 + 𝑏𝑏 𝜎𝜎(𝑥𝑥) = {1 if 𝑥𝑥 > 0
0 otherwise

𝐱𝐱 𝐰𝐰 𝑏𝑏

Input 

Cats vs. dogs?

Activation function

Output (0 or 1)

𝑤𝑤1𝑤𝑤2

𝑤𝑤𝑑𝑑

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑑𝑑



Single Hidden Layer

Output 

Hidden layer 

Input 
m neurons

Cats vs. dogs?
How to classify 



𝑚𝑚 × 𝑑𝑑
𝑑𝑑 × 1

𝑚𝑚 × 1 𝑚𝑚 × 1

𝐱𝐱 ∈ ℝ𝑑𝑑

𝐖𝐖 𝐛𝐛

Element-wise 
activation function

Key elements: linear operations + Nonlinear activations

Neural networks with one hidden layer





Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

𝐱𝐱 ∈ ℝ𝑑𝑑

𝑝𝑝(𝑦𝑦|𝐱𝐱) = softmax(𝐟𝐟)

=
exp𝑓𝑓𝑦𝑦(𝑥𝑥)
∑𝑖𝑖𝑘𝑘exp𝑓𝑓𝑖𝑖(𝑥𝑥)

Hidden layer 

Input 

m neurons

Output 

𝑓𝑓𝑘𝑘

…
𝑓𝑓1





How to train a neural network?

Update the weights W to minimize the loss function

𝐿𝐿 =
1

|𝐷𝐷|
∑
𝑖𝑖
ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)

Use gradient descent! 
Output 

Hidden layer 

Input 
m neurons



Gradient Descent

• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1, 2, …

• Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕𝐰𝐰𝑡𝑡−1

= 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐷𝐷|
∑
𝐱𝐱∈𝐷𝐷

𝜕𝜕ℓ(𝐱𝐱𝑖𝑖,𝑦𝑦𝑖𝑖)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat until converges

D can be very 
large. Expensive 

per iteration

𝐰𝐰0

𝐰𝐰1
𝐰𝐰2



Minibatch Stochastic Gradient Descent

• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1, 2, …

• Randomly sample a subset (mini-batch) 𝐵𝐵 ⊂ 𝐷𝐷
Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐵𝐵|
∑
𝐱𝐱∈𝐵𝐵

𝜕𝜕ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat



Calculate Gradient (on one data point)

• Want to compute 
𝜕𝜕𝜕(𝐱𝐱,𝑦𝑦)
𝜕𝜕𝑤𝑤11

• Data point: ((𝑥𝑥1, 𝑥𝑥2),𝑦𝑦)



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)

Use chain rule!



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝑧𝑧)
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦 =

1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦

• By chain rule:



Calculate Gradient (on one data point)
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= 𝜎𝜎′(𝑧𝑧)
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1 − 𝑦𝑦
1 − �𝑦𝑦 −
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Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule: �𝑦𝑦(1 − �𝑦𝑦)𝑥𝑥1



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule: (
1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦) �𝑦𝑦(1 − �𝑦𝑦)𝑥𝑥1



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule: ( �𝑦𝑦 − 𝑦𝑦)𝑥𝑥1



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕 �𝑦𝑦
𝜕𝜕𝜕𝜕

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule:

Make it deeper



Calculate Gradient (on one data point)

• By chain rule: (1)



Calculate Gradient (on one data point)

• By chain rule: (1)



Numerical Stability



Gradients for Neural Networks

• Compute the gradient of the loss    w.r.t. 

𝜕𝜕ℓ
𝜕𝜕𝐖𝐖𝑡𝑡 =

𝜕𝜕ℓ
𝜕𝜕𝐡𝐡𝑑𝑑

𝜕𝜕𝐡𝐡𝑑𝑑

𝜕𝜕𝐡𝐡𝑑𝑑−1
…
𝜕𝜕𝐡𝐡𝑡𝑡+1

𝜕𝜕𝐡𝐡𝑡𝑡
𝜕𝜕𝐡𝐡𝑡𝑡

𝜕𝜕𝐖𝐖𝑡𝑡

ℓ 𝐖𝐖𝑡𝑡

Multiplication of many 
matrices

{
Wikipedia



Two Issues for Deep Neural Networks
�
𝑖𝑖=𝑡𝑡

𝑑𝑑−1
𝜕𝜕𝐡𝐡𝑖𝑖+1

𝜕𝜕𝐡𝐡𝑖𝑖

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10



Issues with Gradient Exploding

• Value out of range: infinity value (NaN)
• Sensitive to learning rate (LR)

• Not small enough LR  larger gradients
• Too small LR  No progress 
• May need to change LR dramatically during training



Gradient Vanishing 

• Use sigmoid as the activation function  

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥 𝜎𝜎′(𝑥𝑥) = 𝜎𝜎(𝑥𝑥)(1 − 𝜎𝜎(𝑥𝑥))

Small 
gradients

Small 
gradients



Issues with Gradient Vanishing

• Gradients with value 0
• No progress in training
o No matter how to choose learning rate

• Severe with bottom layers (those near the input)
o Only top layers (near output) are well trained
o No benefit to make networks deeper



How to stabilize training?



Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range
• E.g. in [1e-6, 1e3]

•  Multiplication  plus
• Architecture change (e.g., ResNet)

• Normalize
• Batch Normalization, Gradient clipping 

• Proper activation functions 



Quiz. Which of the following are TRUE about the vanishing gradient problem in neural 
networks? Multiple answers are possible.

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the 

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if 

trained with the cross-entropy loss.



Quiz. Which of the following are TRUE about the vanishing gradient problem in neural 
networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the 

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if 

trained with the cross-entropy loss.



Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following 
statement is NOT true? 

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3 

D. The gradient of ReLU is constant for positive input



Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following 
statement is NOT true? 

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3 

D. The gradient of ReLU is constant for positive input



Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero 
gradient everywhere?? 

A.Yes

B. No



Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero 
gradient everywhere?? 

A.Yes

B. No



Generalization & 
Regularization



How good are 
the models?



Training Error and Generalization Error

• Training error: model error on the training data
• Generalization error: model error on new data
• Example: practice a future exam with past exams

• Doing well on past exams (training error) doesn’t 
guarantee a good score on the future exam 
(generalization error)



Influence of Model Complexity

Also known as 
“Test loss”

* Recent research has challenged this view for some types of models. 



Quiz Break: When training a neural network, 
which one below indicates that the network has 
overfit the training data?

A. Training loss is low and generalization loss is high.
B. Training loss is low and generalization loss is low.
C. Training loss is high and generalization loss is high.
D. Training loss is high and generalization loss is low.
E. None of these.



Quiz Break: When training a neural network, 
which one below indicates that the network has 
overfit the training data?

A. Training loss is low and generalization loss is high.
B. Training loss is low and generalization loss is low.
C. Training loss is high and generalization loss is high.
D. Training loss is high and generalization loss is low.
E. None of these.



Quiz Break: Adding more layers to a multi-layer 
perceptron may cause ______.

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.
C. Underfitting.
D. Higher test loss.
E. None of these.



Quiz Break: Adding more layers to a multi-layer 
perceptron may cause ______. (Multiple 
answers)

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.
C. Underfitting.
D. Higher test loss.
E. None of these.



How to regularize the model for better 
generalization?



Weight 
Decay



Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value 
range

• Often do not regularize bias b 
• Doing or not doing has little difference in 

practice
• A small     means more regularization

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐰𝐰, 𝑏𝑏)subject to ∥ 𝐰𝐰 ∥2≤ 𝐵𝐵

𝐵𝐵



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

• Hyper-parameter    controls regularization importance
•          :   no effect

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

𝜆𝜆 = 0
𝜆𝜆 → ∞,𝐰𝐰∗ → 𝟎𝟎

𝜆𝜆



Illustrate the Effect on Optimal Solutions

𝐰𝐰
˜ ∗

𝐰𝐰∗

𝐰𝐰∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

𝐰𝐰
˜ ∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐰𝐰, 𝑏𝑏)



Dropout
Hinton et al.



Apply Dropout
• Often apply dropout on the output of hidden fully-connected layers

courses.d2l.ai/berkeley-stat-157



Dropout



Dropout
Hinton et al.



Convolutional Neural 
Networks (CNNs)



How to classify 
Cats vs. dogs?

36M floats in a RGB 
image!



Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output 

Hidden layer 
Input 

100 neurons

Fully Connected Networks



Where is 
Waldo?



• Translation 
Invariance

• Locality

Why Convolution?



2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.



2-D Convolution Layer

•                   input matrix
•     kernel matrix
• b: scalar bias
•      output matrix

• W and b are learnable parameters 

𝐘𝐘 = 𝐗𝐗 ⋆𝐖𝐖 + 𝑏𝑏

𝐗𝐗:𝑛𝑛ℎ × 𝑛𝑛𝑤𝑤
𝐖𝐖: 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤

𝐘𝐘: (𝑛𝑛ℎ − 𝑘𝑘ℎ + 1) × (𝑛𝑛𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 1)



2-D Convolution Layer with Stride and Padding

• Stride is the #rows/#columns per slide
• Padding adds rows/columns around input
• Output shape

⌊(𝑛𝑛ℎ − 𝑘𝑘ℎ + 𝑝𝑝ℎ + 𝑠𝑠ℎ)/𝑠𝑠ℎ⌋ × ⌊(𝑛𝑛𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 𝑝𝑝𝑤𝑤 + 𝑠𝑠𝑤𝑤)/𝑠𝑠𝑤𝑤⌋

StridePad

Kernel/filter size

Input size



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels
• Have a kernel for each channel, and then sum results over 

channels
(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)

+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels
• Have a 2D kernel for each channel, and then sum results over 

channels

One 3D kernel



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels
• Also call each 3D kernel a “filter”, which produce only one 

output channel (due to summation over channels)

One filter 
(3 channels)

RGB (3 input channels)



Multiple filters (in one layer)
• Apply multiple filters on the input
• Each filter may learn different features about the input
• Each filter (3D kernel) produces one output channel

RGB (3 input channels)

A different filter



Multiple Output Channels

• The # of output channels = # of filters 
• Input
• Kernel
• Output 

𝐗𝐗: 𝑐𝑐𝑖𝑖 × 𝑛𝑛ℎ × 𝑛𝑛𝑤𝑤
𝐖𝐖: 𝑐𝑐𝑜𝑜 × 𝑐𝑐𝑖𝑖 × 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤
𝐘𝐘: 𝑐𝑐𝑜𝑜 × 𝑚𝑚ℎ × 𝑚𝑚𝑤𝑤

𝐘𝐘𝑖𝑖,:,: = 𝐗𝐗 ⋆𝐖𝐖𝑖𝑖,:,:,:

for 𝑖𝑖 = 1, … , 𝑐𝑐𝑜𝑜



Pooling 



Pooling 



2-D Max Pooling

• Returns the maximal value in the 
sliding window

max(0,1,3,4) = 4



2-D Max Pooling

• Returns the maximal value in the 
sliding window

max(0,1,3,4) = 4



Padding, Stride, and Multiple Channels

• Pooling layers have similar padding 
and stride as convolutional layers

• No learnable parameters
• Apply pooling for each input channel 

to obtain the corresponding output 
channel

#output channels = #input channels



Padding, Stride, and Multiple Channels

• Pooling layers have similar padding 
and stride as convolutional layers

• No learnable parameters
• Apply pooling for each input channel 

to obtain the corresponding output 
channel

#output channels = #input channels



Average Pooling

• Max pooling: the strongest pattern signal in a window
• Average pooling: replace max with mean in max pooling

• The average signal strength in a window

Max pooling Average pooling



83



⌊(𝑛𝑛ℎ − 𝑘𝑘ℎ + 𝑝𝑝ℎ + 𝑠𝑠ℎ)/𝑠𝑠ℎ⌋ × ⌊(𝑛𝑛𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 𝑝𝑝𝑤𝑤 + 𝑠𝑠𝑤𝑤)/𝑠𝑠𝑤𝑤⌋

84



Evolution of CNNs
ImageNet competition (error rate)

Credit: Stanford CS 231n



Simple Idea: Add More Layers
VGG: 19 layers. ResNet: 152 layers. Add more layers… 
sufficient?
• No! Some problems:

– i) Vanishing gradients: more layers ➔ more likely
– ii) Instability: deeper models are harder to optimize

Reflected in training error:

He et al: “Deep Residual Learning for Image Recognition”



Idea: Identity might be hard to learn, but zero is 
easy!
• Make all the weights tiny, produces zero for output
• Can easily transform learning identity to learning zero:

x

f(x)

Residual Connections

f(x)

x

+f(x) + x

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now 
need to learn f(x) = 0 ➔ easier



Uninformed Search



89

Breadth-first search (BFS)
Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3.     s = de_queue()
4.     if (s==goal) success!
5.     T = succs(s)
6.     en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree



90

Breadth-first search (BFS)

queue (fringe, OPEN)
 [A] 

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3.     s = de_queue()
4.     if (s==goal) success!
5.     T = succs(s)
6.     en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree



91

Breadth-first search (BFS)

queue (fringe, OPEN)
 [CB]  A

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3.     s = de_queue()
4.     if (s==goal) success!
5.     T = succs(s)
6.     en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN)
 [EDC]  B

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3.     s = de_queue()
4.     if (s==goal) success!
5.     T = succs(s)
6.     en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN)
[GFED]  C

If G is a goal, we've seen it, but we don't stop!

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3.     s = de_queue()
4.     if (s==goal) success!
5.     T = succs(s)
6.     en_queue(T)
7. endWhile

Initial state: A
Goal state: G

Search tree
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Breadth-first search (BFS)

queue
[] G 

... until much later we pop G.
 

Looking foolish? 
Indeed.  But let’s 
be consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3.     s = de_queue()
4.     if (s==goal) success!
5.     T = succs(s)
6.     en_queue(T)
7. endWhile

Search tree
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Breadth-first search (BFS)

queue
[] G 

... until much later we pop G.

We need back pointers to recover the solution path.

Looking foolish? 
Indeed.  But let’s 
be consistent…

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3.     s = de_queue()
4.     if (s==goal) success!
5.     T = succs(s)
6.     en_queue(T)
7. endWhile

Search tree
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Performance of search algorithms on trees

O(bd)O(bd)Y, if 1YBreadth-first 
search

spacetimeoptimalComplete

1.   Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth
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Uniform-cost search

• Find the least-cost goal

• Each node has a path cost from start (= sum of edge 
costs along the path).

• Expand the least cost node first.

• Use a priority queue instead of a normal queue

▪ Always take out the least cost item
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Example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

1: (S,0), [(A,1), (B,5), (C,8)]
2: (A,1), [(B,5), (C,8), (D,4), (E,8), 
(G,10)]
3: (D,4), [(B,5), (C,8), (E,8), (G,10)]
4: (B,5), [(C,8), (E,8), (G,9)]
5: (C,8), [(E,8), (G,9)]
6: (E,8), [(G,9)]
7: (G,9), []: Success!
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Performance of search algorithms on trees

O(bC*/ε)O(bC*/ε)YYUniform-cost 
search2

O(bd)O(bd)Y, if 1YBreadth-first 
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth
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Depth-first search (DFS)
Use a stack (First-in Last-out)
1. push(Initial states)
2. While (stack not empty)
3.     s = pop()
4.     if (s==goal) success!
5.     T = succs(s)
6.     push(T)
7. endWhile

stack (fringe)

1. A, [B, C]
2. B, [D, E, C]
3. D, [E, C]
4. E, [C]
5. C, [F, G]
6. F, [G]
7. G
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Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first 
search

O(bC*/ε)O(bC*/ε)YYUniform-cost 
search2

O(bd)O(bd)Y, if 1YBreadth-first 
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth
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Iterative deepening

• Search proceeds like BFS, but fringe is like DFS
▪ Complete, optimal like BFS
▪ Small space complexity like DFS
▪ Time complexity like BFS

• Preferred uninformed search method
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Example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)
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Nodes expanded by:

• Breadth-First Search: S A B C D E G
Solution found: S A G

• Uniform-Cost Search: S A D B C E G
Solution found: S B G (This is the only uninformed search that 

worries about costs.)
• Depth-First Search: S A D E G

Solution found: S A G

• Iterative-Deepening Search: S A B C S A D E G
Solution found: S A G 
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Performance of search algorithms on trees

O(bm)O(bm)NNDepth-first 
search

O(bC*/ε)O(bC*/ε)YYUniform-cost 
search2

O(bd)O(bd)Y, if 1YBreadth-first 
search

O(bd)O(bd)Y, if 1YIterative 
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth
2. edge costs ≥ ε > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth



Informed Search



Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal (recall game heuristic)

start s
goal

g(s)

start s
goal

g(s) h(s)



Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=inf 



Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=inf 

OPEN
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)
C(8+3) D(4+inf) E(8+inf) G(9+0)
C(8+3) D(4+inf) E(8+inf)

CLOSED
-
S(0+8)
S(0+8) A(1+7)
S(0+8) A(1+7) B(5+4)
S(0+8) A(1+7) B(5+4) G(9+0)

G → B → S



Games



Games Setup

Games setup: multiple agents

– Now: interactions between agents
– Still want to maximize utility
– Strategic decision making.

World

Player 1

Player 2

Player 3



Mathematical description of simultaneous games. 
• n players {1,2,…,n}
• Player i chooses strategy ai from action space Ai. 
• Strategy profile: a = (a1, a2, …, an)
• Player i gets rewards ui (a)

– Note: reward depends on other players!

• We consider the simple case where all reward 
functions are common knowledge.

Normal Form Game



Ex: Prisoner’s Dilemma

•2 players, 2 actions: yields 2x2 payoff matrix
•Strategy set: {Stay silent, betray} 

Example of Normal Form Game

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0
Betray 0, −3 −2, −2



Let’s analyze such games. Some strategies are 
better than others!
• Strictly dominant strategy: if ai strictly better than b 

regardless of what other players do, ai is strictly 
dominant

• I.e., 𝑢𝑢𝑖𝑖 𝑎𝑎𝑖𝑖 , 𝑎𝑎−𝑖𝑖 > 𝑢𝑢𝑖𝑖(𝑏𝑏, 𝑎𝑎−𝑖𝑖), ∀𝑏𝑏 ≠ 𝑎𝑎𝑖𝑖 ,∀𝑎𝑎−𝑖𝑖

• Sometimes a dominant strategy does not exist!

Strictly Dominant Strategies

All of the other entries of a 
excluding i



Back to Prisoner’s Dilemma
• Examine all the entries: betray strictly dominates
• Check: 

Strictly Dominant Strategies Example

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2



a* is a (strictly) dominant strategy equilibrium 
(DSE), if every player i has a strictly dominant 
strategy 𝑎𝑎𝑖𝑖∗

• Rational players will play at DSE, if one exists.

Dominant Strategy Equilibrium

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0
Betray 0, −3 −2, −2



Player i’s best response to strategy to 𝑎𝑎−𝑖𝑖𝐵𝐵𝐵𝐵(𝑎𝑎−𝑖𝑖) =
arg𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏
𝑢𝑢𝑖𝑖(𝑏𝑏,𝑎𝑎−𝑖𝑖)

BR(player2=silent) = betray
BR(player2=betray) = betray

𝑎𝑎𝑖𝑖∗ is the dominant strategy for player i, if
𝑎𝑎𝑖𝑖∗ = 𝐵𝐵𝐵𝐵 𝑎𝑎−𝑖𝑖 ,∀ 𝑎𝑎−𝑖𝑖 

Dominant Strategy: Absolute Best Responses

Player 2

Player 1
Stay silent Betray

Stay silent −1, −1 −3, 0
Betray 0, −3 −2, −2



Dominant Strategy Equilibrium does not always 
exist.

Dominant Strategy Equilibrium

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2



a* is a Nash equilibrium if no player has an 
incentive to unilaterally deviate

Nash Equilibrium

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2



a* is a Nash equilibrium: 
               ∀𝑖𝑖,∀𝑏𝑏 ∈ 𝐴𝐴𝑖𝑖:𝑢𝑢𝑖𝑖(𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖∗ ) ≥ 𝑢𝑢𝑖𝑖(𝑏𝑏, 𝑎𝑎−𝑖𝑖∗ )
 (no player has an incentive to unilaterally deviate)
• Equivalently, for each player i:

            𝑎𝑎𝑖𝑖∗ ∈ 𝐵𝐵𝐵𝐵 𝑎𝑎−𝑖𝑖∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑏𝑏 𝑢𝑢𝑖𝑖(𝑏𝑏, 𝑎𝑎−𝑖𝑖∗ )
• Compared to DSE (a DSE is a NE, the other 

direction is generally not true):
               𝑎𝑎𝑖𝑖∗ = 𝐵𝐵𝐵𝐵 𝑎𝑎−𝑖𝑖 ,∀ 𝑎𝑎−𝑖𝑖

Nash Equilibrium: Best Response to Each Other



a* is a Nash equilibrium: 
               ∀𝑖𝑖,∀𝑏𝑏 ∈ 𝐴𝐴𝑖𝑖:𝑢𝑢𝑖𝑖(𝑎𝑎𝑖𝑖∗,𝑎𝑎−𝑖𝑖∗ ) ≥ 𝑢𝑢𝑖𝑖(𝑏𝑏, 𝑎𝑎−𝑖𝑖∗ )
 (no player has an incentive to unilaterally deviate)
• Pure Nash equilibrium:

• A pure strategy is a deterministic choice (no 
randomness).

• Later: we will consider mixed strategies
• In pure Nash equilibrium, players can only play 

pure strategies.

Nash Equilibrium: Best Response to Each Other



Finding (pure) Nash Equilibria by hand

• As player 1: For each column, find the best 
response, underscore it.

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2



Finding (pure) Nash Equilibria by hand

• As player 2: For each row, find the best 
response, upper-score it.

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2



Finding (pure) Nash Equilibria by hand

• Entries with both lower and upper bars are 
pure NEs.

Player 2

Player 1
L R

T 2, 1 0, 0

B 0, 0 1, 2



So far, pure strategy: each player picks a 
deterministic strategy.  But:

Pure Nash Equilibrium may not exist

Player 2

Player 1
rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0



Can also randomize actions: “mixed”
• Player i assigns probabilities xi to each action

• Now consider expected rewards

Mixed Strategies

𝑢𝑢𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑥𝑥−𝑖𝑖 = 𝐸𝐸𝑎𝑎𝑖𝑖~𝑥𝑥𝑖𝑖,𝑎𝑎−𝑖𝑖~𝑥𝑥−𝑖𝑖𝑢𝑢𝑖𝑖 𝑎𝑎𝑖𝑖 ,𝑎𝑎−𝑖𝑖 = �
𝑎𝑎𝑖𝑖

�
𝑎𝑎−𝑖𝑖

𝑥𝑥𝑖𝑖 𝑎𝑎𝑖𝑖 𝑥𝑥−𝑖𝑖 𝑎𝑎−𝑖𝑖 𝑢𝑢𝑖𝑖 𝑎𝑎𝑖𝑖 , 𝑎𝑎−𝑖𝑖



Example:  𝑥𝑥1∗(⋅) = 𝑥𝑥2∗(⋅) = 1
3

, 1
3

, 1
3

Mixed Strategy Nash Equilibrium

Player 2

Player 1
rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0



Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards at leaves
• Find strategies: perform search over the tree

• Nash equilibrium still well-defined
– Backward induction 

Wiki
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Minimax algorithm in execution



Minimax algorithm in execution
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S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-∞

β=200

H
150

I
100

The execution on the 
terminal nodes is omitted.

Minimax algorithm in execution
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Minimax algorithm in execution
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Minimax algorithm in execution
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Minimax algorithm in execution
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Minimax algorithm in execution
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Minimax algorithm in execution
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Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G
150

β=20A
100

C
200

D
100

α=100

H
150

I
100



Minimax algorithm in execution
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Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players 
play optimally
– Max’s turn, take max of children
– Min’s turn, take min of children

• Can implement this as depth-first search: minimax algorithm



function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if ( s is a terminal state )
then return ( terminal value of s )
else 

α := – infinity
for each s’ in Succ(s)

α := max( α , Min-value(s’))
return α

function Min-Value(s)
output: best-score (for Min) available from s

if ( s is a terminal state )
then return ( terminal value of s)
else 

β := infinity
for each s’ in Succs(s)

β := min( β , Max-value(s’))
return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)



Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. 
Player B goes next and has 3 moves. Player A goes next and has 2 
moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination 
nodes (leaves)? 
• A. 23
• B. 65
• C. 41
• D. 2



Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. 
Player B goes next and has 3 moves. Player A goes next and has 2 
moves. Player B then has one move.
How many nodes are there in the minimax tree, including termination 
nodes (leaves)? 
• A. 23
• B. 65 (1 + 4 + 4*3 + 4*3*2 + 4*3*2 = 65. Note the root and leaf 

nodes.)
• C. 41
• D. 2



Reinforcement Learning



Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”



Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at, 
and not previous actions or states. 

• Reward function: r(st)
• Policy:                           , action to take at a particular state. 



Discounting Rewards

One issue: these are infinite series. Convergence?
• Solution

• Discount factor γ between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence



Values and Policies

•

All the states we 
could go to

Transition probability Expected rewards



Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we 
could go to

Transition 
probability 

Expected 
rewards Credit L. Lazbenik



Bellman Equations

Let’s walk over one step for the value function:

Discounted expected 
future rewards

Current state 
reward

Credit L. Lazbenik

Richard Bellman: Inventor of dynamic programming.



Q-Learning

• Our next reinforcement learning algorithm.
• Does not require knowing r or P. Learn from data of 

the form:{(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1)}.
• Learns an action-value function Q*(s,a) that tells us 

the expected value of taking a in state s.
• Note: 𝑉𝑉∗(𝑠𝑠) = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎
𝑄𝑄∗(𝑠𝑠, 𝑎𝑎).

• Optimal policy is formed as 𝜋𝜋∗(𝑠𝑠) = arg𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎
𝑄𝑄∗(𝑠𝑠,𝑎𝑎)



Q-Learning Iteration

How do we get Q(s,a)?
• Iterative procedure

Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on the 
estimated Q!

Learning rate



Q-Learning

Learning rate



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences– Pros: • Get a more accurate model of the environment• Discover higher-reward states than the ones found so far– Cons: • When exploring, not maximizing your utility• Something bad might happen• Exploitation: go with the best strategy found so far– Pros:• Maximize reward as reflected in the current utility estimates• Avoid bad stuff– Cons: • Might prevent you from discovering the true optimal strategy

 



Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation
• With probability ε, take a random action; else the action with 

the highest (current) Q(s,a) value.



Q-learning Algorithm
Input: step size 𝛼𝛼, exploration probability 𝜖𝜖
1. set Q(s,a) = 0 for all s, a.
2. For each episode:
3.   Get initial state s.
4.   While (s not a terminal state):
5.   Perform a = 𝜖𝜖-greedy(Q, s), receive r, s’
6.   𝑄𝑄(𝑠𝑠,𝑎𝑎) = (1 − 𝛼𝛼)𝑄𝑄(𝑠𝑠,𝑎𝑎) + 𝛼𝛼(𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎′
𝑄𝑄(𝑠𝑠′,𝑎𝑎′))

7.   𝑠𝑠 ← 𝑠𝑠′
8.   End While
9. End For

Explore: take action to 
see what happens.

Update action-value 
based on result.



Thank you and good luck! 
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