

CS 540 Introduction to Artificial Intelligence Linear Algebra and PCA University of Wisconsin-Madison

Fall 2025 Sections 1 & 2

Announcements

- HW 1 will be released tomorrow:
 - Due Friday Sep 19 at 11:59PM

 TA discussion – review session today at 5:30 PM in Morgridge Hall 3610

Class roadmap:



Regularized Estimate

• Hyperparameter $\epsilon > 0$

$$\widehat{p_i} = \frac{n_i + \epsilon}{n + k\epsilon}$$

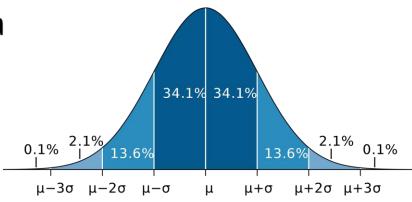
- Avoids zero when n is small
- Biased, but has smaller variance
- Equivalent to a specific Maximum A Posteriori (MAP) estimate, or smoothing

Estimating 1D Gaussian Parameters

- Gaussian (aka Normal) distribution $N(\mu, \sigma^2)$
 - True mean μ , true variance σ^2
- Observe n data points from this distribution

$$x_1, \ldots, x_n$$

• Estimate μ , σ^2 from this data



Wikipedia: Normal distribution

Estimating 1D Gaussian Parameters

- Mean estimate $\hat{\mu} = \frac{x_1 + \dots + x_n}{n}$
- Variance estimates

– Unbiased
$$s^2 = \frac{\sum_{i=1}^n (x_i - \hat{\mu})^2}{n-1}$$

- MLE
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (x_i - \hat{\mu})^2}{n}$$

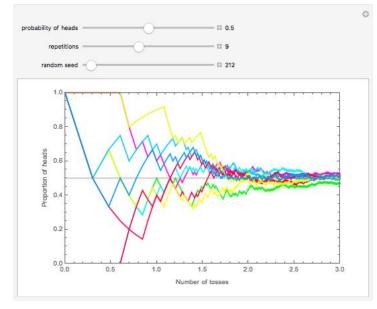
Estimation Theory

• Is the sample mean a good estimate of the true

mean?

Law of large numbers

Central limit theorems



Wolfram Demo

Estimation Errors

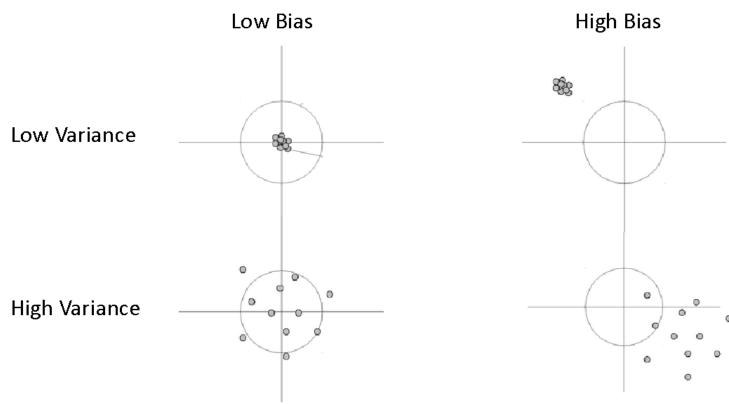
- With finite samples, likely error in the estimate.
- Mean squared error

-
$$MSE[\hat{\theta}] = \mathbb{E}[(\hat{\theta} - \theta)^2]$$

Bias / Variance Decomposition

$$- MSE[\hat{\theta}] = \mathbb{E}\left[\left(\hat{\theta} - E[\hat{\theta}]\right)^{2}\right] + \left(\mathbb{E}[\hat{\theta}] - \theta\right)^{2}$$
Variance Bias

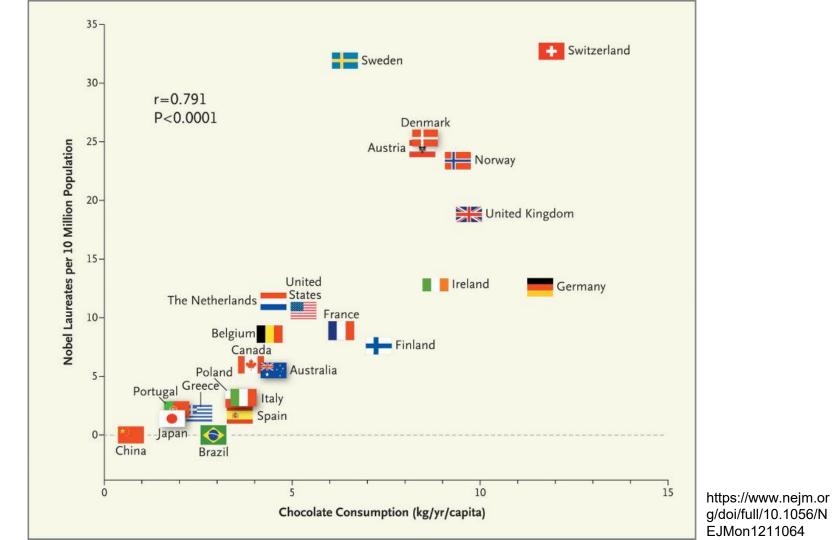
Bias / Variance



Wikipedia: Bias-variance tradeoff

Correlation vs. Causation

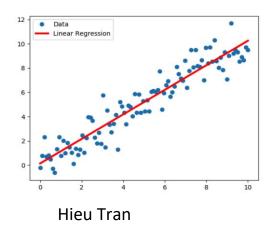
- Conditional probabilities only define correlation (aka association)
- P(Y|X) "large" does not mean X causes Y
- Example: X=yellow finger, Y=lung cancer
- Common cause: smoking

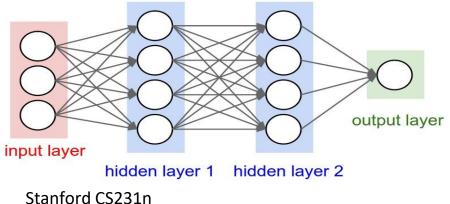


Linear Algebra

Linear Algebra: What is it good for?

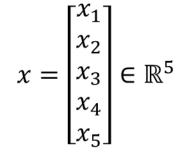
- Study of Linear functions: simple, tractable
- In AI/ML: building blocks for all models
 - e.g., linear regression; part of neural networks

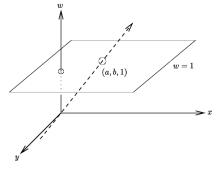


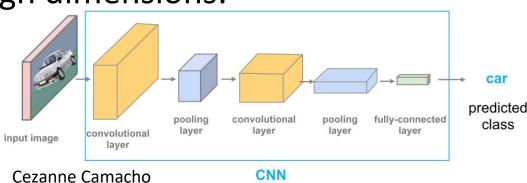


Basics: Vectors

- Many interpretations
 - List of values (represents information)
 - Point in space
- Dimension: number of values: $x \in \mathbb{R}^d$
- AI/ML: often use very high dimensions:
 - Ex: images!







Basics: Matrices

- Many interpretations
 - Table of values; list of vectors
 - Represent linear transformations
 - Apply to a vector, get another vector
- $A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{33} & A_{33} \\ A_{41} & A_{43} & A_{43} \end{bmatrix}$
- Dimensions: # rows × # columns, $A \in \mathbb{R}^{m \times n}$
 - indexing

Basics: **Transposition**

- Transposes: flip rows and columns
 - Vector: standard is a column. Transpose: row vector
 - Matrix: go from $m \times n$ to $n \times m$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \quad A^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \\ A_{13} & A_{23} \end{bmatrix}$$

Vectors

- Addition: component-wise
 - Commutative: x + y = y + x
 - Associative: (x + y) + z = x + (y + z)

$$x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

- Scalar Multiplication
 - Uniform stretch / scaling

$$cx = \begin{bmatrix} cx_1 \\ cx_2 \\ cx_3 \end{bmatrix}$$

Vector products

– Inner product (e.g., dot product)

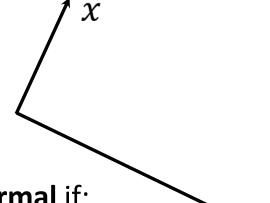
$$< x, y > := x^T y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

Outer product

$$xy^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & x_{1}y_{3} \\ x_{2}y_{1} & x_{2}y_{2} & x_{2}y_{3} \\ x_{3}y_{1} & x_{3}y_{2} & x_{3}y_{3} \end{bmatrix}$$

- x and y are **orthogonal** if $\langle x, y \rangle = 0$.
- Vector norms: "length"

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$



- A set of vectors $\{x_1, x_2, \dots x_n\}$ is **orthonormal** if:
 - For all pairs x_i , xj we have $\langle x_i, xj \rangle = 0$
 - For all x_i , we have $||x||_2 = 1$

Matrices:

- Addition: Component-wise
- Commutative, Associative

$$A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \\ A_{31} + B_{31} & A_{32} + B_{32} \end{bmatrix}$$

- Scalar Multiplication
- "Stretching" the linear transformation

$$cA = \begin{bmatrix} cA_{11} & cA_{12} \\ cA_{21} & cA_{22} \\ cA_{31} & cA_{32} \end{bmatrix}$$

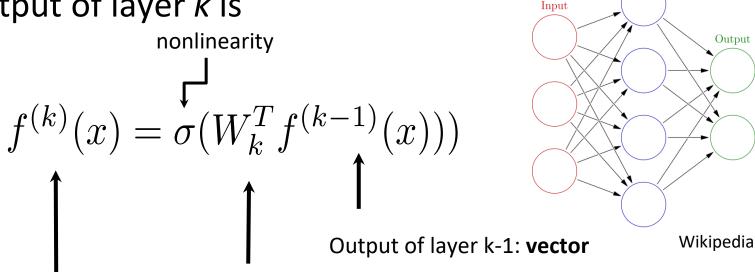
- Matrix-Vector multiplication:
 - Linear transformation; plug in vector, get another vector
 - Each entry in Ax is the inner product of a row of A with x

$$x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$$

$$Ax = \begin{bmatrix} \langle A_{1:}, x \rangle \\ \langle A_{2:}, x \rangle \\ \vdots \\ \langle A_{m:}, x \rangle \end{bmatrix} = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n \end{bmatrix}_{20}$$

Ex: feedforward neural networks. Input x.

Output of layer k is



Output of layer k: vector

Weight **matrix** for layer k:

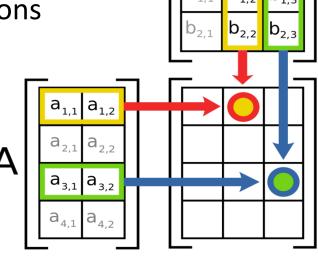
Note: linear transformation!

Hidden

Matrix multiplication

- $-A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, then $AB \in \mathbb{R}^{m \times p}$
- "Composition" of linear transformations
- Not commutative in general!

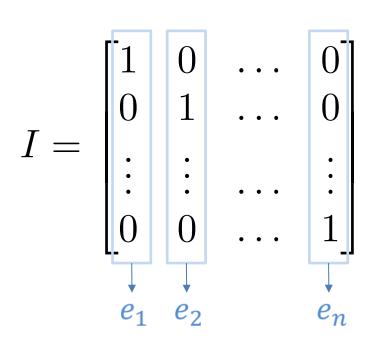
$$AB \neq BA$$



Identity Matrix

- Like "1"
- Multiplying by it gets back the same matrix or vector

Rows & columns are the
 "standard basis vectors" e_i



• **Q 1.1**: What is
$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

- A. [-1 1 1]^T
- B. [2 1 1]^T
- C. [1 3 1]^T
- D. [1.5 2 1]^T

• **Q 1.1**: What is
$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

- A. [-1 1 1]^T
- B. [2 1 1]^T
- C. [1 3 1]^T
- D. [1.5 2 1]^T

• **Q 1.1**: What is
$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

- A. [-1 1 1]^T
- B. [2 1 1]^T
- C. [1 3 1]^T
- D. [1.5 2 1]^T

Check dimensions: answer must be 3 x 1 matrix (i.e., column vector).

$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 * 1 + 1 * 2 \\ 0 * 3 + 1 * 1 \\ 0 * 1 + 1 * 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

• **Q 1.2**: Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{d \times m}, C \in \mathbb{R}^{p \times n}$ What are the dimensions of BAC^T

- A. n x p
- B. dxp
- C. dxn
- D. Undefined

• **Q 1.2**: Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{d \times m}, C \in \mathbb{R}^{p \times n}$ What are the dimensions of BAC^T

- A. n x p
- B. dxp
- C. dxn
- D. Undefined

• **Q 1.2**: Given matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{d \times m}, C \in \mathbb{R}^{p \times n}$ What are the dimensions of BAC^T

- A. n x p
- B. dxp
- C. dxn
- D. Undefined

To rule out (D), check that for each pair of adjacent matrices XY, the # of columns of X = # of rows of Y

Then, B has d rows so solution must have d rows. C^T has p columns so solution has p columns.

• **Q 1.3**: A and B are matrices, neither of which is the identity. Is AB = BA?

- A. Never
- B. Always
- C. Sometimes

• **Q 1.3**: A and B are matrices, neither of which is the identity. Is AB = BA?

- A. Never
- B. Always
- C. Sometimes

• **Q 1.3**: A and B are matrices, neither of which is the identity. Is AB = BA?

- A. Never
- B. Always
- C. Sometimes

Matrix multiplication is not necessarily commutative.

Matrix Inverses

- If for A there is a B such that AB = BA = I
 - Then A is invertible/nonsingular, B is its inverse
 - Some matrices are **not** invertible!

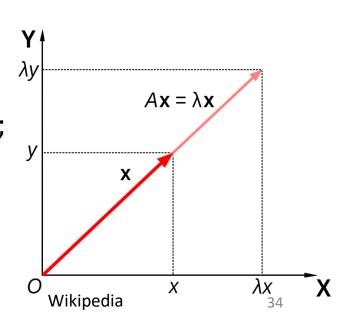
– Usual notation: A^{-1}

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} = I$$

Eigenvalues & Eigenvectors

- For a square matrix A, solutions to $Av=\lambda v$
 - ν (nonzero) is a vector: eigenvector
 - $-\lambda$ is a scalar: **eigenvalue**

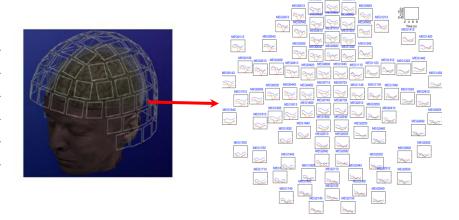
- Intuition: A is a linear transformation;
- Can stretch/rotate vectors;
- E-vectors: only stretched (by e-vals)



Dimensionality Reduction

- Vectors store features. Lots of features!
 - Document classification: thousands of words per doc
 - Netflix surveys: 480189 users x 17770 movies
 - MEG Brain Imaging: 120 locations x 500 time points x 20 objects

	movie 1	movie 2	movie 3
Tom	5	?	?
George	?	?	3
Susan	4	3	1
Beth	4	3	?



Dimensionality Reduction

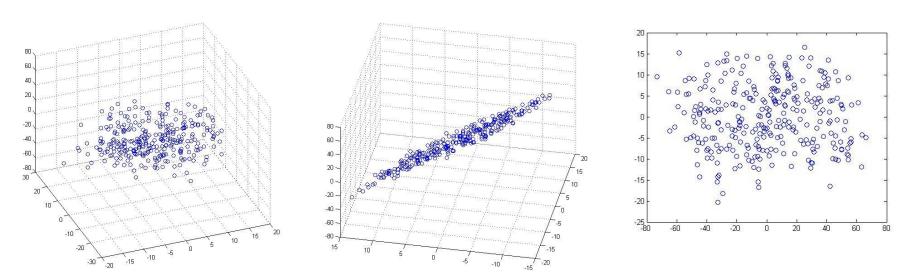
Reduce dimensions

- Why?
 - Lots of features redundant
 - Storage & computation costs

- Goal: take $x \in \mathbb{R}^d \to x \in \mathbb{R}^r$ for r << d
 - But minimize information loss

Dimensionality Reduction

Examples: 3D to 2D



Andrew Ng

Q 2.1: What is the inverse of
$$A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$$

C: Undefined / A is not invertible

Q 2.1: What is the inverse of $A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$

$$A^{-1} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$$

B:
$$A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$$

$$AA^{-1} = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0*a+c*2 & 0*b+2*d \\ 3*a+c*0 & 3*b+0*d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$2c = 1$$

$$3a = 0$$

$$2d = 0$$

$$3b = 1$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 1/3 \\ 1/2 & 0 \end{bmatrix}$$

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- A. -1, 2, 4
- B. 0.5, 0.2, 1.0
- C. 0, 2, 5
- D. 2, 5, 1

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- A. -1, 2, 4
- B. 0.5, 0.2, 1.0
- C. 0, 2, 5
- D. 2, 5, 1

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution #1: You may recall from a linear algebra course that the eigenvalues of a diagonal matrix (in which only diagonal entries are non-zero) are just the entries along the diagonal. Hence D is the correct answer.

Q 2.2: What are the eigenvalues of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Solution #2: Use the definition of eigenvectors and values: $Av = \lambda v$

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} v_1 v_2 = \begin{bmatrix} 2v_1 + 0v_2 + 0v_3 \\ 0v_1 + 5v_2 + 0v_3 \\ 0v_1 + 0v_2 + 1v_3 \end{bmatrix} = \begin{bmatrix} 2v_1 \\ 5v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ \lambda v_2 \\ \lambda v_3 \end{bmatrix}$$

Since A is a 3x3 matrix, A has 3 eigenvalues and so there are 3 combinations of values for λ and v that will satisfy the above equation. The simple form of the equations suggests starting by checking each of the standard basis vectors* as v and then solving for λ . Doing so gives D as the correct answer.

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lowest compression ratio we can use?

- A. 20X
- B. 100X
- C. 5X
- D. 1X

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?

- A. 20X
- B. 100X
- C. 5X
- D. 1X

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?

A. 20X

B. 100X

C. 5X

D. 1X

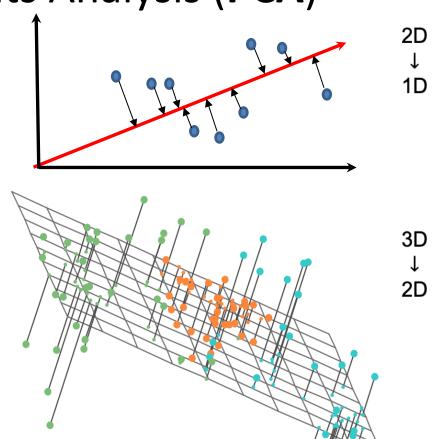
50,000 bits / 10,000 samples means compressed version must have 5 bits / sample.

Dataset has 100 bits / sample.

Must compress 20x smaller to fit on device.

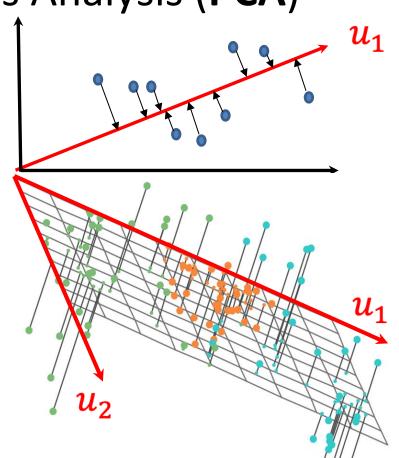
Principal Components Analysis (PCA)

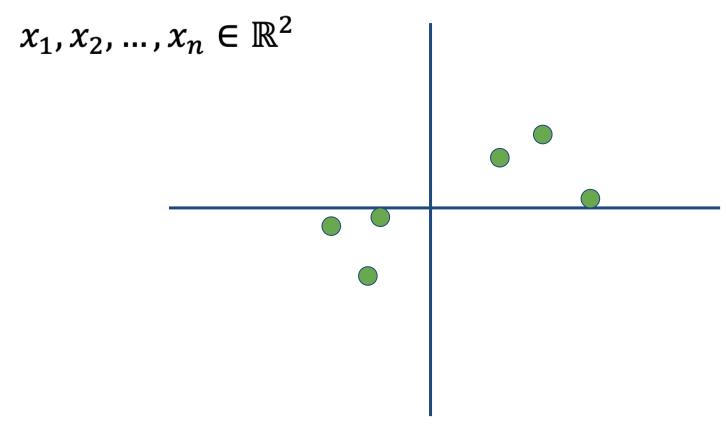
- A type of dimensionality reduction approach
 - For when data is approximately lower dimensional

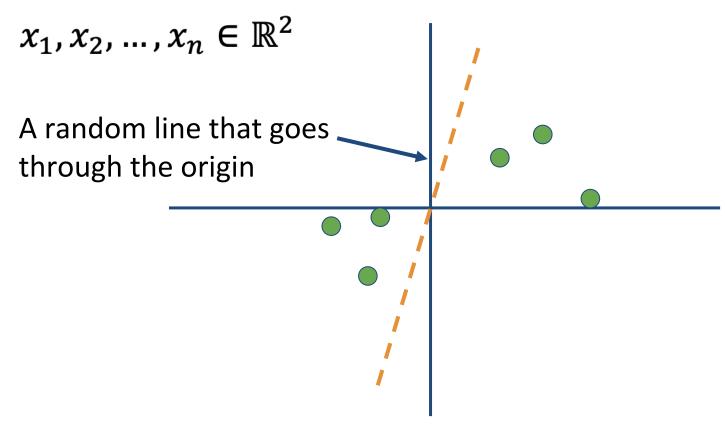


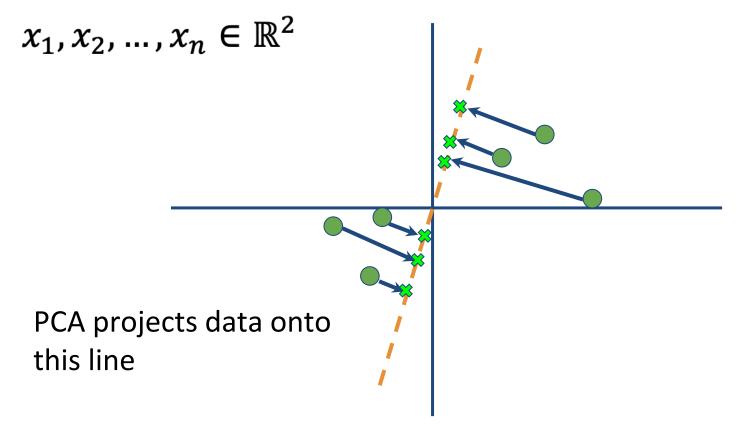
Principal Components Analysis (PCA)

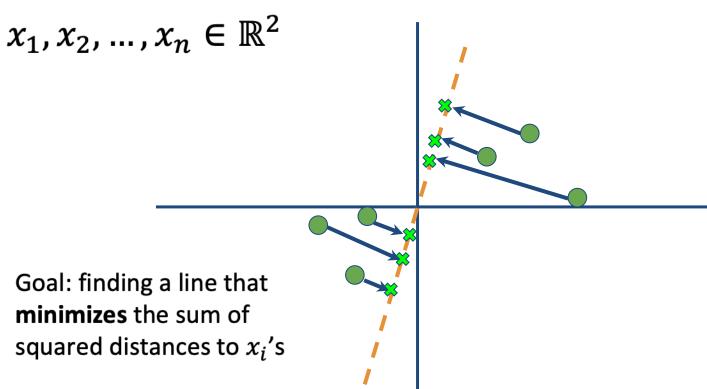
- Find axes $u_1, u_2, \dots, um \in \mathbb{R}^d$ of a subspace
 - Will project to this subspace
- Want to preserve data
 - Minimize projection error
- These vectors are the principal components



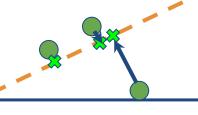


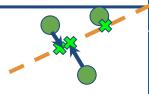






$$x_1, x_2, \dots, x_n \in \mathbb{R}^2$$





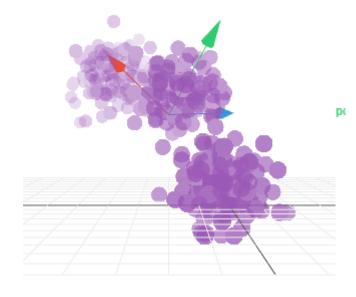
The sum of squared distances gets smaller as the line fits better

The **optimal** line is called Principal Component 1

PCA Procedure

Inputs: data $x_1, x_2, ..., x_n \in \mathbb{R}^d$

— Center data so that $\frac{1}{n}\sum_{i=1}^n x_i = 0$



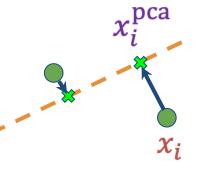
Victor Powell

PCA Procedure

Output:

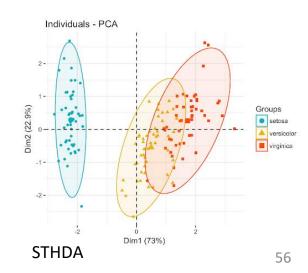
principal components $u_1, ..., u_m \in \mathbb{R}^d$

- Can show: they are top-m eigenvectors of
 - $S = \frac{1}{n-1} \sum_{i=1}^{n} x_i x_i^{\mathsf{T}} \text{ (covariance matrix)}$
- Each x_i projected to $x_i^{\text{pca}} = \sum_{j=1}^m (u_j^{\mathsf{T}} x_i) u_j$



Many Variations

- PCA, Kernel PCA, ICA, CCA
 - Extract structure from high dimensional dataset
- Uses:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use



Application: Image Compression

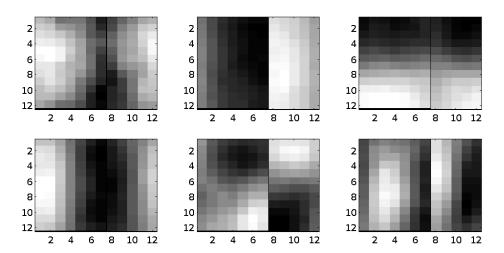
Start with image; divide into 12x12 patches

That is, 144-D vector

– Original image:

Application: Image Compression

• 6 principal components (as an image)



Application: Image Compression

Project to 6D

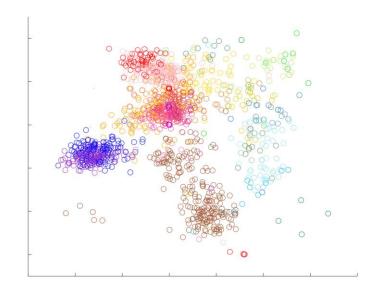
Compressed

Original

Application: Exploratory Data Analysis

 [Novembre et al. '08]: Take top two singular vectors of people x SNP matrix (POPRES)





Readings

- Local classes: Math/Stat 431
- More on PCA (and other matrix methods in ML): CS 532
- Suggested reading:
 - Probability and Statistics: The Science of Uncertainty, Michael J. Evans and Jeff S. Rosenthal http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf
 (Chapters 1-3, excluding "advanced" sections)
 - Textbook: Artificial Intelligence: A Modern Approach (4th edition). Stuart Russell and Peter Norvig.
 Pearson, 2020. Appendix A
 - Lecture notes on PCA by Roughgarden and Valiant
 https://web.stanford.edu/class/cs168/l/l7.pdf
 - 760 notes by Zhu https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf