

CS 540 Introduction to Artificial Intelligence Linear Algebra & PCA

University of Wisconsin-Madison
Spring 2024

Announcements

H1 extended until 2/6, HW 2 released:

Probability

Thursday Feb. 1	Linear Algebra and PCA		Mos Fou
Tuesday Feb. 6	Logic		tly ndati
Thursday Feb. 8	NLP		ly Idations
Tuesday Fed 13	Machine Learning: Introduction		
Thursday Fed 15	Machine Learning: Unsupervised Learning I		

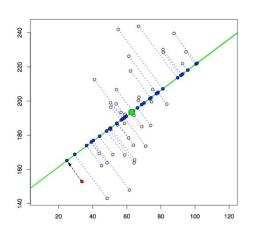
Class roadmap:

Outline

• Basics: vectors, matrices, operations

Dimensionality reduction

Principal Components Analysis (PCA)



Lior Pachter

Matrix Inverse

- If there is a B such that AB = BA = I
 - Then A is invertible/nonsingular, B is its inverse
 - Some matrices are **not** invertible!

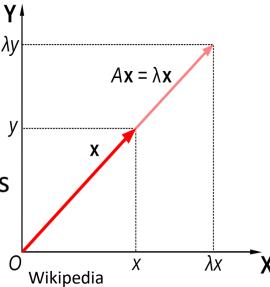
• Notation: A^{-1}

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} = I$$

Eigenvalues & Eigenvectors

- For a square matrix A, solutions to $Av = \lambda v$
 - -v is a (nonzero) vector: **eigenvector**
 - $-\lambda$ is a scalar: **eigenvalue**

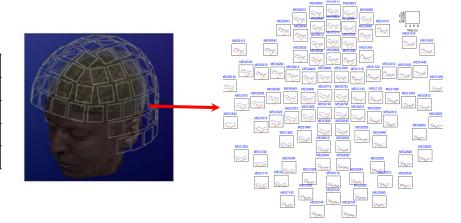
- Intuition
 - Multiplying by A can stretch/rotate vectors
 - Eigenvectors v: only stretched (by λ)



Dimensionality Reduction

- Vectors store features. Lots of features!
 - Document classification: thousands of words per doc
 - Netflix surveys: 480189 users x 17770 movies
 - MEG Brain Imaging: 120 locations x 500 time points x 20 objects

	movie 1	movie 2	movie 3
Tom	5	?	?
George	?	?	3
Susan	4	3	1
Beth	4	3	?



Dimensionality Reduction

Reduce dimensions

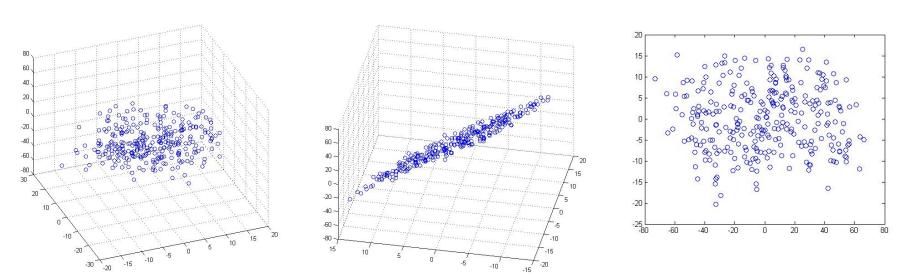
- Why?
 - Lots of features redundant
 - Storage & computation costs

CreativeBloq

- Goal: take $x \in \mathbb{R}^d \to x \in \mathbb{R}^r$, for $r \ll d$
 - But, minimize information loss

Dimensionality Reduction

Examples: 3D to 2D



Andrew Ng

Q 2.1: What is the inverse of
$$A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$$

B:
$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$$

C: Undefined / A is not invertible

Q 2.1: What is the inverse of $A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$

$$A^{-1} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$$

B:
$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$$

$$AA^{-1} = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0*a+c*2 & 0*b+2*d \\ 3*a+c*0 & 3*b+0*d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$2c = 1$$

$$3a = 0$$

$$2d = 0$$

$$3b = 1$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 1/3 \\ 1/2 & 0 \end{bmatrix}$$

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- A. -1, 2, 4
- B. 0.5, 0.2, 1.0
- C. 0, 2, 5
- D. 2, 5, 1

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- A. -1, 2, 4
- B. 0.5, 0.2, 1.0
- C. 0, 2, 5
- D. 2, 5, 1

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

C.
$$0, 2, 5$$

Solution #1: You may recall from a linear algebra course that the eigenvalues of a diagonal matrix (in which only diagonal entries are non-zero) are just the entries along the diagonal. Hence D is the correct answer.

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution #2: Use the definition of eigenvectors and values: $Av = \lambda v$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} v_1 = \begin{bmatrix} 2v_1 + 0v_2 + 0v_3 \\ 0v_1 + 5v_2 + 0v_3 \\ 0v_1 + 0v_2 + 1v_3 \end{bmatrix} = \begin{bmatrix} 2v_1 \\ 5v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ \lambda v_2 \\ \lambda v_3 \end{bmatrix}$$

Since A is a 3x3 matrix, A has 3 eigenvalues and so there are 3 combinations of values for λ and v that will satisfy the above equation. The simple form of the equations suggests starting by checking each of the standard basis vectors* as v and then solving for λ . Doing so gives D as the correct answer.

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lowest compression ratio we can use?

- A. 20X
- B. 100X
- C. 5X
- D. 1X

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?

- A. 20X
- B. 100X
- C. 5X
- D. 1X

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?

A. 20X

B. 100X

C. 5X

D. 1X

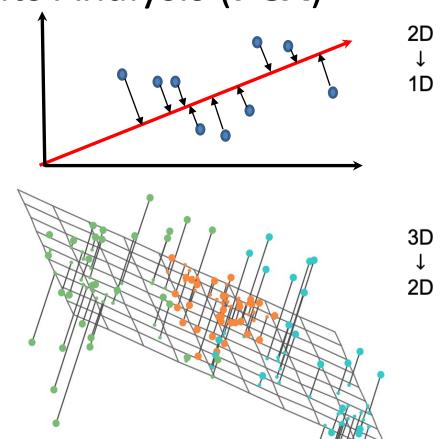
50,000 bits / 10,000 samples means compressed version must have 5 bits / sample.

Dataset has 100 bits / sample.

Must compress 20x smaller to fit on device.

Principal Components Analysis (PCA)

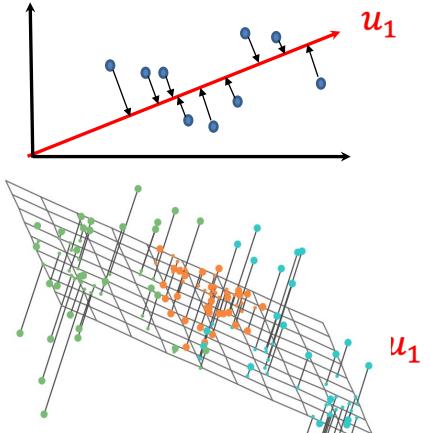
- A type of dimensionality reduction approach
 - For when data is approximately lower dimensional

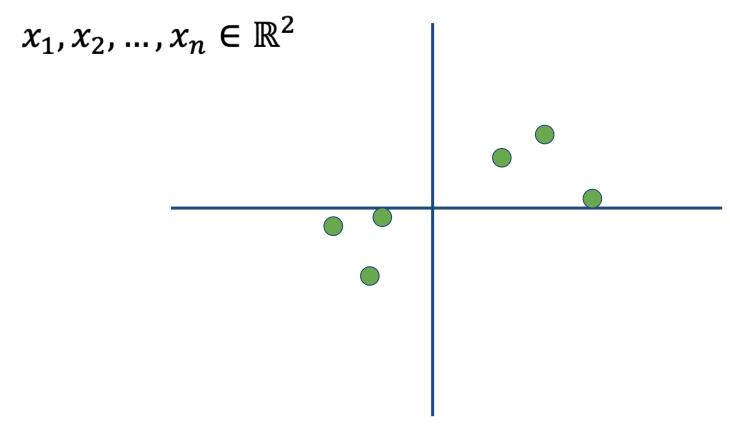


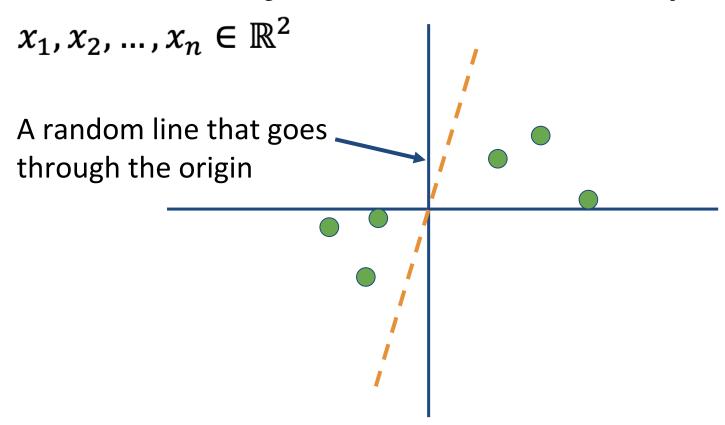
Principal Components Analysis (PCA)

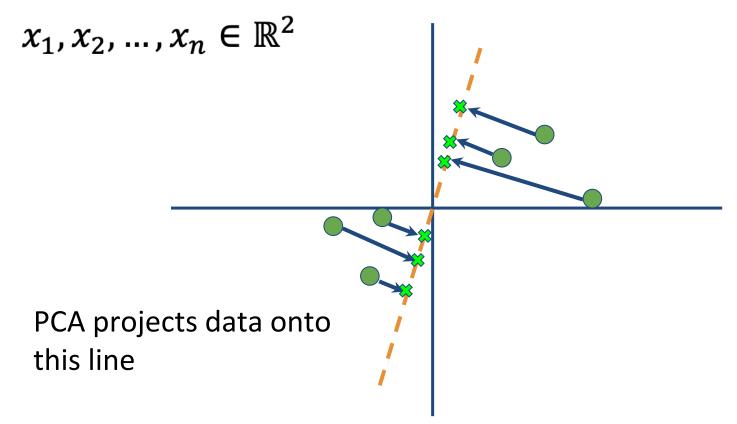
- Find axes $u_1, u_2, ..., u_m \in \mathbb{R}^d$ of a subspace
 - Will project to this subspace
- Want to preserve data
 - minimize projection error

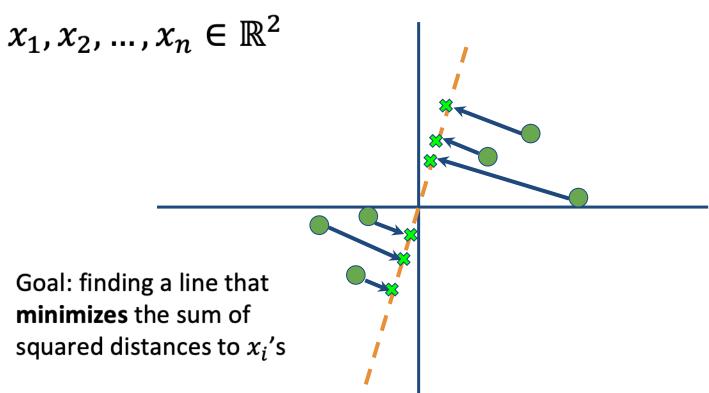
 These vectors are the principal components



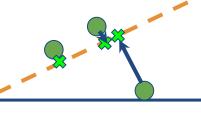


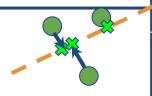






$$x_1, x_2, \dots, x_n \in \mathbb{R}^2$$





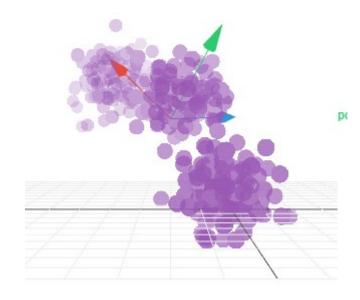
The sum of squared distances gets smaller as the line fits better

The **optimal** line is called Principal Component 1

PCA Procedure

Inputs: data $x_1, x_2, ..., x_n \in \mathbb{R}^d$

— Center data so that $\frac{1}{n}\sum_{i=1}^n x_i = 0$



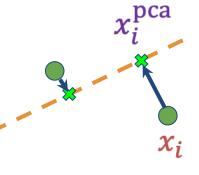
Victor Powell

PCA Procedure

Output:

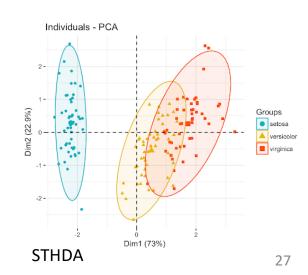
principal components $u_1, ..., u_m \in \mathbb{R}^d$

- Orthogonal
- Can show: they are top-m eigenvectors of $S = \frac{1}{n-1} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}}$ (covariance matrix)
- Each x_i projected to $x_i^{\text{pca}} = \sum_{j=1}^m (u_j^{\mathsf{T}} x_i) u_j$



Many Variations

- PCA, Kernel PCA, ICA, CCA
 - Extract structure from high dimensional dataset
- Uses:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use



Application: Image Compression

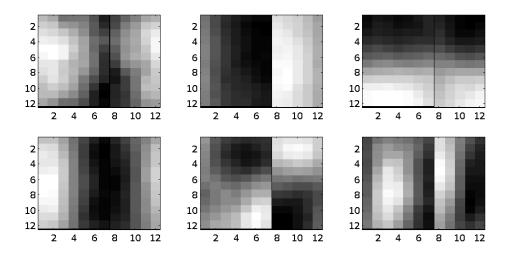
Start with image; divide into 12x12 patches

- That is, 144-D vector

– Original image:

Application: Image Compression

6 principal components (as an image)



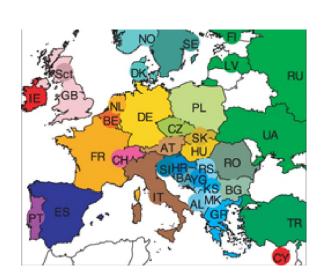
Application: Image Compression

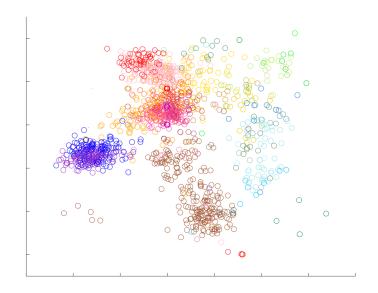
Project to 6D

Original

Application: Exploratory Data Analysis

• [Novembre et al. '08]: Take top two singular vectors of people x SNP matrix (POPRES)





Readings

- Vast literature on linear algebra.
- Local class: Math 341
- More on PCA (and other matrix methods in ML): CS 532

Suggested reading:

- Lecture notes on PCA by Roughgarden and Valiant
 https://web.stanford.edu/class/cs168/l/l7.pdf
- 760 notes by Zhu https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf