

CS 540 Introduction to Artificial Intelligence Classification - KNN and Naive Bayes

University of Wisconsin-Madison Fall 2025 Sections 1 & 2

Announcements

Homework:

HW4 online, due Friday October 10 at 11:59 PM

Office hours:

- Tuesday 5:20 6:20 PM at MH 3665
- This Wednesday 4:00-5:30 PM (normally 10-11:30 AM)

Class roadmap:

Machine Learning: kNN& Naive
Bayes

Machine Learning: Neural
Networks I (Perceptron)

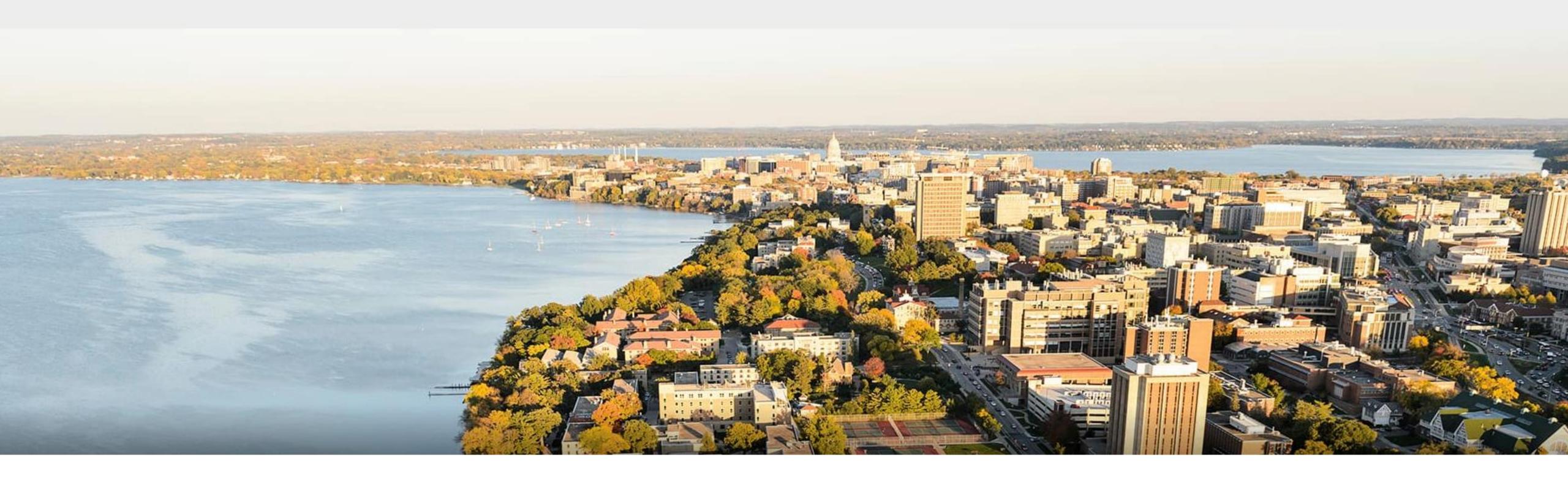
Machine Learning: Neural
Networks II

Machine Learning: Neural
Networks III

Supervised Learning

Outline

- K-Nearest Neighbors
- Maximum likelihood estimation
- Naive Bayes



Part I: K-nearest neighbors

Main page

Article

Talk

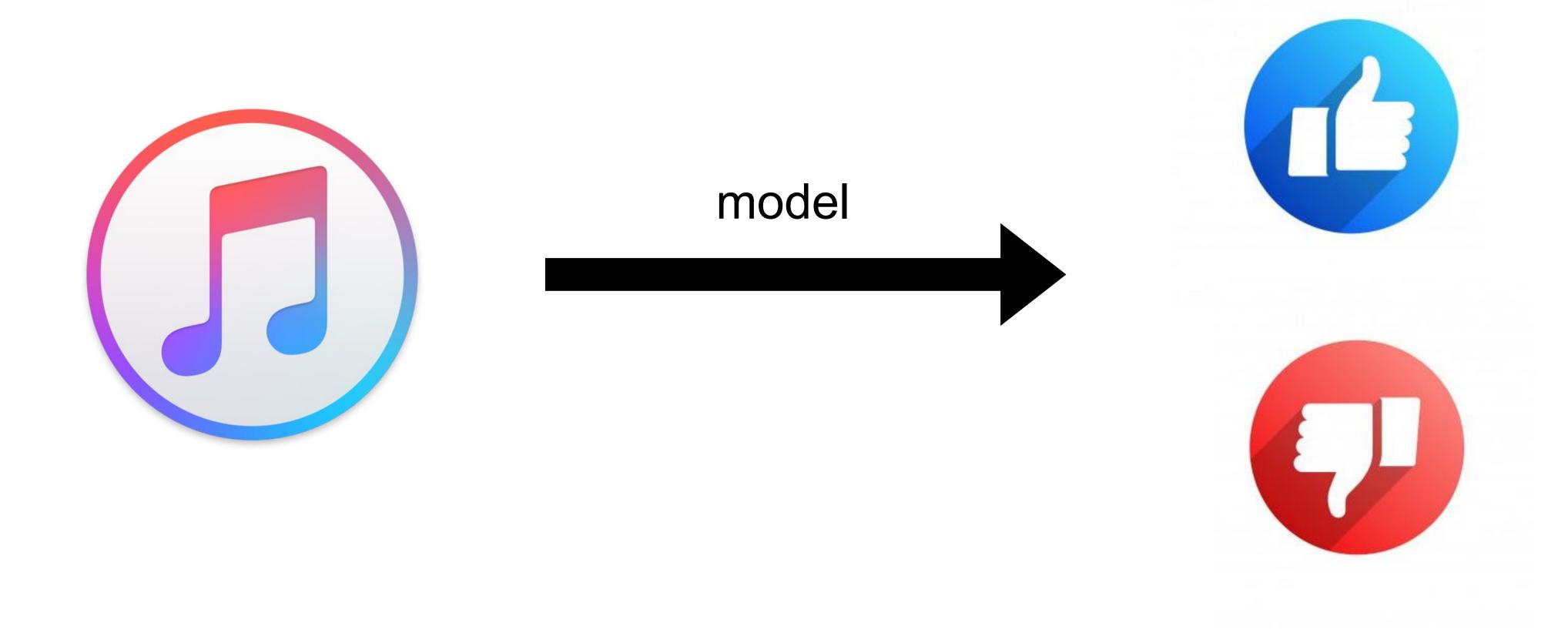
k-nearest neighbors algorithm

From Wikipedia, the free encyclopedia

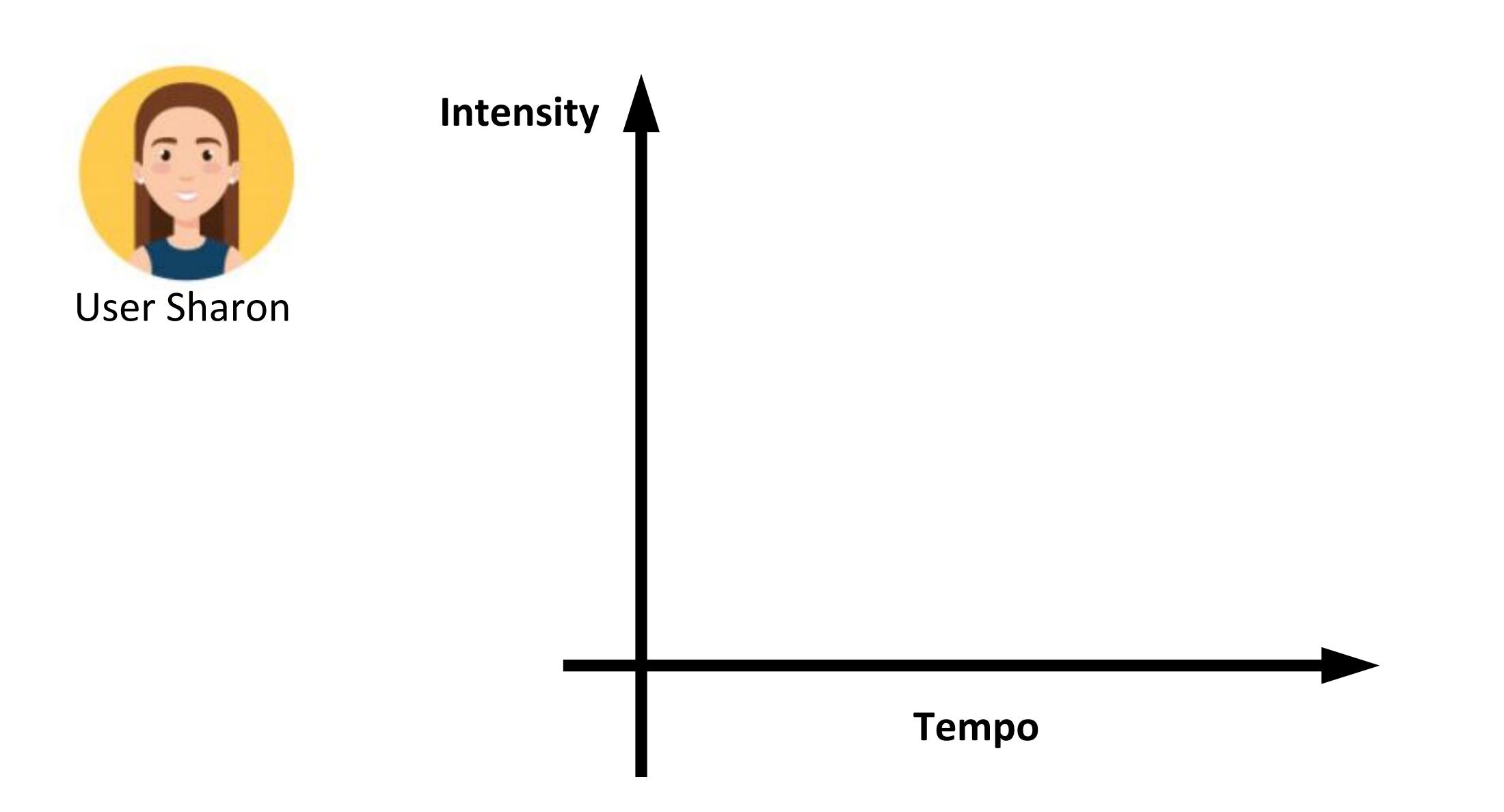
Not to be confused with k-means clustering.

(source: wiki)

Example 1: Predict if a user likes a song or not

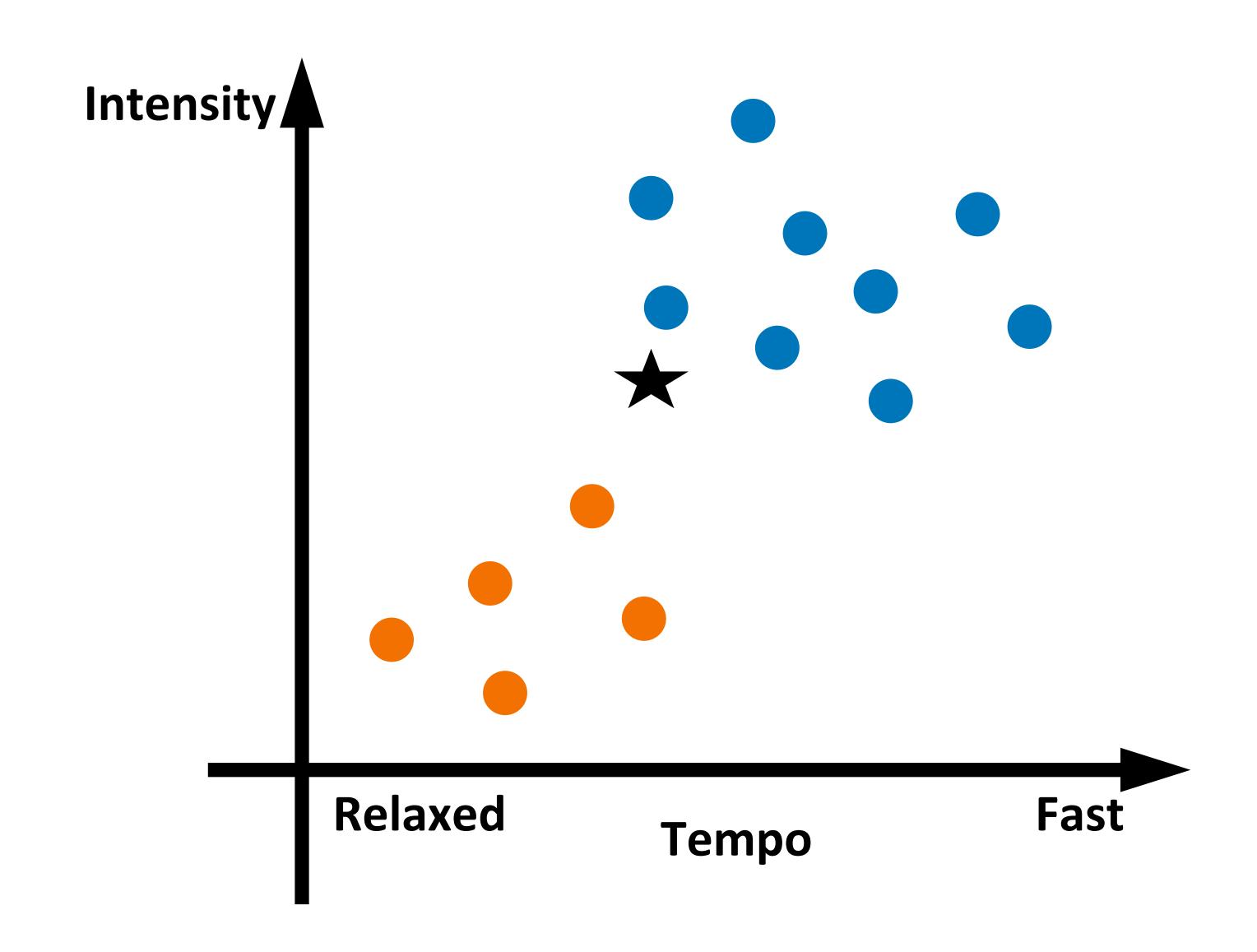


Example 1: Predict if a user likes a song or not

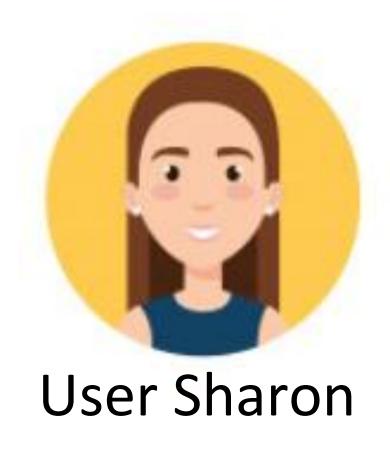


Example 1: Predict if a user likes a song or not 1-NN

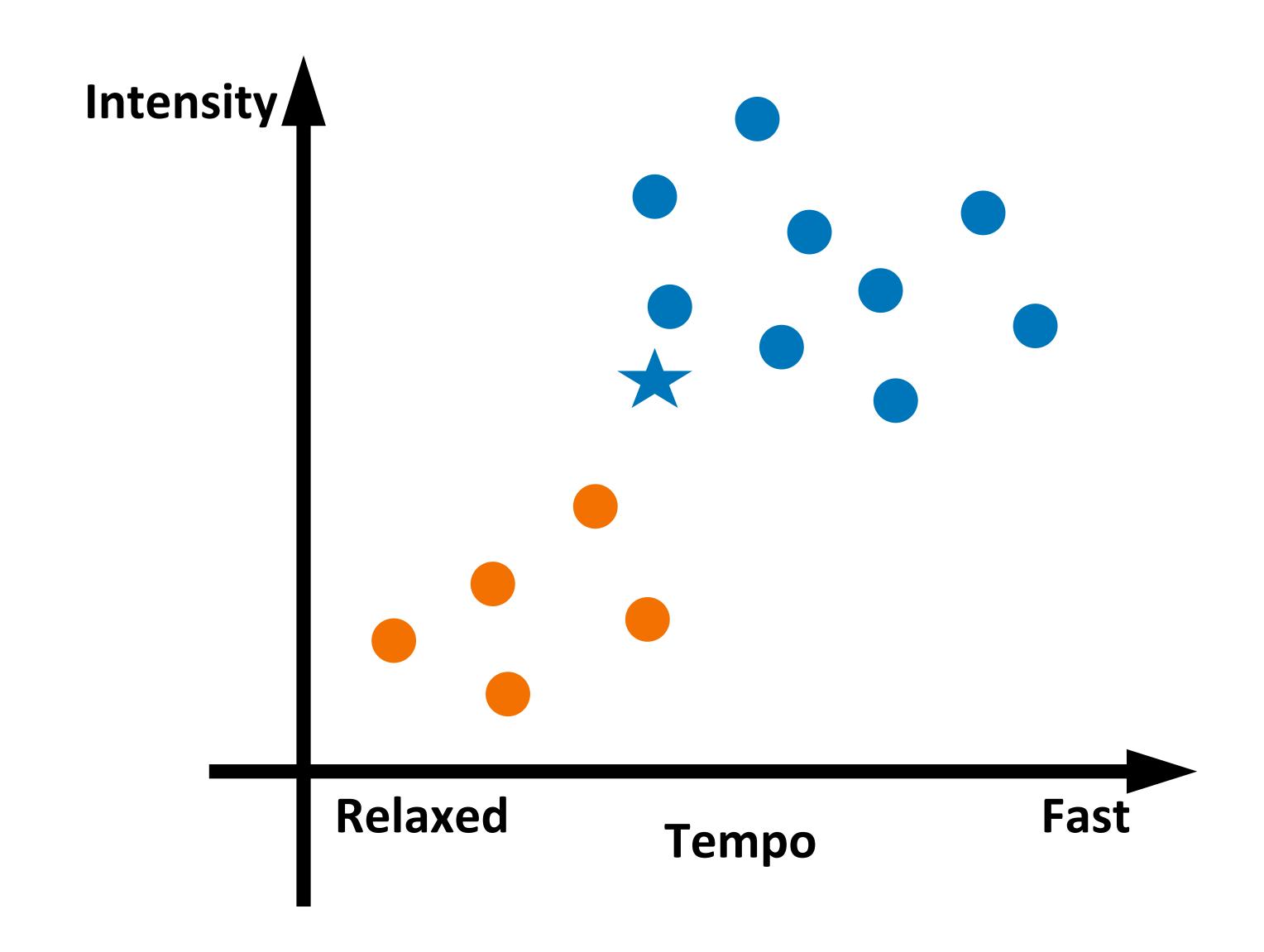
- Dislike
- Like



Example 1: Predict if a user likes a song or not 1-NN



- Dislike
- Like

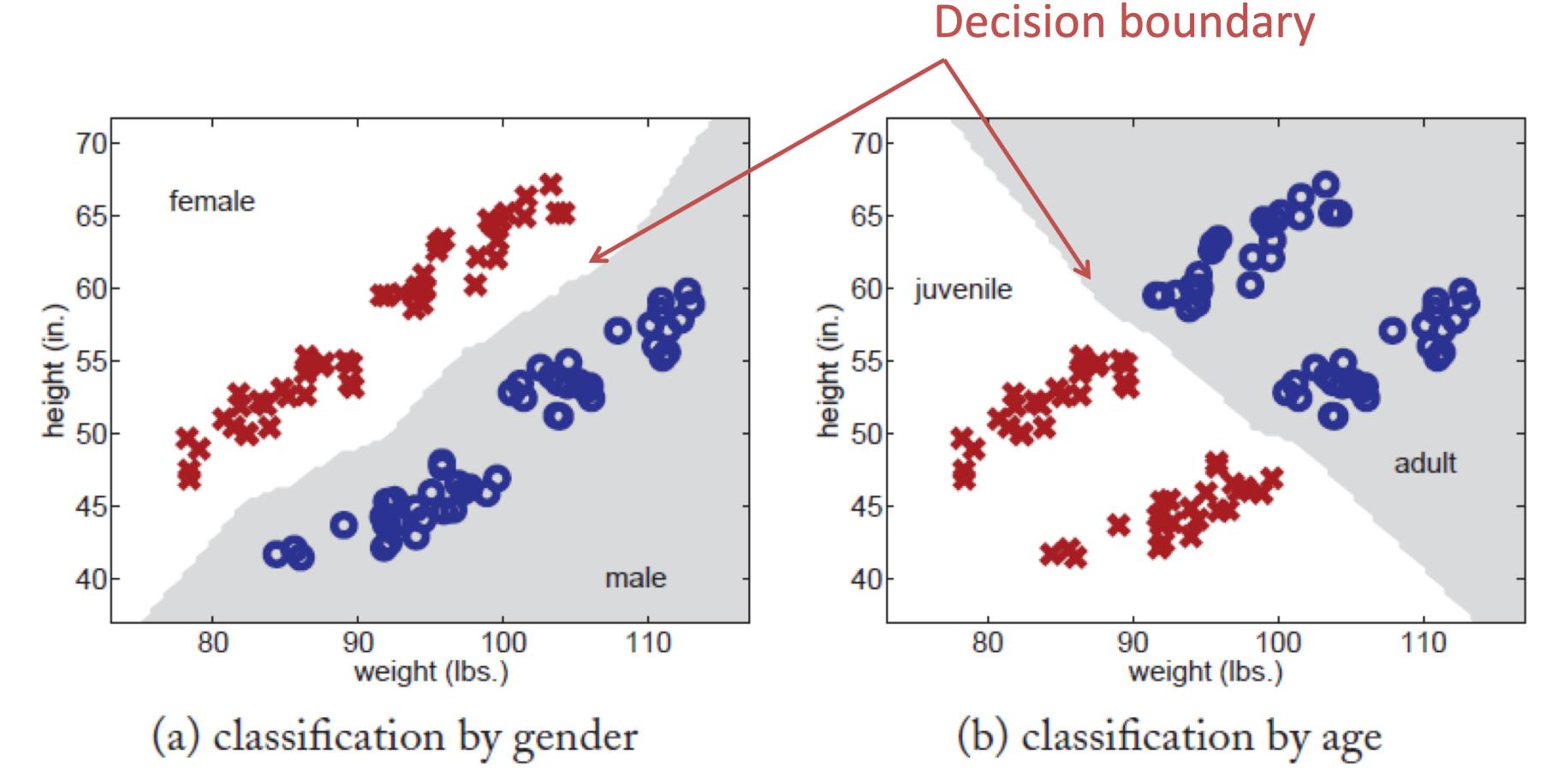


K-nearest neighbors for classification

- Input: Training data $(\mathbf{X}_1, y_1), (\mathbf{X}_2, y_2), \dots, (\mathbf{X}_n, y_n)$ Distance function $d(\mathbf{X}_i, \mathbf{X}_j)$; number of neighbors k; test data \mathbf{X}^*
- 1. Find the k training instances $\mathbf{X}_{i_1},\ldots,\mathbf{X}_{i_k}$ closest to \mathbf{X}^* under $d(\mathbf{X}_i,\mathbf{X}_j)$
- 2. Output y^* , the majority class of y_{i_1}, \ldots, y_{i_k} . Break ties randomly.

Example 2: 1-NN for little green man

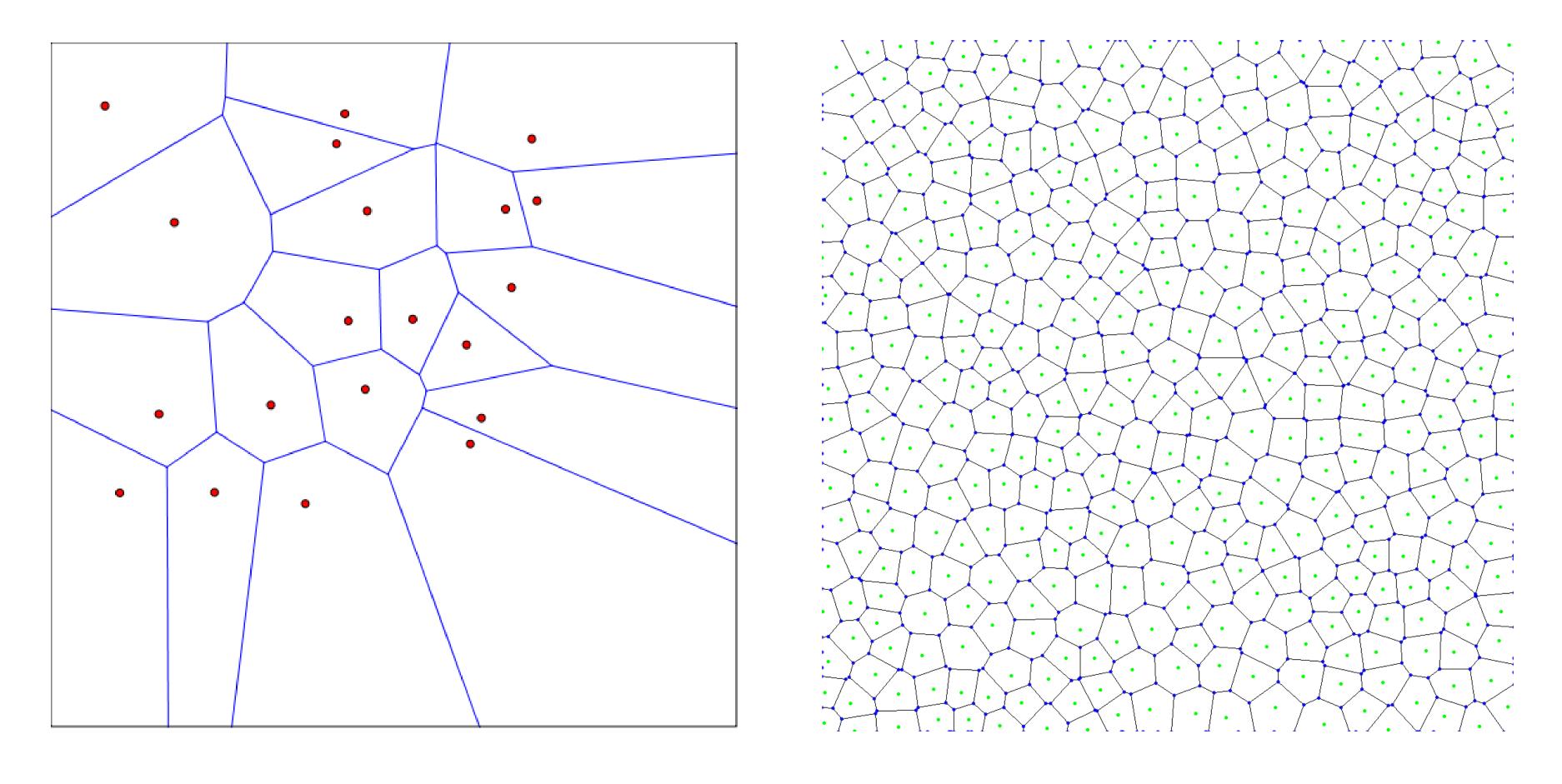
- Predict gender (M,F) from weight, height
- Predict age (adult, juvenile) from weight, height



1NN: Decision Regions

Defined by "Voronoi Diagram"

Each cell contains points closer to a particular training point



k-Nearest Neighbors: Distances

Discrete features: Hamming distance

$$d_H(x^{(i)}, x^{(j)}) = \sum_{a=1}^{\infty} 1\{x_a^{(i)} \neq x_a^{(j)}\}$$

Continuous features:

• Euclidean distance:

$$d(x^{(i)}, x^{(j)}) = \left(\sum_{a=1}^{d} (x_a^{(i)} - x_a^{(j)})^2\right)^{\frac{1}{2}}$$

•L1 (Manhattan) dist.:

$$d(x^{(i)}, x^{(j)}) = \sum_{a=1}^{\infty} |x_a^{(i)} - x_a^{(j)}|$$

k-Nearest Neighbors: Regression

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for \boldsymbol{x} , find \boldsymbol{k} most similar training points

Return

$$\hat{y} = \frac{1}{k} \sum_{i=1}^{k} y^{(i)}$$

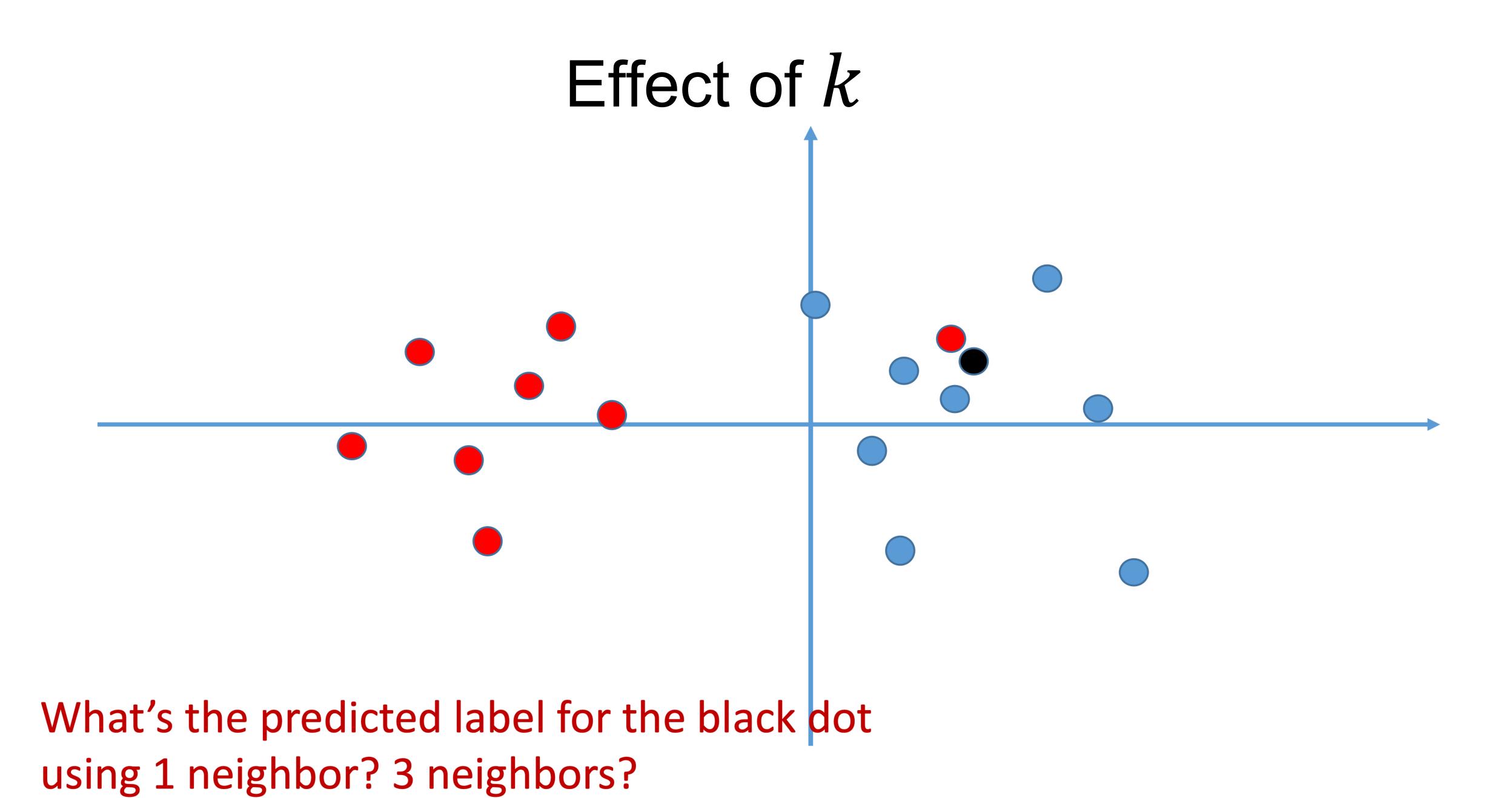
•I.e., among the k points, output mean label.

More on distance functions...

- Be careful with scale
- Same feature but different units may change relative distance (fixing other features)
- Sometimes OK to normalize each feature dimension

$$x_{id}' = \frac{x_{id} - \mu_d}{\sigma_d}, \forall i = 1...n, \forall d$$
Training set standard deviation for dimension d

Other times not OK: e.g. dimension contains small random noise



How to pick k, the number of neighbors

- Split data into training and tuning sets
- Classify tuning set with different k
- Pick k that produces least tuning-set error

Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Q1-2: Which of the following distance measure do we use in case of categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-2: Which of the following distance measure do we use in case of categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-3: Consider binary classification in 2D where the intended label of a point x = (x1, x2) is positive if x1>x2 and negative otherwise. Let the training set be all points of the form x = [4a, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Q1-3: Consider binary classification in 2D where the intended label of a point x = (x1, x2) is positive if x1>x2 and negative otherwise. Let the training set be all points of the form x = [4a, 3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Nearest neighbors are

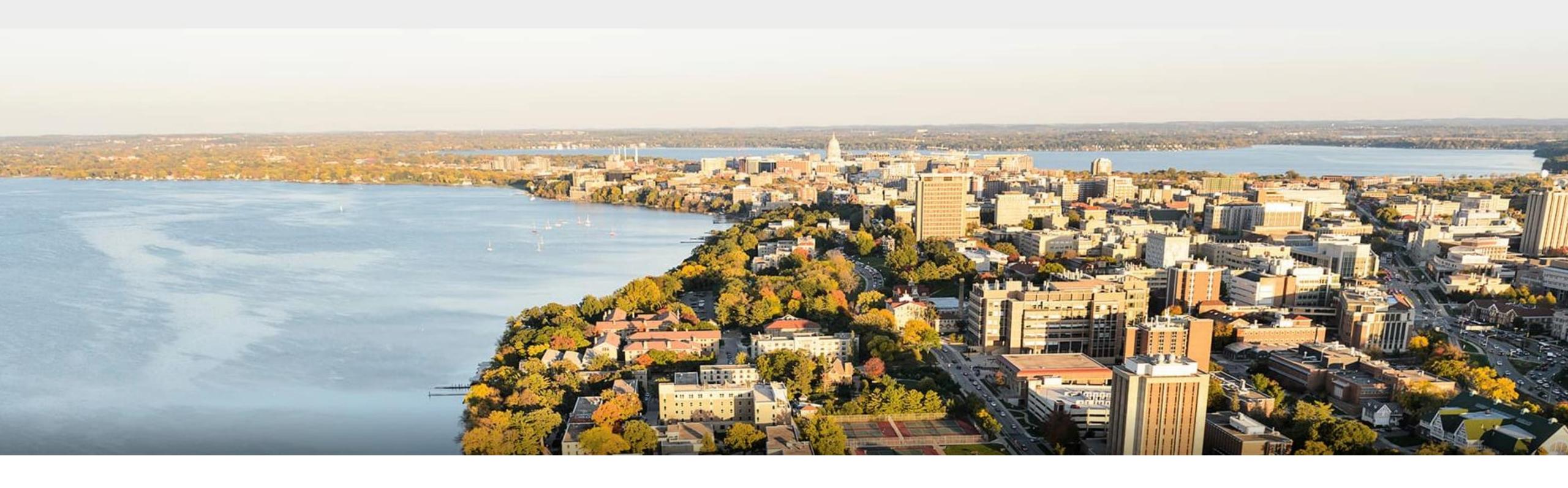
```
[4,3] => positive
```

[8,6] => positive

[8,9] => negative

[8,9] => negative

Individually.



Part II: Maximum Likelihood Estimation

Supervised Machine Learning

Non-parametric (e.g., KNN)

VS.

Parametric

Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)

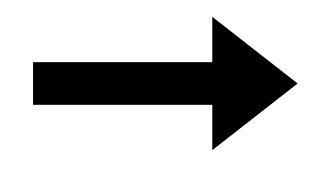
$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed distribution (also called the i.i.d. assumption)

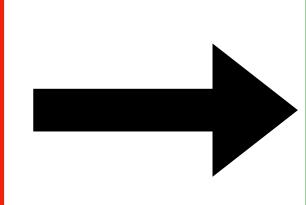
Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)



Learning algorithm



Classifier \hat{f}

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption)

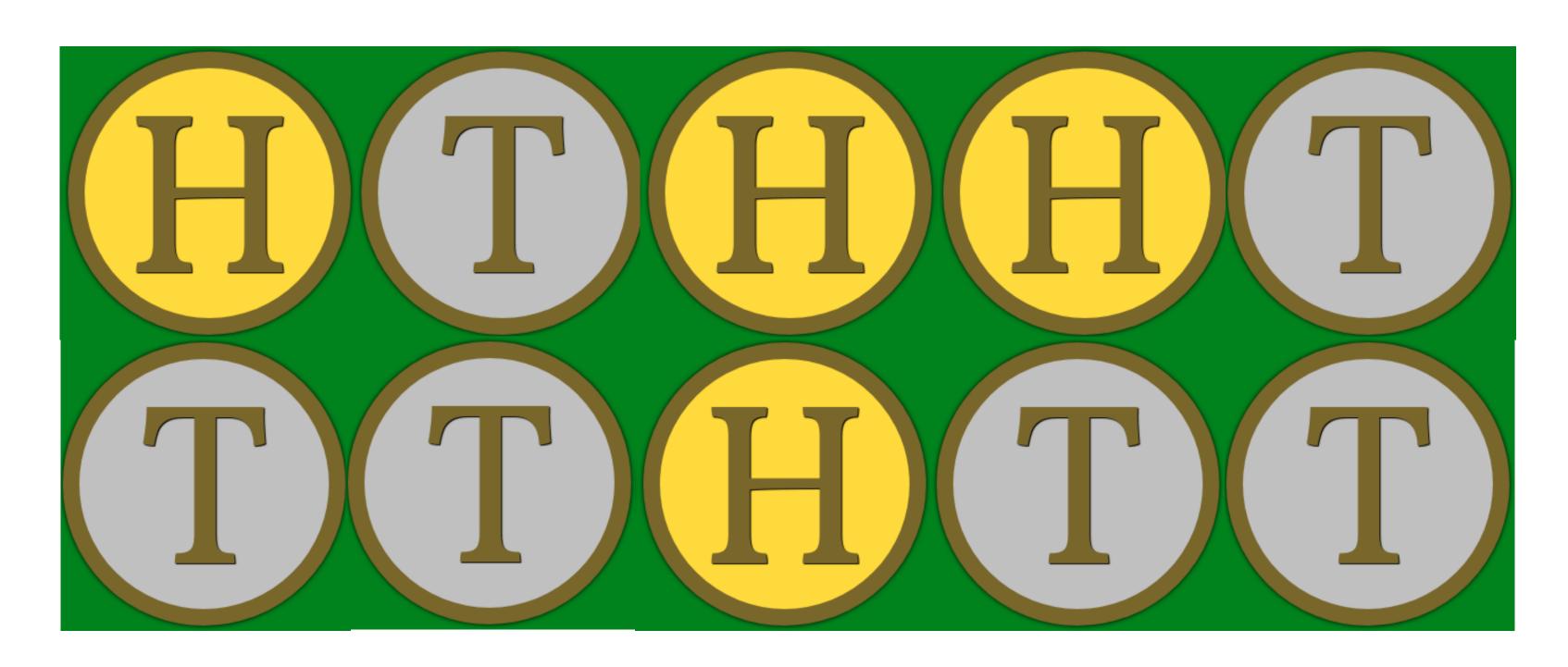
select $\hat{f}(\theta)$ from a pool of models \mathcal{F} that best describe the data observed

How to select $\hat{f} \in \mathcal{F}$?

- Maximum likelihood (best fits the data)
- Maximum a posteriori
 (best fits the data but incorporates prior assumptions)
- Optimization of 'loss' criterion (best discriminates the labels)

Maximum Likelihood Estimation: An Example

Flip a coin 10 times, how can you estimate $\theta = p(Head)$?



Intuitively, $\theta = 4/10 = 0.4$

How good is θ ?

It depends on how likely it is to generate the observed data

$$\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n$$
 (Let's forget about label for a second)

Likelihood function

$$L(\theta) = \Pi_i p(\mathbf{x}_i | \theta)$$

Under i.i.d assumption

Interpretation: How **probable** (or how likely) is the data given the probabilistic model p_{θ} ?

How good is θ ?

It depends on how likely it is to generate the observed data

$$\mathbf{X}_1,\mathbf{X}_2,\ldots,\mathbf{X}_n$$
 (Let's forget about label for a second)

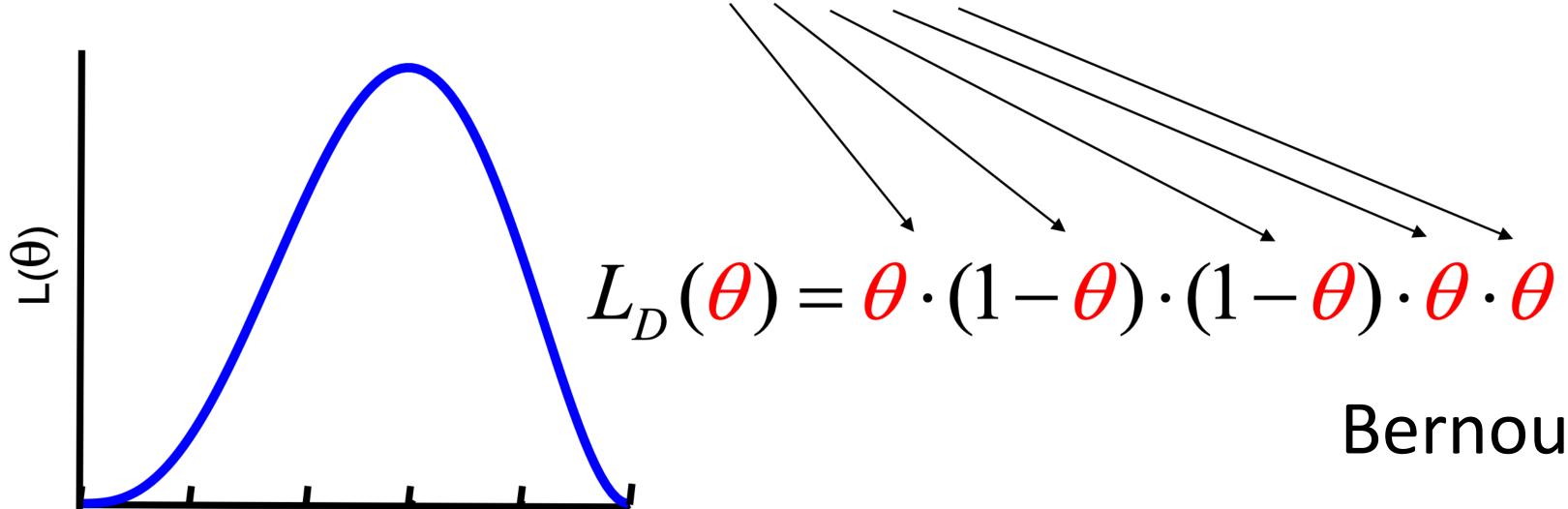
Likelihood function

 $^{0.4}$ $^{0.6}$

0.2

$$L(\theta) = \Pi_i p(\mathbf{x}_i | \theta)$$

H,T, T, H, H



Bernoulli distribution

Log-likelihood function

$$L_D(\theta) = \theta \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$$
$$= \theta^{N_H} \cdot (1 - \theta)^{N_T}$$

Log-likelihood function

$$\ell(\theta) = \log L(\theta)$$

$$= N_H \log \theta + N_T \log(1 - \theta)$$

Maximum Likelihood Estimation (MLE)

Find optimal $heta^*$ to maximize the likelihood function (and log-likelihood)

$$\theta^* = \operatorname{argmax} N_H \log \theta + N_T \log(1 - \theta)$$

$$\frac{\partial l(\theta)}{\partial \theta} = \frac{N_H}{\theta} - \frac{N_T}{1 - \theta} = 0 \quad \bullet \quad \theta^* = \frac{N_H}{N_T + N_H}$$

which confirms your intuition!

Maximum Likelihood Estimation: Gaussian Model

Fitting a model to heights of females

Observed some data (in inches): 60, 62, 53, 58,... ∈ \mathbb{R}

$$\{x_1, x_2, \ldots, x_n\}$$

Model class: Gaussian model

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

So, what's the MLE for the given data?

Estimating the parameters in a Gaussian

Mean

$$\mu = \mathbf{E}[x] \text{ hence } \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Variance

$$\sigma^2 = \mathbf{E}[(x - \mu)^2]$$
 hence $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$

Why?

Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): $x_1, x_2, \ldots, x_n \in \mathbb{R}$

Assume that the data is drawn from a Gaussian

$$L(\mu, \sigma^2 | X) = \prod_{i=1}^n p(x_i; \mu, \sigma^2) = \prod_{i=1}^n \frac{1}{2\pi\sigma^2} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

Fitting parameters is maximizing likelihood w.r.t μ , σ^2 (maximize likelihood that data was generated by model)

MLE

$$\underset{\mu, \sigma^{2}}{\operatorname{arg max}} \prod_{i=1}^{n} p(x_{i}; \mu, \sigma^{2})$$

Maximum Likelihood

Estimate parameters by finding ones that explain the data

$$\underset{\mu,\sigma^2}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i; \mu, \sigma^2) = \underset{\mu,\sigma^2}{\operatorname{argmin}} - \log \prod_{i=1}^{n} p(x_i; \mu, \sigma^2)$$

Decompose likelihood

$$\sum_{i=1}^{n} \frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x_i - \mu)^2 = \frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Minimized for
$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Maximum Likelihood

Estimating the variance

$$\frac{n}{2}\log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Maximum Likelihood

Estimating the variance

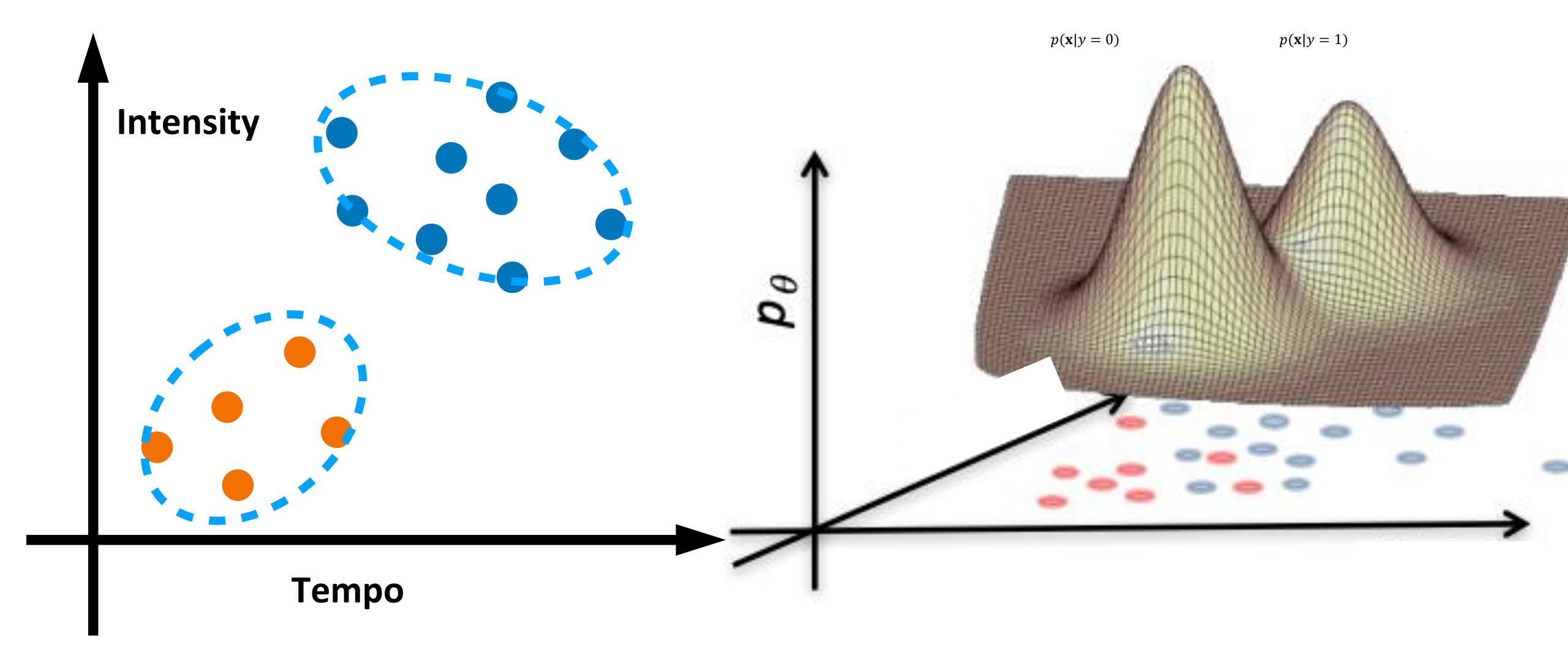
$$\frac{n}{2}\log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Take derivatives with respect to it

$$\partial_{\sigma^2} [\cdot] = \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\Longrightarrow \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

Classification via MLE



Classification via MLE

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg\max p(y \mid \mathbf{x})$$
 (Posterior) (Prediction)

Classification via MLE

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg\max p(y \mid \mathbf{x}) \quad \text{(Posterior)}$$

$$(Prediction)$$

$$= \arg\max_{y} \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \quad \text{(by Bayes' rule)}$$

$$= \arg\max_{y} p(\mathbf{x} \mid y) p(y)$$

Using labelled training data, learn class priors and class conditionals

Q2-2: True or False

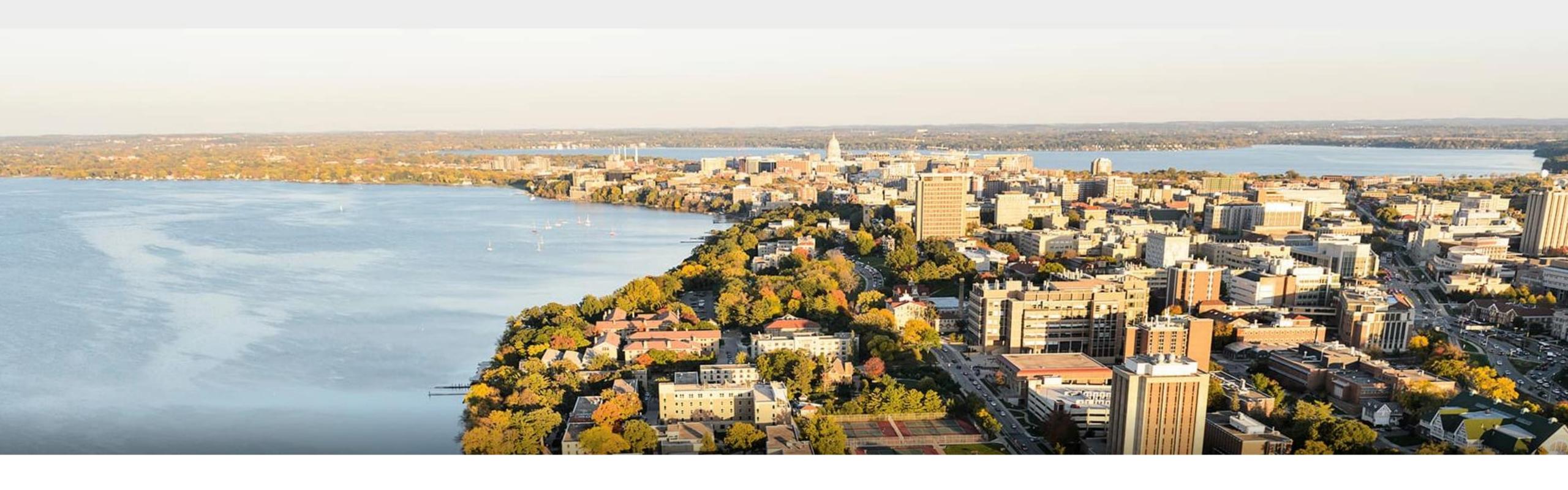
Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False

Q2-2: True or False

Maximum likelihood estimation is the same regardless of whether we maximize the likelihood or log-likelihood function.

- A True
- B False



Part III: Naïve Bayes

• If weather is sunny, would you like to play outside?

Posterior probability p(Yes | 💥) vs. p(No | 💥)

• If weather is sunny, would you like to play outside?

Posterior probability p(Yes | 💥) vs. p(No | 💥)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day m}, m={1,2,...,N}

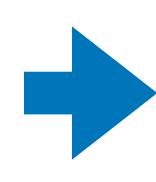
• If weather is sunny, would you like to play outside?

Posterior probability p(Yes |) vs. p(No |)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day m}, m={1,2,...,N}

Step 1: Convert the data to a frequency table of Weather and Play

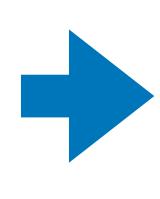
Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No



Frequency Table			
Weather	No	Yes	
Overcast		4	
Rainy	3	2	
Sunny	2	3	
Grand Total	5	9	

- Step 1: Convert the data to a frequency table of Weather and Play
- Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No



Frequency Table			
Weather	Yes		
Overcast		4	
Rainy	3	2	
Sunny	2	3	
Grand Total	5	9	



Like	lihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

$$p(Play = Yes) = 0.64$$

$$p(|Yes|) = 3/9 = 0.33$$

Step 3: Based on the likelihoods and priors, calculate posteriors

$$P(No|)$$

$$=P(|No|)*P(No)/P(|)$$

• Step 3: Based on the likelihoods and priors, calculate posteriors

```
P(Yes |
 =P( *** | Yes)*P(Yes)/P( ****)
 =0.33*0.64/0.36
 =0.6
P(No
 =P( >> |No)*P(No)/P( >> )
 =0.4*0.36/0.36
```

 $= arg max p(\mathbf{x} | y)p(y)$

$$\hat{y} = \arg\max p(y \mid \mathbf{x}) \qquad \text{(Posterior)}$$

$$= \arg\max \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \qquad \text{(by Bayes' rule)}$$

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior) (Prediction)

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y \mid X_1, \dots, X_k) \quad \text{(Posterior)}$$

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

Independent of y

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y \mid X_1, \dots, X_k) \quad \text{(Posterior)}$$
(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

$$= \arg\max_{y} p(X_1, \dots, X_k | y) p(y)$$

Class conditional likelihood

Class prior

Naïve Bayes Assumption

Conditional independence of feature attributes

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value
- D Attributes are statistically independent of one another given the class value
- E All of above

Q3-2: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

- A Pass
- B Fail

Q3-2: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

A Pass

B Fail

We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

A	Pass
A	Pass

B Fail

Confident	Studied	Sick	Result
Yes	No	No	Fail
Yes	No	Yes	Pass
No	Yes	Yes	Fail
No	Yes	No	Pass
Yes	Yes	Yes	Pass

$$P(y = F | x_1 = Y, x_2 = Y, x_3 = N)$$

$$= \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{2}{5} / P(x_1 = Y, x_2 = Y, x_3 = N)$$

$$\propto \frac{1}{4 * 5}$$

$$P(y = P | x_1 = Y, x_2 = Y, x_3 = N)$$

$$= \frac{P(x_1 = Y | Y = P)P(x_2 = Y | Y = P)P(x_3 = N | Y = P)P(y = P)}{P(x_1 = Y, x_2 = Y, x_3 = N)}$$

$$= \frac{2}{3} * \frac{2}{3} * \frac{1}{3} * \frac{3}{5} / P(x_1 = Y, x_2 = Y, x_3 = N)$$

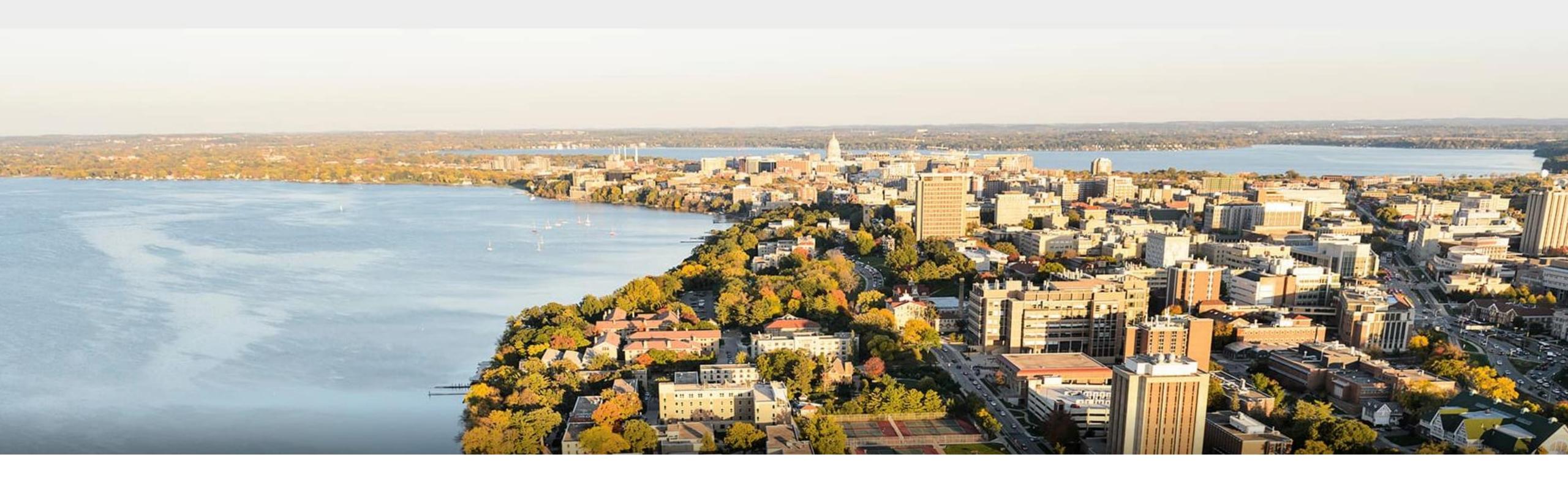
$$\propto \frac{4}{9*5} \quad \text{Larger!}$$

What we've learned today...

- K-Nearest Neighbors
- Maximum likelihood estimation
 - Bernoulli model
 - Gaussian model
- Naive Bayes
 - Conditional independence assumption

Suggested Readings

- Textbook: Artificial Intelligence: A Modern Approach (4th edition). Stuart Russell and Peter Norvig. Pearson, 2020.
 - Sections 19.7.1, 21.1, 21.2.1-21.2.4



Thanks!