

CS 540 Introduction to Artificial Intelligence Unsupervised Learning II

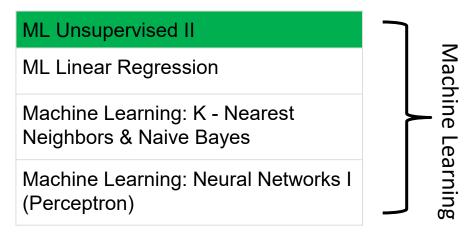
University of Wisconsin-Madison

University of Wisconsin-Madison Fall 2025 Sections 1 & 2

Announcements

- HW 3 online:
 - Due on Friday Oct 3rd at 11:59PM

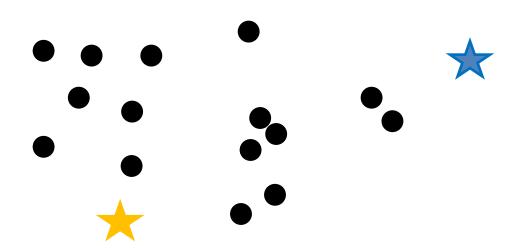
Class roadmap:



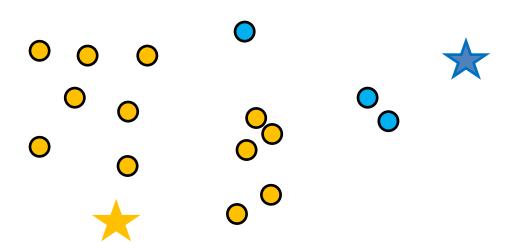
Outline

- Finish up Other Clustering Types
 - Graph-based, cuts, spectral clustering
- Unsupervised Learning: Visualization
 - t-SNE, algorithm, example, vs. PCA
- Unsupervised Learning: Density Estimation
 - Kernel density estimation: high-level intro

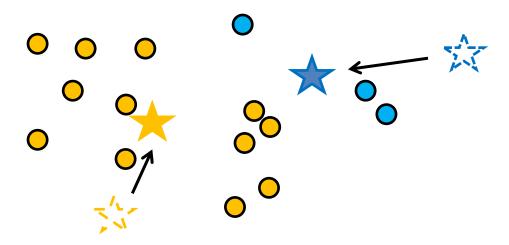
• Steps: 1. Randomly pick k cluster centers



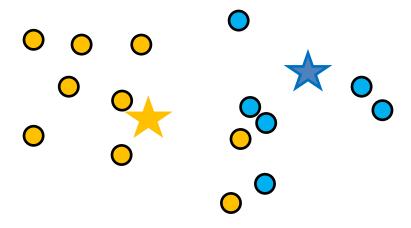
• 2. Find closest center for each point



• 3. Update cluster centers by computing centroids



Repeat Steps 2 & 3 until convergence

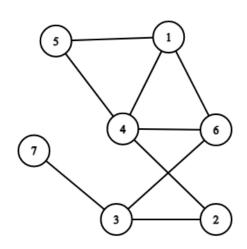


Other Types of Clustering

Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
 - Edges can be weighted or unweighted
 - Encode similarity: $w_{ij} = sim(v_i, v_j)$

- Don't need to KEEP vectors v
 - Only keep the edges (possibly weighted)



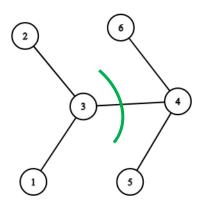
Graph-Based Clustering

Want: partition V into V₁ and V₂

- Implies a graph "cut"
- One idea: minimize the weight of the cut

$$W(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

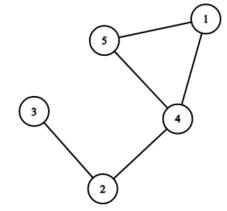
$$\operatorname{cut}(A_1,\ldots,A_k) := \frac{1}{2} \sum_{i=1}^k W(A_i,\overline{A}_i).$$



Partition-Based Clustering

How do we compute these?

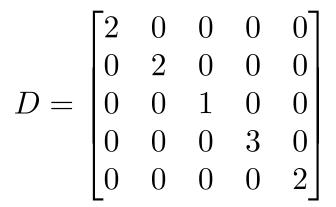
- Hard problem → heuristics
 - Greedy algorithm
 - "Spectral" approaches
- Spectral clustering approach:
 - Adjacency matrix

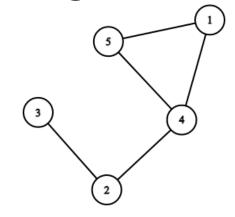


	[0	0	0	1	1
	0	0	1	1	0
=	0	1	0	0	0
	1	1	0	0	1
	1	0 0 1 1 0	0	1	0

Partition-Based Clustering

- Spectral clustering approach:
 - Adjacency matrix
 - Degree matrix

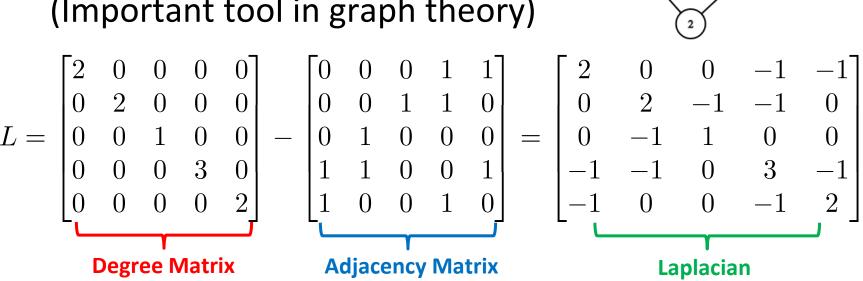




$$= \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

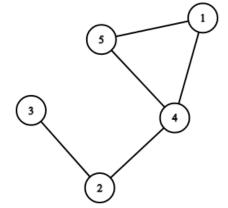
Spectral Clustering

- Spectral clustering approach:
 - -1. Compute Laplacian L = D A (Important tool in graph theory)



Spectral Clustering

- Spectral clustering approach:
 - -1. Compute Laplacian L = D A
 - 1a (optional): compute normalized Laplacian: $L = I - D^{-1/2}AD^{-1/2}$, or $L = I - D^{-1}A$

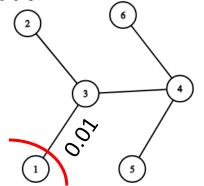


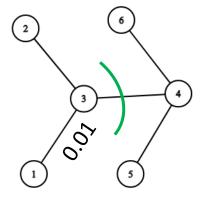
- 2. Compute k smallest eigenvectors of L
- 3. Set U to be the $n \times k$ matrix with u_1 , ..., u_k as columns. Take the n rows formed as points
- 4. Run k-means on the representations

Why normalized Laplacian?

Want: partition V into V₁ and V₂

- Implies a graph "cut"
- One idea: minimize the weight of the cut
 - Downside: might just cut of one node
 - Need: "balanced" cut





Why Normalized Laplacian?

Want: partition V into V_1 and V_2

- Just minimizing weight is not always a good idea.
- We want balance!

$$\operatorname{Ncut}(A_1, \dots, A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A}_i)}{\operatorname{vol}(A_i)}$$

$$\operatorname{vol}(A) = \sum_{i \in A} \operatorname{degree}(i)$$

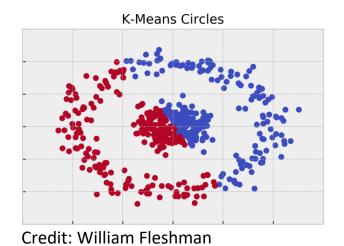
Spectral Clustering

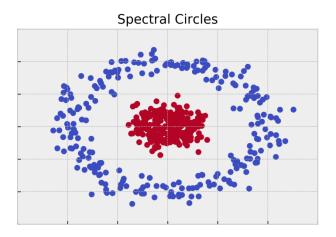
- Compare/contrast to PCA:
 - Use an eigendecomposition / dimensionality reduction
 - But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
 - "Lower" eigenvectors give partitioning information

Spectral Clustering

Q: Why do this?

- 1. No need for points or distances as input
- 2. Can handle intuitive separation (k-means can't!)





Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2 .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S₁ and S₂
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S₂
- D. hierarchical on S₁ and graph-based on S₂

Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2 .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S₁ and S₂
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S₂
- D. hierarchical on S₁ and graph-based on S₂

Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2 .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S₁ and S₂ (No: can't do k-means on graph)
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S₂ (Same as A)
- D. hierarchical on S₁ and graph-based on S₂ (No: S₂ is not a graph)

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

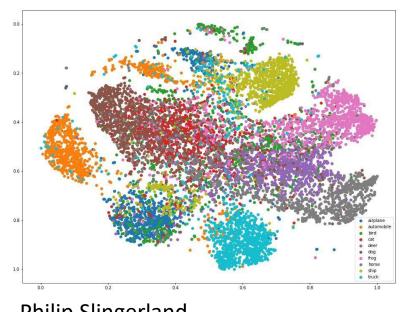
- **Q 1.2**: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?
 - (i) Supervised learning (ii) PCA (iii) k-means clustering

- (i) Yes: train an image classifier; have labels
- (ii) Yes: run PCA on image vectors to reduce dimensionality
- (iii) Yes: can cluster image vectors with k-means
- D. All of them

Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA
- Note: PCA can be used for visualization, but not specifically designed for it
- Some algorithms specifically for visualization



Philip Slingerland

Dimensionality Reduction & Visualization

Typical dataset: MNIST

- Handwritten digits 0-9
 - 60,000 images (small by ML standards)

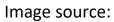
 - Standard for image experiments

Dimensionality reduction?

Dimensionality Reduction & Visualization

Run PCA on MNIST

PCA is a linear mapping,
 (can be restrictive)



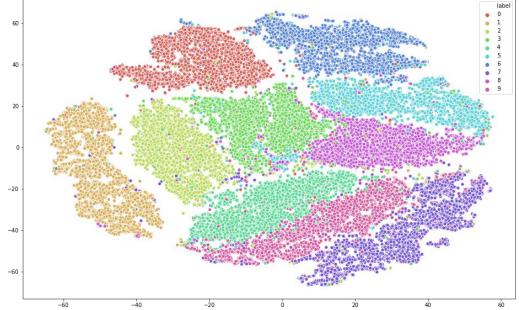
http://deeplearning.csail.mit.edu/slide_cvpr2018/laurens_cvpr18tutorial.pdf

Visualization: **T-SNE**

Typical dataset: MNIST

- T-SNE: project data into just 2 dimensions
- Try to maintain structure

- MNIST Example
- **Input**: x₁, x₂, ..., x_n
- Output: 2D/3D y₁, y₂, ..., y_n



T-SNE Algorithm: Step 1

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)} \quad p_{ij} = \frac{1}{2n} (p_{j|i} + p_{i|j})$$

Intuition: probability that x_i would pick x_j as its neighbor under a Gaussian probability

T-SNE Algorithm: Step 2

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

Step 2: set
$$q_{ij} = \frac{(1 + ||y_i| - ||y_i||)}{\sum_{i=1}^{n} (1 + ||y_i||)}$$

and minimize

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq \ell} (1 + \|y_k - y_\ell\|^2)^{-1}}$$

$$\sum_{i,j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$
 KL Divergence between p and q

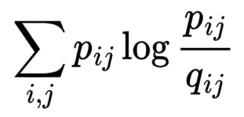
 X_3

T-SNE Algorithm: Step 2

More on step 2:

- We have two distributions p, q. p is fixed
- q is a function of the y_i which we move around
- Move y_i around until the KL divergence is small
 - So we have a good representation!

 Optimizing a loss function---we'll see more in supervised learning.



KL Divergence between p and q

T-SNE Examples

- Examples: (from Laurens van der Maaten)
- Movies:

https://lvdmaaten.github.io/tsne/examples/netflix_tsne.jpg

T-SNE Examples

- Examples: (from Laurens van der Maaten)
- NORB:

https://lvdmaaten.github.io/tsne/examples/norb_tsne.jpg

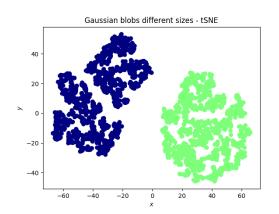
Visualization: **T-SNE**

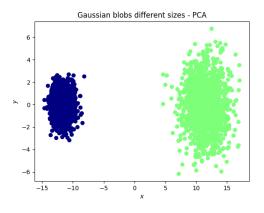
t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
 - not a bad thing necessarily
- Downstream use

Good resource/credit:

https://www.thekerneltrip.com/statistics/tsne-vs-pca/





Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never (No: too strong)
- B. Yes, after running PCA on them (No: can't run PCA on words or graphs directly. Need vectors)
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them (No: hierarchical clustering gives us a graph)

Short Intro to Density Estimation

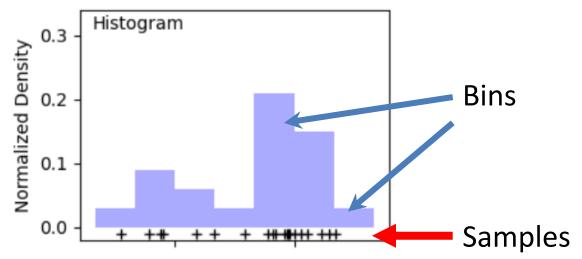
Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.

- Compute statistics (mean, variance)
- Generate samples from P
- Run inference

Zach Monge

Simplest Idea: Histograms

Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.



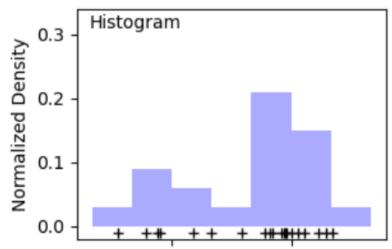
Define bins; count # of samples in each bin, normalize

Simplest Idea: Histograms

Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.

Downsides:

- i) High-dimensions: most bins empty
- ii) Not continuous
- iii) How to choose bins?



Kernel Density Estimation

Goal: given samples x_1 , ..., x_n from some distribution P, estimate P.

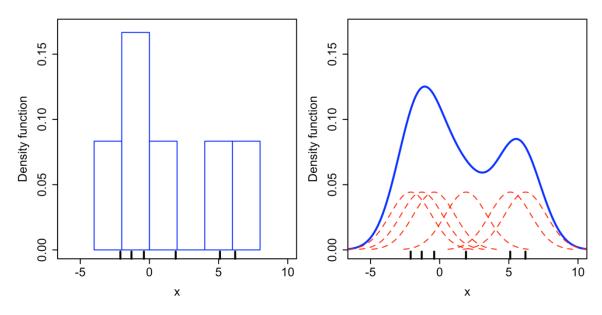
Idea: represent density as combination of "kernels"

$$f(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - x_i}{h}\right)$$
 Center at each point Kernel function: often Gaussian Width parameter

Kernel Density Estimation

Idea: represent density as combination of kernels

"Smooth" out the histogram



Suggested reading

- A Tutorial on Spectral Clustering, Ulrike von Luxburg
 https://people.csail.mit.edu/dsontag/courses/ml14/notes/Luxburg07 tutorial spectral clustering.pdf
- Textbook: Artificial Intelligence: A Modern Approach (4th edition). Stuart Russell and Peter Norvig. Pearson, 2020.
 - Section 19.9 Exploratory data analysis and visualization
 - Section 21.2 Introduction