

#### CS 540 Introduction to Artificial Intelligence Unsupervised Learning II University of Wisconsin-Madison

Spring 2024

#### Announcements

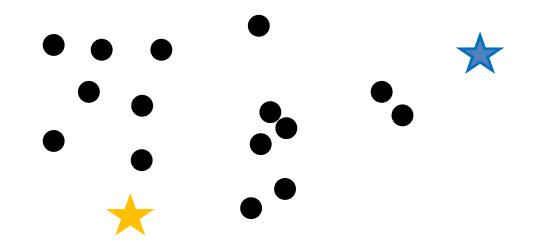
- Homeworks:
  - HW4 deadline on Thursday Feb. 22<sup>nd</sup> at 11 AM
- Midterm 13<sup>th</sup> of March
- Class roadmap:

| Tuesday, Fed. 20  | ML Unsupervised II                                          |
|-------------------|-------------------------------------------------------------|
| Thursday, Feb. 22 | ML Linear Regression                                        |
| Tuesday, Fed. 27  | Machine Learning: K -<br>Nearest Neighbors &<br>Naive Bayes |
| Thursday, Feb. 29 | Machine Learning:<br>Neural Networks I<br>(Perceptron)      |

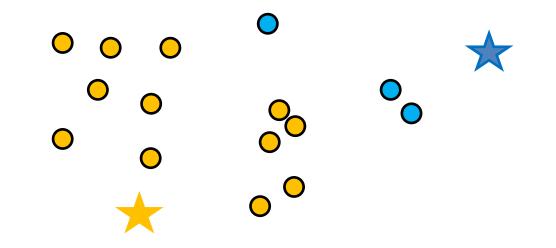
#### Outline

- Finish up Other Clustering Types
  - Graph-based, cuts, spectral clustering
- Unsupervised Learning: Visualization
  - t-SNE, algorithm, example, vs. PCA
- Unsupervised Learning: Density Estimation
  - Kernel density estimation: high-level intro

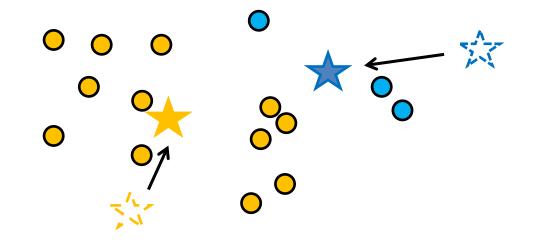
• Steps: **1**. Randomly pick k cluster centers



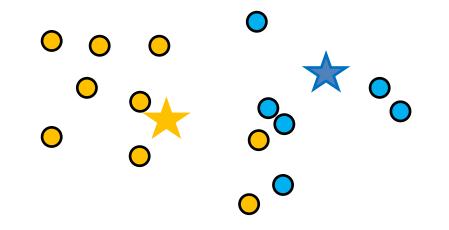
• 2. Find closest center for each point



• 3. Update cluster centers by computing centroids



• Repeat Steps 2 & 3 until convergence

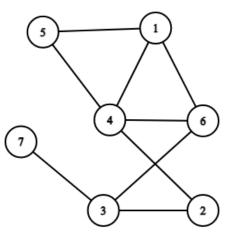


## Other Types of Clustering

#### Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
  - Edges can be weighted or unweighted
  - Encode **similarity**:  $w_{ij} = sim(v_i, v_j)$
- Don't need to KEEP vectors v

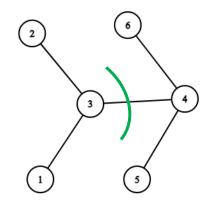
- Only keep the edges (possibly weighted)



#### **Graph-Based Clustering**

**Want:** partition V into  $V_1$  and  $V_2$ 

- Implies a graph "cut"
- One idea: minimize the weight of the cut

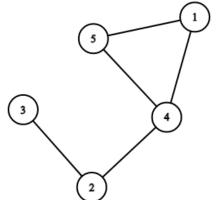


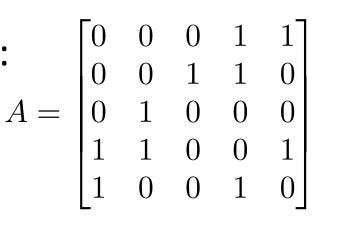
$$W(A,B) = \sum_{i\in A,j\in B} w_{ij}$$
 $\operatorname{cut}(A_1,\ldots,A_k) := rac{1}{2}\sum_{i=1}^k W(A_i,\overline{A}_i).$ 

#### **Partition-Based Clustering**

#### How do we compute these?

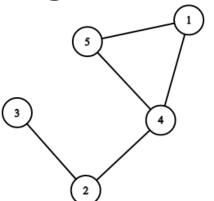
- Hard problem  $\rightarrow$  heuristics
  - Greedy algorithm
  - "Spectral" approaches
- Spectral clustering approach:
   Adjacency matrix





#### **Partition-Based Clustering**

- Spectral clustering approach:
  - Adjacency matrix
  - **Degree** matrix

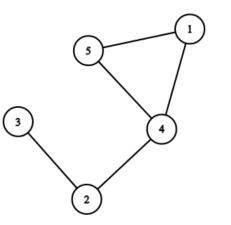


$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

#### **Spectral Clustering**

Spectral clustering approach:

 1. Compute Laplacian L = D – A
 (Important tool in graph theory)



$$L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$
  
Degree Matrix Adjacency Matrix Laplacian

#### **Spectral Clustering**

- Spectral clustering approach:
  - 1. Compute Laplacian L = D A
  - 1a (optional): compute normalized Laplacian:  $L = I - D^{-1/2}AD^{-1/2}$ , or  $L = I - D^{-1}A$

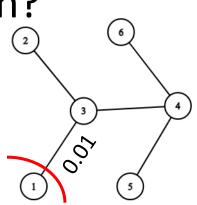


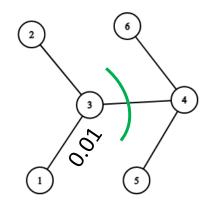
- 2. Compute k smallest eigenvectors of L
- 3. Set U to be the n x k matrix with  $u_1$ , ...,  $u_k$  as columns. Take the n rows formed as points
- 4. Run k-means on the representations

### Why normalized Laplacian?

**Want:** partition V into  $V_1$  and  $V_2$ 

- Implies a graph "cut"
- One idea: minimize the weight of the cut
  - Downside: might just cut of one node
  - Need: "balanced" cut





#### Why Normalized Laplacian?

**Want:** partition V into  $V_1$  and  $V_2$ 

- Just minimizing weight is not always a good idea.
- We want **balance!**

$$\operatorname{Ncut}(A_1, \dots, A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A}_i)}{\operatorname{vol}(A_i)}$$

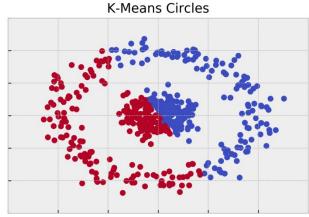
$$\mathrm{vol}(A) = \sum_{i \in A} \mathrm{degree}(i)$$

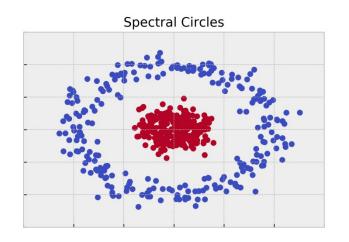
#### **Spectral Clustering**

- Compare/contrast to **PCA**:
  - Use an eigendecomposition / dimensionality reduction
    - But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
  - "Lower" eigenvectors give partitioning information

#### **Spectral Clustering**

- **Q**: Why do this?
  - 1. No need for points or distances as input
  - 2. Can handle intuitive separation (k-means can't!)





Credit: William Fleshman

**Q 1.1**: We have two datasets: a social network dataset  $S_1$  which shows which individuals are friends with each other along with image dataset  $S_{2.}$ 

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S<sub>1</sub> and S<sub>2</sub>
- B. graph-based on S<sub>1</sub> and k-means on S<sub>2</sub>
- C. k-means on S<sub>1</sub> and graph-based on S<sub>2</sub>
- D. hierarchical on S<sub>1</sub> and graph-based on S<sub>2</sub>

**Q 1.1**: We have two datasets: a social network dataset  $S_1$  which shows which individuals are friends with each other along with image dataset  $S_{2.}$ 

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S<sub>1</sub> and S<sub>2</sub>
- B. graph-based on S<sub>1</sub> and k-means on S<sub>2</sub>
- C. k-means on S<sub>1</sub> and graph-based on S<sub>2</sub>
- D. hierarchical on S<sub>1</sub> and graph-based on S<sub>2</sub>

**Q 1.1**: We have two datasets: a social network dataset  $S_1$  which shows which individuals are friends with each other along with image dataset  $S_{2.}$ 

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S<sub>1</sub> and S<sub>2</sub> (No: can't do k-means on graph)
- B. graph-based on S<sub>1</sub> and k-means on S<sub>2</sub>
- C. k-means on S<sub>1</sub> and graph-based on S (Same as A)
- D. hierarchical on S<sub>1</sub> and graph-based on S<sub>2</sub> (No: S<sub>2</sub> is not a graph)

**Q 1.2**: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

| airplane   | 🛁 🕅 🚂 📈 🗸    |
|------------|--------------|
| automobile | = < 2        |
| bird       | s 🖬 🗾 🕺      |
| cat        |              |
| deer       | NK 🐪 🚮 🦉     |
| dog        | S 1          |
| frog       | S & S &      |
| horse      |              |
| ship       | 2 <b>1</b> 1 |
| truck      | i 🖓 🚵 🛵 🎆 🖉  |
|            |              |

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?
(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

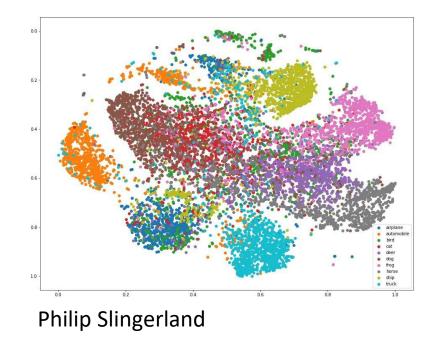
Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?
(i) Supervised learning (ii) PCA (iii) k-means clustering

- (i) Yes: train an image classifier; have labels
- (ii) Yes: run PCA on image vectors to reduce dimensionality
- (iii) Yes: can cluster image vectors with k-means
- D. All of them

#### **Unsupervised Learning Beyond Clustering**

Data analysis, dimensionality reduction, etc

- Already talked about PCA
- Note: PCA can be used for visualization, but not specifically designed for it
- Some algorithms specifically for visualization



#### **Dimensionality Reduction & Visualization**

Typical dataset: MNIST

- Handwritten digits 0-9
  - 60,000 images (small by ML standards)

  - Standard for image experiments
- Dimensionality reduction?

**3** 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 М Ð

#### **Dimensionality Reduction & Visualization**

Run PCA on MNIST

 PCA is a linear mapping, (can be restrictive)

7578 1560 238073857 0146460243 7128169861

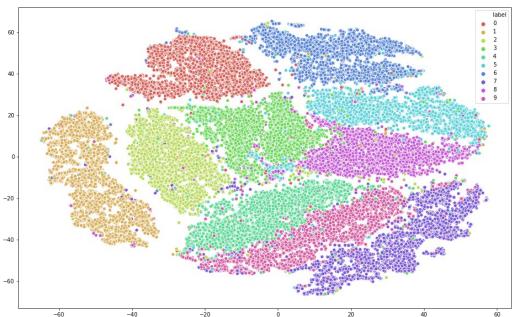
Image source:

http://deeplearning.csail.mit.edu/slide\_cvpr2018/laurens\_cvpr18tutorial.pdf

#### Visualization: T-SNE

Typical dataset: MNIST

- T-SNE: project data into just 2 dimensions
- Try to maintain structure
- MNIST Example
- **Input**: x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>
- **Output**: 2D/3D y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>n</sub>



#### **T-SNE** Algorithm: Step 1

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

Step 1:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)} \quad p_{ij} = \frac{1}{2n} (p_{j|i} + p_{i|j})$$

**x**<sub>4</sub>

X

 $\mathbf{x}_1$ 

**Intuition**: probability that  $x_i$  would pick  $x_j$  as its neighbor under a Gaussian probability

#### **T-SNE** Algorithm: Step 2

How does it work? Two steps

- **1.** Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq \ell} (1 + \|y_k - y_\ell\|^2)^{-1}}$$

and minimize

Step 2: set

$$\sum_{i,j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$
  $\leftarrow$  KL Divergence between p and

 $X_4$ 

X

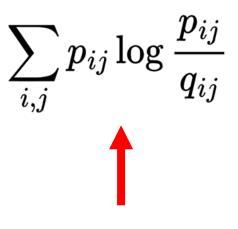
and q

**X**<sub>1</sub>

#### **T-SNE** Algorithm: Step 2

More on step 2:

- We have two distributions p, q. p is fixed
- q is a function of the  $y_i$  which we move around
- Move y<sub>i</sub> around until the KL divergence is small
  - So we have a good representation!
- **Optimizing a loss function**---we'll see more in supervised learning.



KL Divergence between p and q

#### **T-SNE** Examples

- Examples: (from Laurens van der Maaten)
- Movies:

https://lvdmaaten.github.io/tsne/examples/netflix\_tsne.jpg



#### **T-SNE** Examples

- Examples: (from Laurens van der Maaten)
- NORB:

https://lvdmaaten.github.io/tsne/examples/norb\_tsne.jpg



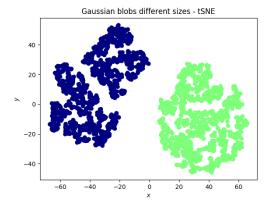
#### Visualization: T-SNE

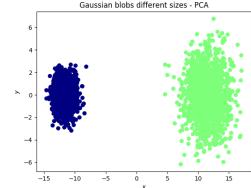
#### t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
   not a bad thing necessarily
- Downstream use

Good resource/credit:

https://www.thekerneltrip.com/statistics/tsne-vs-pca/





**Q 2.1**: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R<sup>d</sup> (ie, embedding)
- D. Yes, after running hierarchical clustering on them

**Q 2.1**: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R<sup>d</sup> (ie, embedding)
- D. Yes, after running hierarchical clustering on them

**Q 2.1**: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never (No: too strong)
- B. Yes, after running PCA on them (No: can't run PCA on words or graphs directly. Need vectors)
- C. Yes, after mapping them into R<sup>d</sup> (ie, embedding)
- D. Yes, after running hierarchical clustering on them (No: hierarchical clustering gives us a graph)

#### Short Intro to Density Estimation

Goal: given samples  $x_1, ..., x_n$  from some distribution P, estimate P.

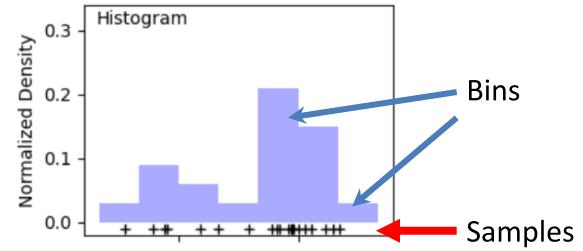
- Compute statistics (mean, variance)
- Generate samples from P
- Run inference



Zach Monge

#### Simplest Idea: Histograms

# Goal: given samples $x_1, ..., x_n$ from some distribution P, estimate P.



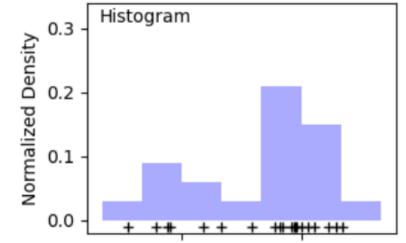
Define bins; count # of samples in each bin, normalize

#### Simplest Idea: Histograms

Goal: given samples  $x_1, ..., x_n$  from some distribution P, estimate P.

#### **Downsides:**

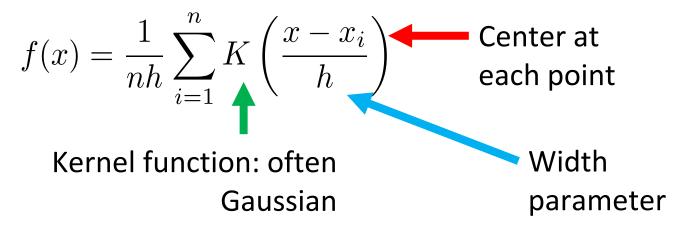
- i) High-dimensions: most bins empty
- ii) Not continuous
- iii) How to choose bins?



#### **Kernel Density Estimation**

Goal: given samples  $x_1, ..., x_n$  from some distribution P, estimate P.

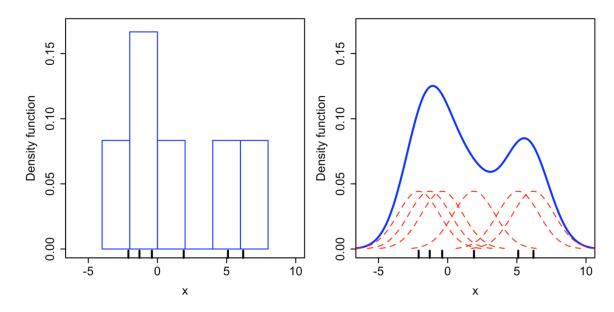
Idea: represent density as combination of "kernels"



#### **Kernel Density Estimation**

Idea: represent density as combination of kernels

• "Smooth" out the histogram



## Readings

Suggested reading:

A Tutorial on Spectral Clustering, Ulrike von Luxburg

https://people.csail.mit.edu/dsontag/courses/ml14/notes/Luxbur g07 tutorial spectral clustering.pdf