CS 540 Introduction to Artificial Intelligence
Review

University of Wisconsin-Madison
Spring 2024

Final Information

Time: May 7th 10:05 AM-12:05 PM
Location (by section**):
— Noland 132: Section 001
— Engineering Hall 1800: Section 003
— Microbial Sciences 1220: Section 002

**To find your section go to MyUW->Course Schedule->It will say “LEC 00_". Do
not use canvas to find your section (everyone will see C5540 001 since we
merged the canvas site for all three sections).

Format: The final exam will be entirely multiple choice.

Cheat sheet: you will be allowed a cheat sheet of a single piece of paper
(8.5" x 11", front and back). The exam will focus on conceptual and
applied Al reasoning.

Calculator: fine if it doesn’t have an Internet connection

Detailed topic list + practice:
https://piazza.com/class/Irjif9oinrox1zf/post/833

https://piazza.com/class/lrjf9oinrox1zf/post/833

Neural Networks

Single-layer
How to classify Perceptron

Cats vs. dogs?

Multi-layer
Perceptron

Training of neural
networks

P 3 | Convolutional
. N e
Neural networks can also be used for regression. neural networks

& W

3 e

-

- Typically, no activation on outputs, mean squared error loss function.

https://courses.d2l.ai/berkeley-stat-157/index.html

Perceptron
« Given input x , weight w and bias b ,perce(g)tron outputs:

1 ifx>
_ T _
o=o(w'x+b) o) {O otherwise

W1
Q e Input I Output (O or 1)

Activation function

Cats vs. dogs?

Single Hidden Layer

Hidden layer
m neurons

How to classify Input
Cats vs. dogs?

%@ Output

Neural networks with one hidden layer

Key elements: linear operations + Nonlinear activations

m X d mx1l mx1
———————N | P>

Element-wise
activation function

+
[

Single Hidden Layer

. — w/! Hidden layer
Output. f=w,h+ 1.92 T heurons

* Normalize the output into Input
probability using sigmoid

— 1 —
pQy | X) | + o Output

Sigmoid j

-10 = 10

Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

Hidden layer
M neurons

Input Output

p(y|X) = softmax(f)
x € R? fl _ expf, y (x)

i - Ziexpfi(x)

Deep neural networks (DNNs)

Output layer

Hidden layer

Hidden layer

Hidden layer

h=6(Wx+Db))
h, = s(W5h, + b,)
h; = 6(W;h, + b,)
f=W,h;+b,
y = softmax(f)

NNs are composition

of nonlinear
functions

How to train a neural network?

Update the weights W to minimize the loss function

Hidden layer

Zf(xu yl) m neurons
|l)| Input

Output
Use gradient descent!

Gradient Descent

* Choose a learningrate & > 0 @Wl

* Initialize the model parameters w,
* Fort=1, 2, ...

* Update parameters:

D can be very
W =W — large. Expensive

per iteration

04(X;, y;i)
a D,
|D|xep OW¢_1

= Wi

* Repeat until converges

Minibatch Stochastic Gradient Descent

Choose a learning rate & > 0O
Initialize the model parameters w,
Fort=1, 2, ...

* Randomly sample a subset (mini-batch) B € D
Update parameters:

W W g > 0t (X, Yi)
t o |B|xeB 0W;¢_4

* Repeat

Calculate Gradient (on one data point)

W11
'Il j‘}
X2 Woq
04 (X,
* Want to compute &)
6W11

* Data point: ((x1,X2), V)

Calculate Gradient (on one data point)

W11

X1

y

IE sz_

Wi11X1 ~ylog®)
>+ sigmoid function —(1—y)log(1—-9%)
—— 7 . j':} »>
Woq1 X9 g(x’ y)

Use chain rule!

Calculate Gradient (on one data point)

W11
Il j"}
X2 : w

21

o —ylog(®)
11%1 sigmoid function —(1—-y)log(1-7)
Wz1X3 +_-_b ’ " : f(X, y)
a_j;—O"(Z) af(x’y)zl_y—z
0z ay 1-y y

ol dldy oz
° By chain rule: aw,; 989 9z aw,,

Calculate Gradient (on one data point)

W11
Il j"}
X2 : w

21

o —ylog(¥)
11%1 sigmoid function -1 -y)log(1-9)
Wa1X2 +_-_b ’ i : f(X, y)
a_j;—O"(Z) af(x’y)zl_y—z
0z ay 1-y y
dl al ay

. By chain rule: AW = @ Fr xl

Calculate Gradient (on one data point)

W11
Il j"}
X2 :

W21
Wi1X1 sigmoid function) -1 —_ i)l?fg; -9
Wa1X2 >+_H ;}7 N | f(x, y)
o = 0'(z) =0(2)(1 —0(2))
al ol
* Bychainrule: ow. oy Y1 —P)x

Calculate Gradient (on one data point)

W11
X4 : 9
X2 W31
o —y log(y)
11%1 + sigmoid function -1 -y)log(1-9)
— - ¥ .
W21X2 > f(X, y)

oy .,
E_a(z)—U(Z)(l_a(Z))

al _ 11—y vy
0wy 1 (1—y

. By chain rule:

2y —y)x,

Calculate Gradient (on one data point)

W11
X1 : j}
X2

Wa1q

o —y log(y)
11%1 sigmoid function -1 -y)log(1-9)

s ¥ T B
0_321 =0'(z) =0(z2)(1 —0a(2))

al R
0wy - (y o y)xl

. By chain rule:

Calculate Gradient (on one data point)

—ylog(9)
W11 ﬂ11>+ mgmmd function —(1=y)log(1-39)
— * Y " P(x
Do (X,¥)
0_ =0'(z) =0(z2)(1 —0(2))
. . al . (2)
By chain rule —=— = (§ —w?, 5as = T —yIwy

Calculate Gradient (on one data point)

fﬂ aI 3{111 - {:2) aﬂll

. By chain rule: 350 ~ 34, o & — yIwqy _awﬂ)

Calculate Gradient (on one data point)

y
&)
W11 X1 0(211)
(1) >+ Z11 2 > a1 Y > (%, y)
Woyq X2 din _ — (D _ (2)
6311 a (311) 3"111 (y J’)Wu
al al da . 2
° By chain rule: 7= == (J - J’)W;El)ﬂn(l — a31)%;

awi(Ll day, awm

Numerical Stability

Gradients for Neural Networks

« Compute the gradient of the loss £ w.r.t. W,

0¢ 0f oh% 0oh'*! oh'
OWt oh? ghd-1"" ght 9W?

Wikipedia

Two Issues for Deep Neural Networks e Ghi+1

dh!

i=t

Gradient Exploding Gradient Vanishing

0.8199 =~ 2 x 10710

Issues with Gradient Exploding

* Value out of range: infinity value (NaN)
» Sensitive to learning rate (LR)
* Not small enough LR - larger gradients
 Too small LR - No progress
* May need to change LR dramatically during training

Gradient Vanishing

« Use sigmoid as the activation function

1
o(X) = ! = —_
() =T 0'(x) = ()1 — 3 (x))

1.01 — sigmoid

gradient
0.8 1
0.6 A
041 ' Small Small
" gradients gradients
0.0 1

Issues with Gradient Vanishing

» Gradients with value 0

* No progress in training
o No matter how to choose learning rate

* Severe with bottom layers (those near the input)
o Only top layers (near output) are well trained
o No benefit to make networks deeper

How to stabilize training?

T o e e L U —

Stabilize Training: Practical Considerations

« Goal: make sure gradient values are in a proper range
« E.g.Iin[1e-6, 1€3]

« Multiplication = plus
 Architecture change (e.g., ResNet)

 Normalize
« Batch Normalization, Gradient clipping

* Proper activation functions

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible.

A.Deeper neural networks tend to be more susceptible to vanishing gradients.
B.Using the RelLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the
sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients.
B.Using the RelLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the
sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Let’'s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B. ReLU has non-zero gradient everywhere
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Quiz. Let’'s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B.
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Q5. A Leaky RelLU is defined as f(x)=max(0.1x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Q5. A Leaky RelLU is defined as f(x)=max(0.1x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

B. No

eneralization &
Regularization

How good are ?
the models? -

Training Error and Generalization Error

 Training error: model error on the training data
* Generalization error: model error on new data
« Example: practice a future exam with past exams

* Doing well on past exams (training error) doesn't
guarantee a good score on the future exam
(generalization error)

Influence of Model Complexity

-— —
Underfitting Optimum Overfitting

Also known as

“Test loss”

Loss

Generalization loss

Training loss

.
>

Model complexity

* Recent research has challenged this view for some types of models.

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data?

moow

Training loss is low and generalization loss is high.
Training loss is low and generalization loss is low.

. Training loss is high and generalization loss is high.
. Training loss is high and generalization loss is low.

None of these.

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data?

moow»>

Training loss is low and generalization loss is high.
Training loss is low and generalization loss is low.
Training loss is high and generalization loss is high.
Training loss is high and generalization loss is low.
None of these.

Quiz Break: Adding more layers to a multi-layer
perceptron may cause

Vanishing gradients during back propagation.
A more complex decision boundary.
Underfitting.

Higher test loss.

None of these.

moow»

Quiz Break: Adding more layers to a multi-layer
perceptron may cause . (Multiple
answers)

Vanishing gradients during back propagation.
A more complex decision boundary.
Underfitting.

Higher test loss.

None of these.

moowz>

How to regularize the model for better
generalization?

Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

Weight
Decay

Training Emror: 0.100 ; Training Emor: 0.160
Test Emor. 0.259 Test Emor: 0.223
Bayes Emor. 0.210 Bayes Emor. 0.210

Squared Norm Regularization as Hard Constraint

* Reduce model complexity by limiting value
range

minL(w, b)subjectto || w ||°< B y

« Often do not regularize bias b

* Doing or not doing has little difference in
practice

* A small B means more regularization

Squared Norm Regularization as Soft Constraint

 We can rewrite the hard constraint version as

A
minL(w, b) > R AR

Squared Norm Regularization as Soft Constraint

 We can rewrite the hard constraint version as

A
minL(w, b) > R AR

« Hyper-parameter A controls regularization importance

« 1=0: no effect
A—->oow -0

lllustrate the Effect on Optimal Solutions

w* = argminL(w, b) + > RTAR

~

w* = argminL(w, b)

s TE
T
g
e ——

I EEERIERILG

1GH SCHO(
GRADUATION

9/t
i

Hinton et al.

Apply Dropout

« Often apply dropout on the output of hidden fully-connected layers

MLP with one hidden layer Hidden layer after dropout

h = s(WWx + b))
h’ = dropout(h)

0= WPh' + b
p = softmax(o)

Dropout

w PW
Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output
at training time.

Wlthﬂut dropﬂut L

Classification Error %%

Dropout

Hinton et al.

0 200000 400000 600000 200000 1000000
Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

Convolutional Neural
Networks (CNNs)

Dual

12MP

wide-angle and
telephoto cameras

How to classify

Cats vs. dogs?

4 9 36M floats in a RGB
image!

Fully Connected Networks
Input

Hidden layer
100 neurons
Cats vs. dogs?
7% Output
;;%» P
LN
ho'd

~ 36M elements x 100 = ~3.6B parameters!

2
D
Q

C

=

Why Convolution?

 Translation
Invariance

* Locality

2-D Convolution

Input Kernel Output

0O11]2

3|4]|5]| *

6178

OX0+1Xx14+3%x2+4%x3=19,
1xXx0+2%x14+4%x2+5%x3=25
3X0+4x14+6%x2+7x%x3 =37,
4xXx0+5Xx1+7%Xx24+8x%x3=43.

(vdumoulin@ Github)

2-D Convolution Layer

011]2
01l 1 19| 25

314 |5 *

2|3 37143

67]8

« X:ny, X n, input matrix
« W:k;, X k,, kernel matrix

* b: scalar bias
e Y:(ny — kp +1) X (ny, — ky, + 1)output matrix

Y=XxW+5>D

« W and b are learnable parameters

2-D Convolution Layer with Stride and Padding

« Stride is the #rows/#columns per slide
« Padding adds rows/columns around input

Input Kernel Output
« Output shape USRI
,0,0;,0;0,0:
N :
r0lo(1]2f0:
A ~~n 0|1 of8
: . ro0|3]4|5}0! * =
Kernelffilter size boeee o 2|3 6| s
0|6 |7]|8}0
b ‘\a‘\-‘\-:
* . 0;,0:05070
[I PR PN PR ']

l(nh o kh T pp T Sh)/ShJ X l(nw o kw T pw T SW)/SWJ

4

Input size Pad Stride

Multiple Input Channels

Input and kernel can be 3D, e.g., an RGB image have 3
channels

Have a kernel for each channel, and then sum results over
channels

Input Kernel

*01 —_
23}

o
=
N

w
B
(O]

o))
~
o

Multiple Input Channels

* Input and kernel can be 3D, e.g., an RGB image have 3
channels

« Have a 2D kernel for each channel, and then sum results over
channels

Multiple Input Channels
 Input and kernel can be 3D, e.g., an RGB image have 3

channels

 Also call each 3D kernel a “filter”, which produce only one
output channel (due to summation over channels)

One filter
(3 channels)

Multiple filters (in one layer)

* Apply multiple filters on the input
« Each filter may learn different features about the input
« Each filter (3D kernel) produces one output channel

Multiple Output Channels

* The # of output channels = # of filters

. Xic; Xny Xn
|npUt [w lex*wl
° Kernel W: Co X C; X kh X kW yiye .

. Output Y: Co X My Xy, fori =1,...,¢c,

Pooling

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Pooling

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

2-D Max Pooling

. Returns the maximal value in the
sliding window

Input Output
O|1]1]2

2 x 2 Max K
3145 :

Pooling 718
6|78

max(0,1,3,4) = 4

2-D Max Pooling

. Returns the maximal value in the
sliding window

Input Output
O|1]1]2

2 x 2 Max K
31415 :

Pooling 718
6|78

max(0,1,3,4) = 4

Padding, Stride, and Multiple Channels

* Pooling layers have similar padding
and stride as convolutional layers

* No learnable parameters

* Apply pooling for each input channel
to obtain the corresponding output
channel

#output channels = #input channels

Padding, Stride, and Multiple Channels

* Pooling layers have similar padding
and stride as convolutional layers

* No learnable parameters

* Apply pooling for each input channel
to obtain the corresponding output
channel

#output channels = #input channels

Average Pooling

* Max pooling: the strongest pattern signal in a window
* Average pooling: replace max with mean in max pooling
 The average signal strength in a window

Max pooling Average pooling

Consider a convolution layer with 16 filters. Each
filter has a size of 11x11x3, a stride of 2x2. Given
an input image of size 22x22x3, if we don’t allow a
filter to fall outside of the input, what is the
output size?

* 11x11x16
* 6x6x16
e 7x7x16
* 5x5x16

Consider a convolution layer with 16 filters. Each
filter has a size of 11x11x3, a stride of 2x2. Given
an input image of size 22x22x3, if we don’t allow a
filter to fall outside of the input, what is the

output size?
* 11x11x16
Knh _ kh +pp + Sh)/ShJ X l(nw _ kw + py T SW)/SWJ

e /x7x16
* 5x5x16

Evolution of CNNs

ImageNet competition (error rate)

30 282

25

20

16.4

15

11.7 [19Iayers‘ [22 Iayers‘

10
7.3 6.7
5 [__shalow -
shallow A 3.6
A A S A =
2010 2011 2012 2013 2014 2014 2015
Lin et al Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al He et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet)

Credit: Stanford CS 231n

Simple Idea: Add More Layers

VGG: 19 layers. ResNet: 152 layers. Add more layers...
sufficient?

* No! Some problems:

— 1) Vanishing gradients: more layers = more likely
— i) Instability: deeper models are harder to optimize

g —_—
= S
e = :
5 S, 20-layer
[] [] [] - [=11] Sf , o
Reflected in training error: = Slayer 2
g kL
& 20-layer
E i -“ 5 6 0 1 E !\ 3
iter. (1e4) iter. (1e4)

He et al: “Deep Residual Learning for Image Recognition”

Residual Connections

Idea: Identity might be hard to learn, but zero is
easy!

« Make all the weights tiny, produces zero for output

« Can easily transform learning identity to learning zero:

Left: Conventional layers block

E Right: Residual layer block

f(x) 5 f(x) + x

f(x) To learn identity f(x) = x, layers now
need to learn f(x) = 0 = easier

> —>
-

Uninformed Search

Breadth-first search (BFS)

Use a queue (First-in First-out) [}.@ Search tree
en_queue(Initial states)
While (Qqueue not empty)
s = de_queuel()
if (s==goal) success!
T = succs(s)
en_queue(T)
endWhile

Initial state: A
Goal state: G

89

Breadth-first search (BFS)

Use a queue (First-in First-out) [}@

en_queue(Initial states)
While (queue not empty)
s = de_queuel()
if (s==goal) success!
T = succs(s)
en_queue(T)
endWhile

queue (fringe, OPEN)
2> [A]l >

Initial state: A
Goal state: G

Search tree

90

Breadth-first search (BFS)

Use a queue (First-in First-out) 0 Search tree
. en_queue(Initial states)
. While (queue not empty)

s = de_queue()
if (s==goal) success! I:::' a 3
T = succs(s)

en_queue(T)
. endWhile

~NOUIBLN-

queue (fringe, OPEN)
2> [CB]> A

Initial state: A
Goal state: G

91

Breadth-first search (BFS)

Use a queue (First-in First-out)
. en_queue(Initial states)

. While (queue not empty)

s = de_queuel()

if (s==goal) success!

T = succs(s)
en_queue(T)

. endWhile

Search tree

~NOUIBLN-

queue (fringe, OPEN)
> [EDC]>B

Initial state: A
Goal state: G

92

Breadth-first search (BFS)

Use a queue (First-in First-out)
. en_queue(Initial states)

. While (queue not empty)

s = de_queuel()

if (s==goal) success!

T = succs(s)
en_queue(T)

. endWhile

~NOUIBLN-

queue (fringe, OPEN)
[[GFED] > C

If G is a goal, we've seen it, but we don't stop!

Initial state: A
Goal state: G

93

Breadth-first search (BFS)

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)

3. s= de_queue()

4. if (s==goal) success!
5. T= succs(s)

0. en_queue(T)

/. endWhile

queue
[>G

... until much later we pop G.

Looking foolish?

Indeed. But let’s
be consistent...

94

Breadth-first search (BFS)

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)

3. s= de_queue()

4. if (s==goal) success!

5. T= succs(s)

0. en_queue(T)

/. endWhile sweus
) >G

... until much later we pop G.

We need back pointers to recover the solution path.
Looking foolish?
Indeed. But let’s

be consistent...

95

Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth
Complete optimal time space
Breadth-first v Y if 1 O(b) O(b)

search

1. Edge cost constant, or positive non-decreasing in depth

96

Uniform-cost search

Find the least-cost goal

Each node has a path cost from start (= sum of edge

costs along the path).
Expand the least cost node first.
Use a priority queue instead of a normal queue

= Always take out the least cost item

97

Example

Initial state

\lO)O'I-hooal\)—\
OmMo®wWo

@ @ @ Goal e

(All edges are directed, pointing downwards)

98

Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth
Complete optimal time space
Breadth-first 1 q q
search Y Y, if O(bc) O(bc)
Uniform-cost Cve e
search? Y Y O(b™") O(b™")

1. edge cost constant, or positive non-decreasing in depth
2. edge costs > ¢ > 0. C*is the best goal path cost.

99

Depth-first search (DFS)

Use a stack (First-in Last-out) [}.@
push(lnitial states)
While (stack not empty)
s = pop()
if (s==goal) success!
T = succs(s)
push(T)
endWhile

stack (fringe)

, [B, C]
,[D, E, C]
, [E, C]

, [C]

, [F, G]

1.
2.
3.
4.
5.
6.F, [G]
7.

OmMOMmMQUuwm>

100

Performance of search algorithms on trees

b: branching factor (assume finite)

d: goal depth m: graph depth

Complete optimal time space

Bresaec;trhc—;irst vy Y, if 1 O(b) O(bd)
oo | Y Y () | Ope™)
Dzre);hr-;‘ir:st N N O(b™) O(bm)

1. edge cost constant, or positive non-decreasing in depth

2. edge costs >¢>0. C*is the best goal path cost.

101

Iterative deepening

Search proceeds like BFS, but fringe is like DFS
= Complete, optimal like BFS

« Small space complexity like DFS

= Time complexity like BFS

Preferred uninformed search method

102

Example

Initial state

Goal state

(All edges are directed, pointing downwards)

103

Nodes expanded by: S

Breadth-First Search: SABCDEG

Solution found: SA G @ @ @

Uniform-Cost Search: SADBCEG

Solution found: S B G (This is the only uninformed search that
worries about costs.)

Depth-First Search:. SADE G
Solution found: SA G

Iterative-Deepening Search:. SABCSADEG
Solution found: SA G

104

Performance of search algorithms on trees

b: branching factor (assume finite)

d: goal depth m: graph depth

Complete optimal time space
Bresaec;trhc—;irst vy Y, if 1 O(b) O(bd)
oo | Y Y () | Ope™)
Dopth-first N N O(b™) O(bm)
doeponng | Y Y, i o(b?) O(bd)

1. edge cost constant, or positive non-decreasing in depth

2. edge costs >¢>0. C*is the best goal path cost.

105

Informed Search

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
* Path cost g(s) from start to node s

* Successors. @
a(s)

Informed search. Know:
e Alluninformed search properties, plus
e Heuristic h(s) from s to goal (recall game heuristic)

Recap and Examples

Example for A*: h=8 @ Initial state

1 8
5
h=7 h=4 h=3
(n) (2)
/ | \ /

@ @ @ Goal state

h=inf h=inf h=0

Recap and Examples

Example for A*: h=8 @ Initial state

OPEN CLOSED
S(0+8 i 1 5 8
A(1+7) B(5+4) C(8+3) S(0+8) h=7 h=4 h=3

)
)
B(5+4)
)
)

C(8+3) D(4+inf) E(8+inf) G(10+0) S(0+8) A(1+7)
C(8+3) D(4+inf) E(8+inf) G(9+0) S(0+8) A(1+7) B(5+4) A B
C(8+3) D(4+inf) E(8+inf) S(0+8) A(1+7) B(5+4) G(9+0)
3 7 9 4 5
G —> B —> S @ @ @ Goal state
h=inf h=inf h=0

Games Setup

Games setup: multiple agents

Player 1

— Now: interactions between agents
— Still want to maximize utility
— Strategic decision making.

P I

Player 3

Player 2

Normal Form Game

Mathematical description of simultaneous games.

* nplayers {1,2,...,n}

Player i chooses strategy a;from action space A..
Strategy profile: a = (a,, a,, ..., a,)

Player i gets rewards

— Note: reward depends on other players!

We consider the simple case where all reward
functions are common knowledge.

Example of Normal Form Game

EXx: Prisoner’s Dilemma

Player 2
Stay silent Betray
Player 1
Stay silent -1, -1 -3, 0
Betray 0, -3 =2, =2

2 players, 2 actions: yields 2x2 payoff matrix
« Strategy set: {Stay silent, betray}

Strictly Dominant Strategies

Let's analyze such games. Some strategies are
better than others!

 Strictly dominant strategy: if a; strictly better than b
regardless of what other players do, a; is strictly
dominant

° I.e., ui(ai, Cl_l') > Ui(b, Cl_l'), Vb + ai,‘v’a_l-

t

All of the other entries of a
excluding i

* Sometimes a dominant strategy does not exist!

Strictly Dominant Strategies Example

Back to Prisoner’s Dilemma

 Examine all the entries: betray strictly dominates
* Check:

Player 2
Stay silent Betray
Player 1
Stay silent -1, -1 -3, 0

Betray 0, -3 -2, =2

Dominant Strategy Equilibrium

a” is a (strictly) dominant strategy equilibrium
(DSE), if every player i has a strictly dominant
strategy a;

« Rational players will play at DSE, if one exists.

Player 2
Stay silent Betray
Player 1
Stay silent -1, -1 -3,0

Betray 0, -3

Dominant Strategy: Absolute Best Responses

Player i's best response to strategy to a_;BR(a_;) =
argmaxu; (b,a_;)

Player 2
BR(player2=silent) = betray et Stay silent Betray
BR(playerz=betray) = betray gy sitont -1,-1 3,0

Betray 0, -3 -2 =2

a; is the dominant strategy for player /, if
agk — BR((l_l'), Va_;

Dominant Strategy Equilibrium

Dominant Strategy Equilibrium does not always
exist.

Player 2

Player 1

T 2,1 0,0

B 0,0 1,2

Nash Equilibrium

a”is a Nash equilibrium if no player has an
incentive to unilaterally deviate

wi(ar,a” ;) > ui(a;,a” ;) Va; € A,

—1

Player 2
L R
Player 1

Nash Equilibrium: Best Response to Each Other

a”is a Nash equilibrium:
Vi,Vb € A;:u;(a;,a”;) = u;(b,a”;)
(no player has an incentive to unilaterally deviate)
« Equivalently, for each player i:
a; € BR(a~;) = argmax, u;(b,a’;)
« Compared to DSE (a DSE is a NE, the other
direction is generally not true):
a; = BR(a_;),V a_;

Nash Equilibrium: Best Response to Each Other

a”is a Nash equilibrium:

Vi,Vb € A;:u;(a;,a”;) = u;(b,a”;)
(no player has an incentive to unilaterally deviate)
* Pure Nash equilibrium:

* A pure strategy is a deterministic choice (no
randomness).

« Later: we will consider mixed strategies

* In pure Nash equilibrium, players can only play
pure strategies.

Finding (pure) Nash Equilibria by hand

* As player 1: For each column, find the best
response, underscore it.

Player 2

Player 1

Finding (pure) Nash Equilibria by hand

* As player 2: For each row, find the best
response, upper-score it.

Player 2

L
T 2,1 0,0

Player 1

B 0,0 1,2

Finding (pure) Nash Equilibria by hand

* Entries with both lower and upper bars are
pure NEs.

Player 2

L
T 2,1 0,0

Player 1

B 0,0 1,2

Pure Nash Equili

So far, pure strategy: eac

orium may not exist

n player picks a

deterministic strategy. But:

Player 2

rock

Player 1

rock 0,0
paper |1,-1

scissors -1, 1

paper Scissors

Mixed Strategies

Can also randomize actions: “mixed”
« Player j assigns probabilities x; to each action

i(a;), where Z i(a;) = 1,2;(a;) >0
a;EA;

 Now consider expected rewards

u (X, x_) = Eqimxja_j~x_;Ui (a;,a_) = z z xi(a)x_i(a_u(a;a_y)

a;, a_j

Mixed Strategy Nash Equilibrium

Example: x;(:) = x,(:) = (5,5,5)

Player 2
rock | paper @ Scissors
Player 1

rock 0,0 -1, 1 1, -1
paper 1, -1 0,0 -1, 1

scissors -1, 1 1, -1 0,0

Sequential-Move Games

More complex games with multiple moves

Instead of normal form, extensive form
Represent with a tree

Rewards at leaves
Find strategies: perform search over the tree

Nash equilibrium still well-defined
— Backward induction

Minimax algorithm in execution

max G=-°°<S>

y

Minimax algorithm in execution

max

Minimax algorithm in execution

max F-“@

y

max TG

min
The execution on the
terminal nodes 1s omitted.

Minimax algorithm in execution

max F-“@

y

Minimax algorithm in execution

max

Minimax algorithm in execution

max

Minimax algorithm in execution

max

Minimax algorithm in execution

max

Minimax algorithm in execution

max a=100 @
J,

min

max

min

Minimax algorithm in execution

max a=100 @
J,

min

max

min

Minimax algorithm in execution

max a=100 @
J,

min

max

min

Minimax algorithm in execution

max

Minimax algorithm in execution

o= 100

-

min

Our Approach So Far

We find the minimax value/strategy bottom up

 Minimax value: score of terminal node when both players
play optimally
— Max’s turn, take max of children
— Min’s turn, take min of children

 Can implement this as depth-first search: minimax algorithm

Minimax Algorithm

function Max-Value(s)
inputs:

s: current state in game, Max about to play
output: best-score (for Max) available from s

if (s is aterminal state)
then return (terminal value of s)

else
o :=—infinity
for each s’ in Succ(s)
o := max(a, Min-value(s’))
return o

function Min-Value(s)
output: best-score (for Min) available from s

if (s is a terminal state)
then return (terminal value of s)
else
B := infinity
for each s’ in Succs(s)
B := min(B, Max-value(s’))
return B

Time complexity?
° O(bm)
Space complexity?
e O(bm)

Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2
moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?

A 23
* B.65
 C. 41
 D.2

Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2
moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?

A. 23

B.65(1+4+4*3+4*3*2 +4*3*2 =65. Note the root and leaf
nodes.)

C.41
D. 2

Reinforcement Learning

Building The Theoretical Model

Basic setup:) ;
Actions
* Set of states, S)
. Observations
* Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice g, € A. State changes to s,,, continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

e State setS. Initial state s, Action set A
- State transition model: P(s11|s¢, 0z

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

* Reward function: r(s,)
* Policy: 7(s): S — A, action to take at a particular state.

ao a1 a2
S —> 81 —=> 89 — ...

Discounting Rewards

One issue: these are infinite series. Convergence?
* Solution

U(s0,51-..) = 1(s0) +77(s1) + 771 (= ' (st)

t>0
e Discount factory between O and 1

— Set according to how important present is VS future
— Note: has to be less than 1 for convergence

Values and Policies

*Now that V™ (s,) is defined what a should we take?
* First, set V*(s) to be expected utility for optimal policy from s
* What's the expected utility of an action?
— Specifically, action a in state s?

ZP(3'|s,a)V*(s’)

. A BN

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
* So, to get the optimal policy, compute

7 (s) = argmax,, Z P(s'|s,a)V*(s")

A,

All the states we Transition Expected o A S:\‘
could go to probability rewards

Credit L. Lazbenik

Bellman Equations

Let’s walk over one step for the value function:

= (s) + 7 max Z P(s'|s,a)V*(s")

L }
T |

Current state Discounted expected
reward future rewards

-
A s

Credit L. Lazbenik

Richard Bellman: Inventor of dynamic programming.'

Q-Learning

Our next reinforcement learning algorithm.
Does not require knowing r or P. Learn from data of
the form:{(s¢, as, ¢, S¢1) }-
Learns an action-value function Q*(s,a) that tells us
the expected value of taking a in state s.

« Note: V*(s) = mUCLLXQ*(S, a).

Optimal policy is formed as m*(s) = argmaxQ~(s, a)
a

Q-Learning lteration

How do we get Q(s,a)?

* I|terative procedure
Q(8¢, ar) « Q(s¢,a¢) + afr(se) + vmng(SHh a) — Q(st,at)]

Learning rate

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Q-Learning

Estimate Q*(s,a) from data {(s;, as, 7%, S¢+1) }:

1. Initialize Q(.,.) arbitrarily (eg all zeros)
1. Except terminal states Q(Sicrminals-)=0

2. lterate over data until Q(.,.) converges:

Q(spar) « (1 —a)Q(spar) +a(ry +vy max Q(st+1,b))

/

Learning rate

Exploration Vs. Exploitation

General question!
® Exploration: take an action with unknown consequences

= Pros:
® Get a more accurate model of the environment
® Discover higher-reward states than the ones found so far
= Cons:
® When exploring, not maximizing your utility
¢ Something bad might happen
)
Exploitation: go with the best strategy found so far
= Pros:

® Maximize reward as reflected in the current utility estimates
® Avoid bad stuff

=— Cons:
¢ Might prevent you from discovering the true optimal strategy

Q-Learning: e-Greedy Behavior Policy

Getting data with both exploration and exploitation

®* With probability €, take a random action; else the action with
the highest (current) Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > e
a =
random a € A otherwise

Q-learning Algorithm

Input: step size a, exploration probability €

1. set Q(s,a) =0 for all s, a.

. For each episode:

Get initial state s. Explore: take action to
While (s not a terminal state): see what happens.

Perform a = e-greedy(Q, s), receive r, S
Q(s,a) = (1 —a)Q(s,a) + a(r + ymaxQ(s',a"))
a

©®PN OO0 AWN

! Update action-value
S < S based on result.
End While
. End For

Thank you and good luck!

	CS 540 Introduction to Artificial Intelligence
Review
	Final Information
	Neural Networks
	How to classify
	Perceptron
	Single Hidden Layer
	Neural networks with one hidden layer
	Slide Number 8
	Multi-class classification
	Slide Number 10
	How to train a neural network?
	Gradient Descent
	Minibatch Stochastic Gradient Descent
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Numerical Stability
	Gradients for Neural Networks
	Two Issues for Deep Neural Networks
	Issues with Gradient Exploding
	Gradient Vanishing
	Issues with Gradient Vanishing
	How to stabilize training?
	Stabilize Training: Practical Considerations
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Generalization & Regularization
	How good are the models?
	Training Error and Generalization Error
	Influence of Model Complexity
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	How to regularize the model for better generalization?
	Weight Decay
	Squared Norm Regularization as Hard Constraint
	Squared Norm Regularization as Soft Constraint
	Squared Norm Regularization as Soft Constraint
	Illustrate the Effect on Optimal Solutions
	Dropout
	Apply Dropout
	Dropout
	Dropout
	Convolutional Neural Networks (CNNs)
	How to classify
	Slide Number 65
	Slide Number 66
	Why Convolution?
	2-D Convolution
	2-D Convolution Layer
	2-D Convolution Layer with Stride and Padding
	Multiple Input Channels
	Multiple Input Channels
	Multiple Input Channels
	Multiple filters (in one layer)
	Multiple Output Channels
	Pooling
	Pooling
	2-D Max Pooling
	2-D Max Pooling
	Padding, Stride, and Multiple Channels
	Padding, Stride, and Multiple Channels
	Average Pooling
	Slide Number 83
	Slide Number 84
	Evolution of CNNs
	Simple Idea: Add More Layers
	Residual Connections
	Uninformed Search
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Informed Search
	Uninformed vs Informed Search
	Recap and Examples
	Recap and Examples
	Games
	Games Setup
	Normal Form Game
	Example of Normal Form Game
	Strictly Dominant Strategies
	Strictly Dominant Strategies Example
	Dominant Strategy Equilibrium
	Dominant Strategy: Absolute Best Responses
	Dominant Strategy Equilibrium
	Nash Equilibrium
	Nash Equilibrium: Best Response to Each Other
	Nash Equilibrium: Best Response to Each Other
	Finding (pure) Nash Equilibria by hand
	Finding (pure) Nash Equilibria by hand
	Finding (pure) Nash Equilibria by hand
	Pure Nash Equilibrium may not exist
	Mixed Strategies
	Mixed Strategy Nash Equilibrium
	Sequential-Move Games
	Slide Number 130
	Minimax algorithm in execution
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Minimax algorithm in execution
	Our Approach So Far
	Slide Number 144
	Break & Quiz
	Break & Quiz
	Reinforcement Learning
	Building The Theoretical Model
	Markov Decision Process (MDP)
	Discounting Rewards
	Values and Policies
	Obtaining the Optimal Policy
	Bellman Equations
	Q-Learning
	Q-Learning Iteration
	Q-Learning
	Exploration Vs. Exploitation
	Q-Learning: ε-Greedy Behavior Policy
	Q-learning Algorithm
	Thank you and good luck!

