

CS 540 Introduction to Artificial Intelligence Unsupervised Learning I

Spring 2024

Announcements

- Homeworks:
 - HW3 due, HW4 released
- Class roadmap:

Thursday, Feb. 15	ML Unsupervised I
Tuesday, Feb. 20	ML Unsupervised II
Thursday, Feb. 22	ML Linear Regression
Tuesday, Fed. 27	Machine Learning: K - Nearest Neighbors & Naive Bayes

Machine Learning

Recap of Supervised/Unsupervised

Supervised learning:

- Make predictions, classify data, perform regression
- Dataset: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Features / Covariates / Input

Labels / Outputs

• Goal: find function $f: X \to Y$ to predict label on **new** data

indoor

outdoor

Recap of Supervised/Unsupervised

Unsupervised learning:

- No labels; generally, won't be making predictions
- Dataset: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$
- Goal: find patterns & structures that help better understand data.

Mulvey and Gingold

Recap of Supervised/Unsupervised

Note that there are **other kinds** of ML:

- Mixtures: semi-supervised learning, self-supervised
 - Idea: different types of "signal"
- Reinforcement learning
 - Learn how to act in order to maximize rewards
 - Later on in course...

Outline

- Intro to Clustering
 - Clustering Types
- Hierarchical Clustering
 - Divisive, agglomerative, linkage strategies
- Centroid-based Clustering
 - k-means

Unsupervised Learning & Clustering

- Note that clustering is just one type of unsupervised learning (UL)
 - PCA is another unsupervised algorithm
- Estimating probability distributions also UL (GANs)
- Clustering is popular & useful!

StyleGAN2 (Kerras et al '20)

Clustering Types

Several types of clustering

Hierarchical

- Agglomerative
- Divisive

Partitional

- Center-based
- Graph-theoretic
- Spectral

Bayesian

- Decision-based
- Nonparametric

Hierarchical Clustering

Hierarchical Clustering

Basic idea: build a "hierarchy"

- Want: arrangements from specific to general
- One advantage: no need for k, number of clusters.
- Input: points. Output: a hierarchy
 - A binary tree

Agglomerative vs Divisive

Two ways to go:

- Agglomerative: bottom up.
 - Start: each point a cluster. Progressively merge clusters
- **Divisive**: top down
 - Start: all points in one cluster. Progressively split clusters

Credit: r2d3.us

Agglomerative. Start: every point is its own cluster

Get pair of clusters that are closest and merge

Repeat: Get pair of clusters that are closest and merge

Repeat: Get pair of clusters that are closest and merge

Merging Criteria

Merge: use closest clusters. Define closest?

• Single-linkage

$$d(A,B) = \min_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

• Complete-linkage

$$d(A, B) = \max_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

• Average-linkage

$$d(A,B) = \frac{1}{|A||B|} \sum_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

We'll merge using single-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

We'll merge using single-linkage

Continue...

$$d(C_1, C_2) = d(2, 4) = 2$$

 $d(C_2, \{7.25\}) = d(5, 7.25) = 2.25$

Continue...

We'll merge using complete-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

Beginning is the same...

Now we diverge:

When to Stop?

No simple answer:

- Use the binary tree (a **dendogram**)
- Cut at different levels (get different heights/depths)

Q 1.1: Let's do hierarchical clustering for two clusters with average linkage on the dataset below. What are the clusters?

- A. {1}, {2,4,5,7.25}
- B. {1,2}, {4, 5, 7.25}
- C. {1,2,4}, {5, 7.25}
- D. {1,2,4,5}, {7.25}

Q 1.1: Let's do hierarchical clustering for two clusters with average linkage on the dataset below. What are the clusters?

- A. {1}, {2,4,5,7.25}
- B. {1,2}, {4, 5, 7.25}
- C. {1,2,4}, {5, 7.25}
- D. {1,2,4,5}, {7.25}

Iteration 1: merge 1 and 2 Iteration 2: merge 4 and 5 Iteration 3: Now we have clusters $\{1,2\}, \{4,5\}, \{7.25\}$. distance($\{1,2\}, \{4,5\}$) = 3 distance($\{4,5\}, \{7.25\}$) = 2.75 distance($\{1,2\}, \{7.25\}$) is clearly larger than the above two. So average linkage will merge $\{4,5\}$ and $\{7.25\}$

Q 1.2: If we do hierarchical clustering on n points, the maximum depth of the resulting tree is

- A. 2
- B. log *n*
- C. n/2
- D. *n*-1

Q 1.2: If we do hierarchical clustering on n points, the maximum depth of the resulting tree is

• A. 2

• B. log *n*

• C. n/2

• D. n-1

Denote the points as x_1, x_2, ..., x_n
Suppose:
in iteration 1, we merge points x_1 and x_2
in iteration 2, we merge {x_1, x_2} with x_3
...
in iteration t, we merge {x_1, x_2, ..., x_t} with x_{t+1}
...
in iteration n-1, we merge {x_1, x_{n-1}} with x_n

Then we will get a tree with depth n-1.

Center-based Clustering

- k-means is an example of a partitional, center-based clustering algorithm.
- Specify a desired number of clusters, k; run k-means to find k clusters.

• Very popular clustering method

$$x_1, x_2, ..., x_n$$

Input: a dataset, and assume the number of clusters k is given

Step 1: Randomly picking 2 positions as initial cluster centers

(not necessarily a data point)

Step 2: for each point x, determine its cluster: find the closest center in Euclidean space

Step 3: update all cluster centers as the centroids

K-means clustering Repeat step 2 & 3 until convergence

K-means clustering: A demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-means algorithm

- Input: $x_1, x_2, ..., x_n, k$
- Step 1: select k cluster centers c_1, c_2, \dots, c_k
- Step 2: for each point x_i , assign it to the closest center in Euclidean distance:

$$y(x_i) = \operatorname{argmin}_j ||x_i - c_j||$$

• Step 3: update all cluster centers as the centroids:

$$c_j = \frac{\sum_{x:y(x)=j} x}{\sum_{x:y(x)=j} 1}$$

• Repeat Step 2 and 3 until cluster centers no longer change

Questions on k-means

- What is k-means trying to optimize?
- Will k-means stop (converge)?
- Will it find a global or local optimum?
- How to pick starting cluster centers?
- How many clusters should we use?

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

 $C_1 = \{(2,2), (4,4), (6,6)\}, C_2 = \{(0,4), (4,0)\}, C_3 = \{(5,5), (9,9)\}$

Cluster centroids are updated to?

- A. C₁: (4,4), C₂: (2,2), C₃: (7,7)
- B. C₁: (6,6), C₂: (4,4), C₃: (9,9)
- C. C₁: (2,2), C₂: (0,0), C₃: (5,5)
- D. C₁: (2,6), C₂: (0,4), C₃: (5,9)

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with initial clusters

 $C_1 = \{(2,2), (4,4), (6,6)\}, C_2 = \{(0,4), (4,0)\}, C_3 = \{(5,5), (9,9)\}$

Cluster centroids are updated to?

- A. C₁: (4,4), C₂: (2,2), C₃: (7,7)
- B. C₁: (6,6), C₂: (4,4), C₃: (9,9)
- C. C₁: (2,2), C₂: (0,0), C₃: (5,5)
- D. C₁: (2,6), C₂: (0,4), C₃: (5,9)

The average of points in C1 is (4,4). The average of points in C2 is (2,2). The average of points in C3 is (7,7).

Q 2.2: We are running 3-means again. We have 3 centers, C_1 (0,1), C_2 , (2,1), C_3 (-1,2). Which cluster assignment is possible for the points (1,1) and (-1,1), respectively? Ties are broken arbitrarily:

(i) C_1 , C_1 (ii) C_2 , C_3 (iii) C_1 , C_3

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (iii)
- D. All of them

Q 2.2: We are running 3-means again. We have 3 centers, C_1 (0,1), C_2 , (2,1), C_3 (-1,2). Which cluster assignment is possible for the points (1,1) and (-1,1), respectively? Ties are broken arbitrarily:

(i)
$$C_1$$
, C_1 (ii) C_2 , C_3 (iii) C_1 , C_3

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (iii)
- D. All of them

For the point (1,1): square-Euclidean-distance to C1 is 1, to C2 is 1, to C3 is 5

So it can be assigned to C1 or C2

For the point (-1,1): square-Euclidean-distance to C1 is 1, to C2 is 9, to C3 is 1 So it can be assigned to C1 or C3

Q 2.3: If we run K-means clustering twice with random starting cluster centers, are we guaranteed to get same clustering results? Does K-means always converge?

- A. Yes, Yes
- B. No, Yes
- C. Yes, No
- D. No, No

Q 2.3: If we run K-means clustering twice with random starting cluster centers, are we guaranteed to get same clustering results? Does K-means always converge?

The clustering from k-means will depend on the initialization. Different initialization can lead to different outcomes.

- A. Yes, Yes
- B. No, Yes
- C. Yes, No
- D. No, No

K-means will always converge on a finite set of data points:

- 1. There are finite number of possible partitions of the points
- 2. The assignment and update steps of each iteration will only decrease the sum of the distances from points to their corresponding centers.
- 3. If it run forever without convergence, it will revisit the same partition, which is contradictory to item 2.

Thanks!