

CS 540 Introduction to Artificial Intelligence **Probability**

University of Wisconsin-Madison Fall 2025, Section 3 September 5, 2025

Announcements

• HW 1:

- Short & simple writing assignment
- Released next Friday (9/12)
- Due one week later (9/19, 11:59 pm)

Class roadmap:

Friday 9/5	Probability
Monday 9/8	Linear Algebra
Wednesday 9/10	Statistics
Friday 9/12	Logic
Monday 9/15	NLP

Mostly Foundations

Probability: What is it good for?

Language to express uncertainty

Probability in Artificial Intelligence: Prediction

Quantify predictions

[p(lion), p(tiger)] = [0.98, 0.02]

[p(lion), p(tiger)] = [0.01, 0.99]

[p(lion), p(tiger)] = [0.43, 0.57]

Probability in Artificial Intelligence: Generation

Model complex distributions

StyleGAN2 (Karras et al. 2020) Distribution over space of all possible images.

Probability in Artificial Intelligence: Games

Wisconsin PhD student Ye Yuan finished 5th in 2020 WSOP Main Event

pokernews.com

Jeff Ma, leader of the MIT Blackjack Team and inspiration for the film **21**

inc.com

Study of probability arose from gambling

Gerolamo Cardano

Liber de ludo aleae (1564) Book on Games of Chance

Outline

Basics: definitions, axioms, RVs, joint distributions

Independence, conditional probability, chain rule

Bayes' Rule and Inference

How do we mathematically describe a die?

We already intuitively understand!

 Introduce formal tools for discussing probability

 These tools "scale" to complex random processes

Basics: Outcomes & Events

Outcomes: possible results of an experiment

$$\Omega = \underbrace{\{1, 2, 3, 4, 5, 6\}}_{\text{outcomes}}$$

• Events: subsets of outcomes we're interested in

$$\underbrace{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega}_{\text{events}}$$

• Always include \emptyset, Ω

Basics: Probability Distribution

- We have outcomes and events.
- Assign **probabilities**: for each event E, need to have probability P(E)
- For a single die:

$$P(\{1,3,5\}) = \frac{1}{2}$$

equivalent to:
$$P(odd) = \frac{1}{2}$$

Basics: Axioms

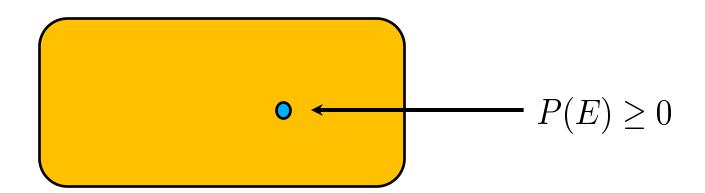
- Rules for probability:
 - For all events $E, P(E) \ge 0$
 - Always, $P(\emptyset) = 0, P(\Omega) = 1$
 - For disjoint events, $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Easy to derive other laws. Ex: non-disjoint events

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

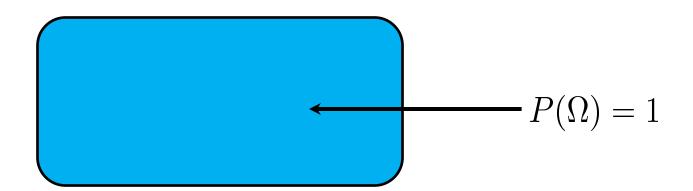
Visualizing the Axioms

• Axiom 1: for all events $E, P(E) \ge 0$



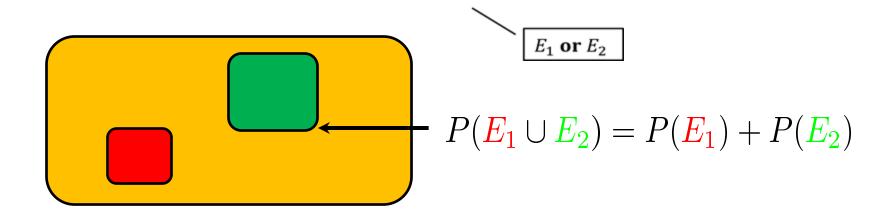
Visualizing the Axioms

• Axiom 2: $P(\emptyset) = 0, P(\Omega) = 1$



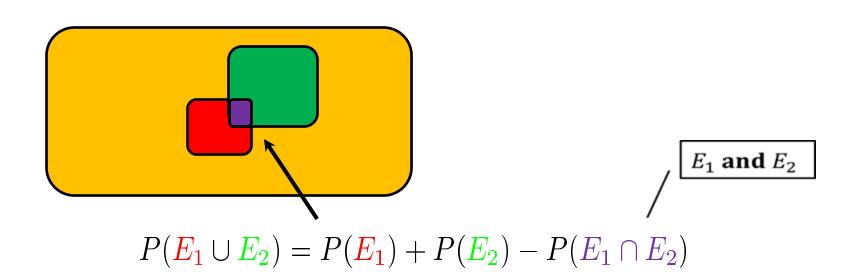
Visualizing the Axioms: III

• Axiom 3: disjoint $P(E_1 \cup E_2) = P(E_1) + P(E_2)$



Visualizing the Axioms

Also, other laws:



Basics: Random Variables

- Intuitively: a number X that's random
- Mathematically: map random outcomes to real values

$$X:\Omega\to\mathbb{R}$$

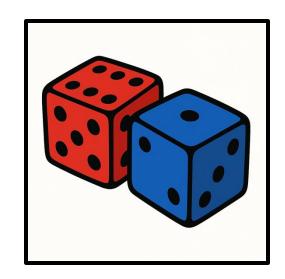
- Why?
 - Previously, everything is a set.
 - Real values are easier to work with

Basics: Random Variables

• Set of outcomes for rolling two dice: {(1.1),(1.2),(1.3),(1.4),(1.5),(1.6).

{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}

 How can we formalize the notion of "the total rolled"?



Basics: Random Variables

 A random variable is a function mapping outcomes to numbers

$$f:\Omega\to\mathbb{R}$$

- Confusing name: neither "random" nor a "variable"
- Usually we say: let random variable X be the total of two dice

Outcome Ω	Total $f(\Omega)$
(1,1)	2
(1,2)	3
(1,3)	4
(1,4)	5
(1,5)	6
(1,6)	7
(2,1)	3
(2,2)	4
(2,3)	5
(2,4)	6
(2,5)	7
(2,6)	8
(3,1)	4
(3,2)	5
(3,3)	6
(3,4)	7
(3,5)	8
(3,6)	9
(4,1)	5
(4,2)	6
(4,3)	7
(4,4)	8
(4,5)	9
(4,6)	10
(5,1)	6
(5,2)	7
(5,3)	8
(5,4)	9
(5,5)	10
(5,6)	11
(6,1)	7
(6,2)	8
(6,3)	9
(6,4)	10
(6,5)	11
(6,6)	12

Basics: CDF & PDF

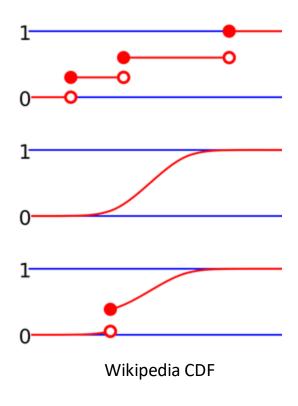
Can still work with probabilities:

$$P(X=3)=p_X(3)$$

Shorthand for $P(\{(1,2), (2,1)\})$

- Probability density/mass function $p_X(x)$
- Cumulative Distribution Func. (CDF)

$$F_X(x) := P(X \le x)$$



Basics: Expectation & Variance

RVs allow us to make useful summaries

Expectation

$$\mathbb{E}[X] = \sum_{\text{all values } x} x \cdot P(X = x)$$

Variance

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^{2}]$$
$$= \mathbb{E}[(X - \mu)^{2}]$$

Basics: Joint Distributions

- Move from one variable to several
- Joint distribution: P(X = a, Y = b)
 - Why? Work with multiple sources of randomness (including possible correlations)

Basics: Marginal Probability

• Given a joint distribution P(X = a, Y = b)

— Get the distribution in just one variable:

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

This is the marginal distribution.

24	Caring W-					
14'81						
Dest 1	Jugar Har			1/4	18	6
3	Allower of Game as	11/2	16-	100		
	Behing Valte		1	+	10	
	Since 1 16 Chil				1000	
	1 (a-12)			58		
	Coffice	+		+	-	6
12	Thusful -			182	1	6.
/3	Buckfeel			42	1	6
	See					
						6
14	Buckfeel -	400		16		
-15	Buckfall	4		10	12	6.
1833	144					
	The Stainted					10
		10				
	Bucket	+-		17.0	1	6.
-	South to in -			- 0	1	-
28500	Sale Water -			16		6
6.0	Sunger					11/4
	March 197 Cont of Australia Control					6
	3 Der Chile 1			9	1	180
Brilde	Bundle Belevaper			-		10
Mar!	Buckfast		10	6		
	Miles			21	2	
		-	-	-		
	Ver n			-	1	1
June 1	Seu -			-	1	-
			1 5	61	10	11
			-	-	117	-

Jerry's super blurry camera

- One pixel, 1-bit color sensor (green=trees, white=snow)
- Model T: comes with 1-bit temperature sensor (hot, cold)

Set of outcomes:

```
{(green, hot), (green, cold), (white, hot), (white, cold)}
```

Basics: Marginal Probability

$$P(X = a) = \sum_{b} P(X = a, Y = b)$$

	green	white
hot	150/365	45/365
cold	50/365	120/365

$$[P(\text{hot}), P(\text{cold})] = \left[\frac{195}{365}, \frac{170}{365}\right]$$

Probability Tables

Wrote our distribution as a table

	green	white
hot	150/365	45/365
cold	50/365	120/365

- # of entries? 4
 - If we have n variables with k values, we get k^n entries
 - Big! For a 1080p screen, 12 bit color, size of table: $10^{7490589}$
 - No way of writing down all terms

Independence

- Often have unrelated sources of randomness
 - e.g., simultaneously toss a coin and roll a die
- Events E_1 and E_2 are called **independent** if $P(E_1, E_2) = P(E_1) \cdot P(E_2)$
- Random variables X and Y are called **independent** if, for all a,b

$$P(X = a, Y = b) = P(X = a) \cdot P(Y = b)$$

- Independent: value of two dice rolls
- Not independent: value of two draws from a deck of cards without replacement

Conditional Probability

The camera sees white. Is it cold outside?

$$P(X = a \mid Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$

Our calculation:

	green	white
hot	150/365	45/365
cold	50/365	120/365

$$P(cold \mid white) = \frac{P(cold, white)}{P(white)} = \frac{120}{45 + 120} = \frac{8}{11} \approx 0.73$$

Conditional Independence

• Events E_1 and E_2 are independent conditioned on E_3 if

$$P(E_1, E_2 \mid E_3) = P(E_1 \mid E_3) \cdot P(E_2 \mid E_3)$$

- Similar definition for random variables
- Important throughout course

Chain Rule

• Many events E_1, E_2, \dots, E_n

$$P(E_1, ..., E_n) = P(E_1) \times P(E_2 \mid E_1) \times P(E_3 \mid E_2, E_1) \cdots P(E_n \mid E_{n-1}, ..., E_1)$$

- Key to language modeling
- Note: may still be big and complicated!
 - If some conditional independence, can factor
 - Leads to probabilistic graphical models

What have we seen so far?

- Outcomes
- Events
- Probability distribution
- Axioms of probability
- Random variables
- PDF & CDF
- Expectation & variance

- Joint probability
- Marginal probability
- Independence
- Conditional probability
- Conditional independence
- Chain rule

Mathematical tools for discussing and reasoning about randomness

Inference: a core task in artificial intelligence

- Evaluating probabilities:
 - Wake up with a sore throat.
 - Do I have the flu?

- Too strong, doesn't account for uncertainty
- Inference: update belief given evidence
 - Calculate $P(F \mid S)$

Bayes' Rule

Theorem: For any events A and B, we have

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Proof: Apply the chain rule two different ways:

$$P(A,B) = P(A \mid B) \cdot P(B)$$
$$= P(B \mid A) \cdot P(A)$$

Divide both sides by P(B).

Thomas Bayes, c. 1701-1761

Applying Bayes' rule

Wake up with a sore throat. Do I have the flu?

$$P(\text{flu} \mid \text{sore throat}) = \frac{P(\text{sore throat} \mid \text{flu}) \cdot P(\text{flu})}{P(\text{sore throat})}$$

• Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- *H* is the hypothesis
- E is the evidence

Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} \longleftarrow \text{Prior}$$

Prior: estimate of the probability without evidence

• Terminology:

Likelihood
$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

• Likelihood: probability of evidence given a hypothesis

Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$
Posterior

• Posterior: probability of hypothesis given evidence.

Readings

- Vast literature on intro probability and statistics.
- Local classes: Math/Stat 431

Suggested reading:

Probability and Statistics: The Science of Uncertainty,

Michael J. Evans and Jeff S. Rosenthal

http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf

(Chapters 1-3, excluding "advanced" sections)

- Q 1.1: We toss a biased coin. If P(heads) = 0.7, thenP(tails) = ?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

- Q 1.1: We toss a biased coin. If P(heads) = 0.7, thenP(tails) = ?
- A. 0.4
- B. 0.3
- C. 0.6
- D. 0.5

- **Q 1.2**: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

- **Q 1.2**: There are exactly 3 candidates for a presidential election. We know X has a 30% chance of winning, B has a 35% chance. What's the probability that C wins?
- A. 0.35
- B. 0.23
- C. 0.333
- D. 0.8

- Q 1.3: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. 26/52
- B. 4/52
- C. 30/52
- D. 28/52

- **Q 1.3**: What's the probability of selecting a black card or a number 6 from a standard deck of 52 cards?
- A. 26/52
- B. 4/52
- C. 30/52
- D. 28/52

Q 2.2: Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?

- A. 0.3
- B. 0.06
- C. 0.24
- D. 0.2