

CS 540 Introduction to Artificial Intelligence **Logic**

University of Wisconsin-Madison

Spring 2024

Announcements

- HW 1 was due.
- HW 2 due on Thursday---start if you haven't!
 - Ask on Piazza.

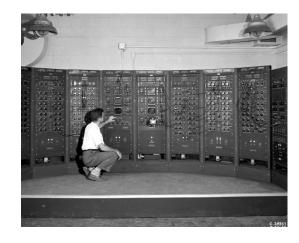
• Class roadmap:

Tuesday Feb. 6	Logic
Thursday Feb. 8	NLP
Tuesday Feb. 13	ML Introduction
Thursday Feb. 15	ML Unsupervised I
Tuesday Feb. 20	ML Unsupervised II

Logic & Al

Why are we studying logic?

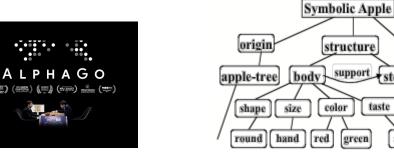
- Traditional approach to AI ('50s-'80s)
 - "Symbolic AI"
 - The Logic Theorist 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Knowledge rep., databases, etc.

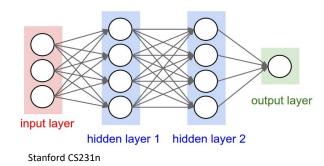


Symbolic vs Connectionist

Rival approach: **connectionist**

- Probabilistic models
- Neural networks
- Extremely popular last 20





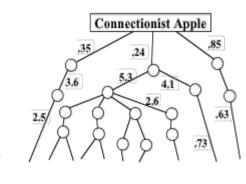
kind

support stem | fruit

taste

structure

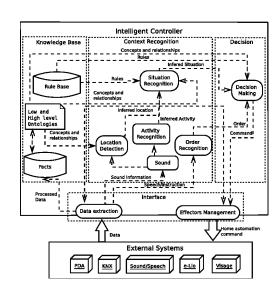
M. Minsky



Symbolic vs Connectionist

Which is better?

- Future: combination; best-of-bothworlds.
 - "Neurosymbolic Al"
 - Example: Markov Logic Networks



Outline

- Introduction to logic
 - Arguments, validity, soundness
- Propositional logic
 - Sentences, semantics, inference
- First order logic (FOL)
 - Predicates, objects, formulas, quantifiers

Basic Logic

- Arguments, premises, conclusions
 - Argument: a set of sentences (premises) + a sentence (a conclusion)
 - Validity: argument is valid iff it's necessary that if all premises are true, the conclusion is true
 - Soundness: argument is sound iff valid & premises true
 - Entailment: when valid arg., premises entail conclusion

Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (atomic sentences)
 - Connectives:

```
∧ and∨ or⇒ implies⇔ is equivalent¬ not
```

[conjunction]
[disjunction]
[implication]
[biconditional]
[negation]

Literal: P or negation ¬P

Propositional Logic Basics

Examples:

- $(P \lor Q) \Rightarrow S$
 - "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
 - "If it is raining, then it is cold"
- ¬R
 - "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Sentences: well-formed or not well-formed:
 - P ⇒ Q ⇒ S not well-formed (not associative!)

Sentences & Semantics

- Sentences: built up from symbols with connectives
 - Interpretation: assigning True / False to symbols (a row in truth table)
 - **Semantics**: interpretations for which sentence evaluates to True
 - **Model**: (of a set of sentences) interpretation for which all sentences are True

Another kind of model:)

Evaluating a Sentence

Example:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Note:

- If P is false, P ⇒ Q is true regardless of Q ("5 is even implies 6 is odd" is True!)
- Causality not needed: "5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

• Ex:

Р	Q	R	¬P	QAR	¬P V Q∧R	¬PVQ∧R⇒Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

Satisfiable

 There exists some interpretation where the sentence is true.

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg p \rightarrow \neg q) \land r$
- (ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$
- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg p \rightarrow \neg q) \land r$
- (ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$
- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

(i)
$$\neg(\neg p \rightarrow \neg q) \land r$$

(ii)
$$(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Plug interpretation into each sentence.

For (i): $(\neg p \rightarrow \neg q)$ will be false so $\neg(\neg p \rightarrow \neg q)$ will be true and r is true by assignment.

For (ii): $(\neg p \lor \neg q)$ is true and $(p \lor \neg r)$ is false which makes the implication false.

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A V B
- c. A \vee (A \rightarrow B)
- d. A \rightarrow B

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A V B (equivalent!)
- c. A V $(A \rightarrow B)$
- d. A \rightarrow B

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A V B (equivalent!)
- c. A \vee (A \rightarrow B)
- d. A \rightarrow B

Answer a. is the exact translation of the English sentence into a logic sentence. You can see that answer b. is also correct by writing out the truth table for all answers and seeing that a and b have the same truth tables.

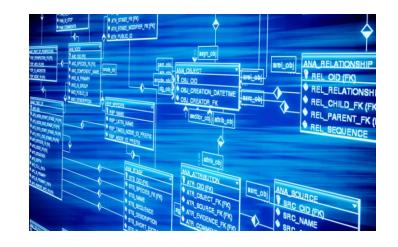
Or you can use the fact that $\neg A \rightarrow B = A$ $\lor B$ and that $A \lor A \lor B = A \lor B$ to prove equivalence.

Knowledge Bases

- Knowledge Base (KB): A set of sentences $\{A_1, ..., A_n\}$
 - Like a long sentence, connect with conjunction
 - KB: $A_1 \wedge A_2 \wedge ... \wedge A_n$

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences



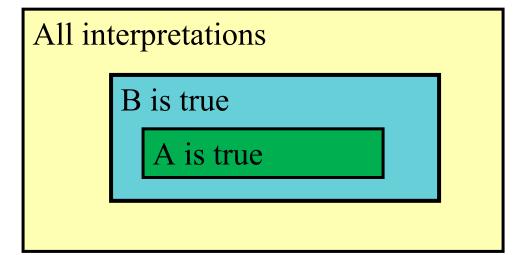
Entailment

Entailment: a sentence B logically follows from A

• Write $A \models B$

• $A \models B$ iff in every interpretation where A is true, B is

also true



Inference

- Given a set of sentences (a KB), logical inference creates new sentences
 - Compare to prob. inference!

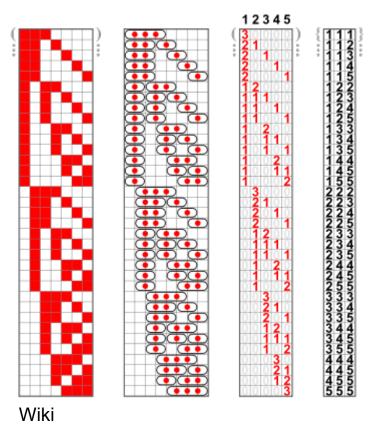
· Challenges:

- Soundness
- Completeness
- Efficiency

Methods of Inference: 1. Enumeration

- Enumerate all interpretations;
 look at the truth table
 - "Model checking"

 Downside: 2ⁿ interpretations for n symbols



Methods of Inference: 2. Using Rules

- Modus Ponens: $(A \Rightarrow B, A) \models B$
- And-elimination
- Other rules on the next page
 - Commutativity, associativity, de Morgan's laws,
 distribution for conjunction/disjunction

Logical equivalences

You can use these equivalences to modify sentences.

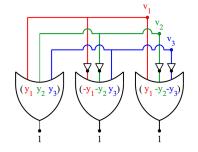
Methods of Inference: 3. Resolution

- Convert to special form and use a single rule
- Conjunctive Normal Form (CNF)

$$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$

Conjunction of clauses; each clause disjunction of literals

Simple rules for converting to CNF



Conjunctive Normal Form (CNF)

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

- Replace all ⇔ using biconditional elimination
- Replace all ⇒ using implication elimination
- Move all negations inward using -double-negation elimination -de Morgan's rule
- Apply distributivity of V over ∧

Convert example sentence into CNF

$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$
 starting sentence $(B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$ biconditional elimination

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$$

implication elimination
 $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$

move negations inward
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \\ \text{distribute } \lor \text{over } \land$$

Resolution Steps

- Given KB and β (query)
- Add $\neg \beta$ to KB, show this leads to empty (False. Proof by contradiction)
- Everything needs to be in CNF
- Example KB:
 - $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - $\neg B_{1.1}$
- Example query: $\neg P_{1,2}$

Resolution Preprocessing

• Add $\neg \beta$ to KB, convert to CNF:

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2: $(\neg P_{1,2} \lor B_{1,1})$
a3: $(\neg P_{2,1} \lor B_{1,1})$
b: $\neg B_{1,1}$
c: $P_{1,2}$

Want to reach goal: empty

Resolution

Take any two clauses where one contains some symbol, and the other contains its complement (negative)
 PVQVR

 Merge (resolve) them, throw away the symbol and its complement

PVRVSVT

- If two clauses resolve and there's no symbol left, you have reached *empty* (False). KB $|=\beta|$
- If no new clauses can be added, KB does not entail $\boldsymbol{\beta}$

Resolution Example

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2: $(\neg P_{1,2} \lor B_{1,1})$
a3: $(\neg P_{2,1} \lor B_{1,1})$
b: $\neg B_{1,1}$

c: P_{1.2}

Resolution Example

a3:
$$(\neg P_{2,1} \lor B_{1,1})$$

Step 1: resolve a2, c:
$$B_{1,1}$$

Step 2: resolve above and b: *empty*

Q 2.1: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Q 2.1: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

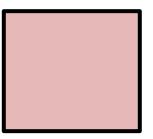
First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

Facts, Objects, Relations, Functions



First Order Logic Syntax

- Term: an object in the world
 - Constant: Alice, 2, Madison, Green, ...
 - Variables: x, y, a, b, c, ...
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A ground term is a term without variables.
 - Constants or functions of constants

FOL Syntax

- Atom: smallest T/F expression
 - Predicate(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is)Teacher(of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - term₁ = term₂
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object

FOL Syntax

- **Sentence**: T/F expression
 - Atom
 - Complex sentence using connectives: ∧ V ¬ ⇒ ⇔
 - Less(x,22) ∧ Less(y,33)
 - Complex sentence using quantifiers **∀**, **∃**
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

FOL Quantifiers

- Universal quantifier: ∀
- Sentence is true for all values of x in the domain of variable x.

- Main connective typically is ⇒
 - Forms if-then rules
 - "all humans are mammals"

```
\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)
```

- Means if x is a human, then x is a mammal

FOL Quantifiers

- Existential quantifier: 3
- Sentence is true for some value of x in the domain of variable x.

- Main connective typically is
 - -"some humans are male"

```
\exists x \text{ human}(x) \land \text{male}(x)
```

-Means there is an x who is a human and is a male

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Must have one entry for every possible assignment of values to variables. That number is (C).