

CS 540 Introduction to Artificial Intelligence Principal Component Analysis

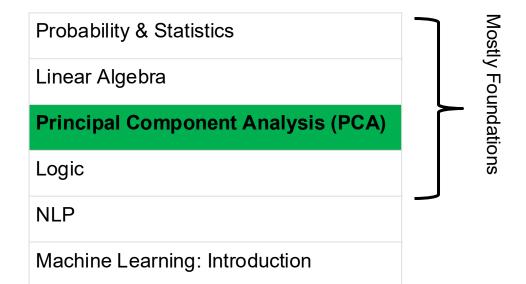
University of Wisconsin–Madison Fall 2025, Section 3 September 12, 2025

Announcements

- HW 1 online:
 - Writing assignment---nothing too stressful
 - Deadline Friday, 9/19, 11:59PM
- HW 2 released Friday 9/19
 - Probability & Statistics

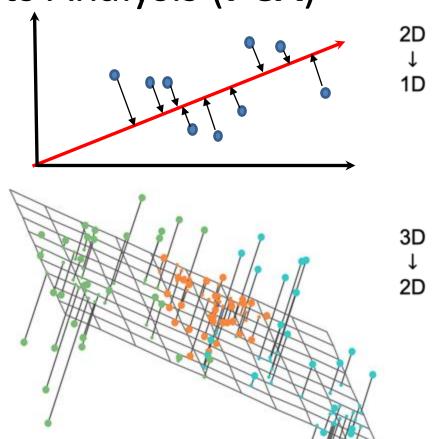
- Optional review sessions with TA Guy Zamir
 - Thursdays 5:30-6:30 pm, Morgridge 3610

Class Roadmap



Principal Components Analysis (PCA)

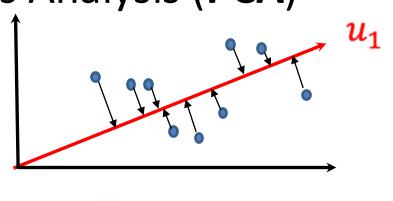
- A type of dimensionality reduction approach
 - For when data is approximately low dimensional

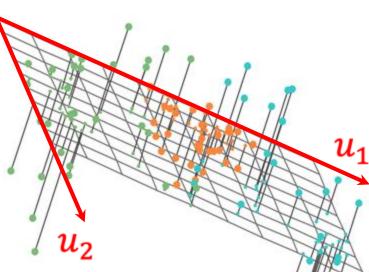


Principal Components Analysis (PCA)

- Find axes $u_1, \dots, u_k \in \mathbb{R}^d$ of subspace
- Project to this subspace

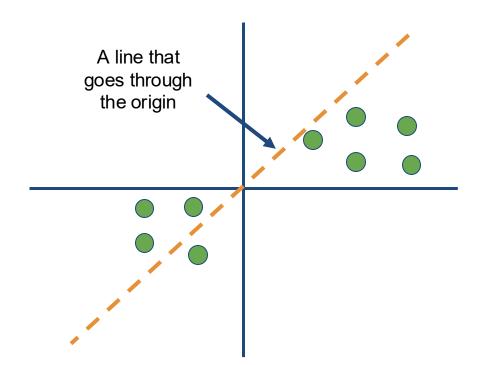
These vectors are principal components





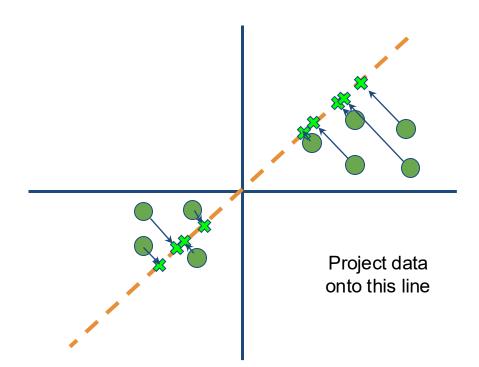
Projection: An Example

$$x_1,x_2,\dots,x_n\in\mathbb{R}^2$$



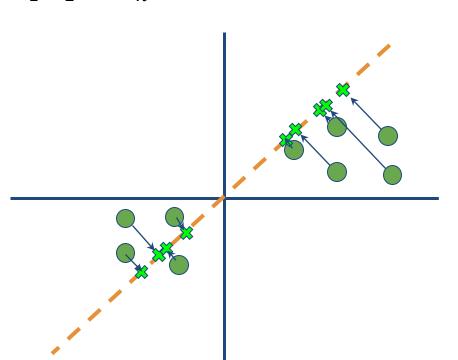
Projection: An Example

$$x_1,x_2,\dots,x_n\in\mathbb{R}^2$$



Projection: An Example

$$x_1, x_2, \dots, x_n \in \mathbb{R}^2$$



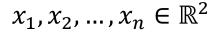
After projection, we see a one-dimensional dataset

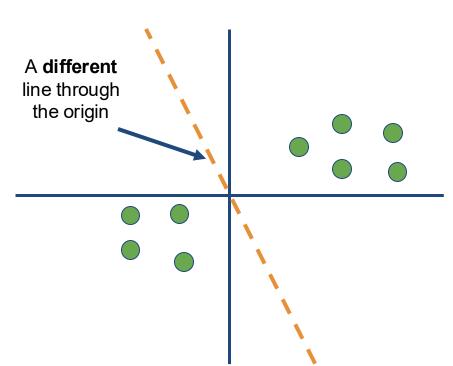
This projection **preserves** information about the data.

=

Good projection!

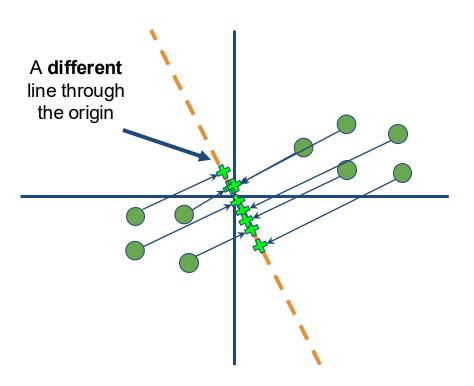
Projection: Another Example





Projection: Another Example

$$x_1, x_2, \dots, x_n \in \mathbb{R}^2$$



After projection, we see a one-dimensional dataset

This projection **loses** information about the data.

=

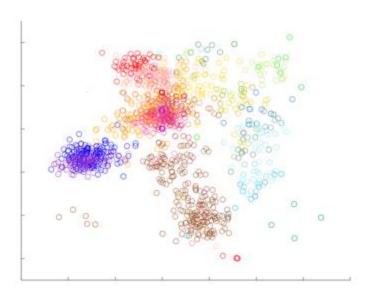
Bad projection!

Plan for this lecture

- Applications of PCA
- Formalizing: what makes a good projection?
- Computing PCA
 - How do we find good projections?
 - Connections to eigenvectors

Application: Exploratory Data Analysis

 [Novembre et al. '08]: Take top two singular vectors of people x SNP matrix (POPRES)



Application: Image Compression

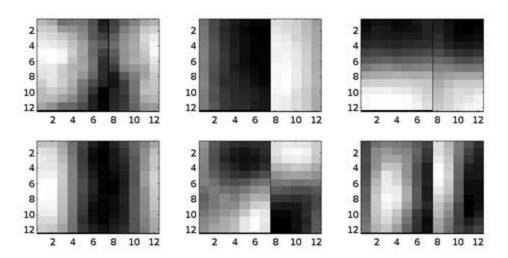
Start with image; divide into 12x12 patches

- That is, 144-D vector

– Original image:

Application: Image Compression

6 principal components (as an image)



Application: Image Compression

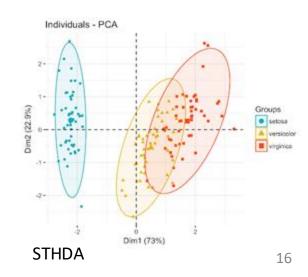
Project to 6D

Compressed

Original

Many Variations

- PCA, Kernel PCA, ICA, CCA
 - Extract structure from high dimensional dataset
- Uses:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use

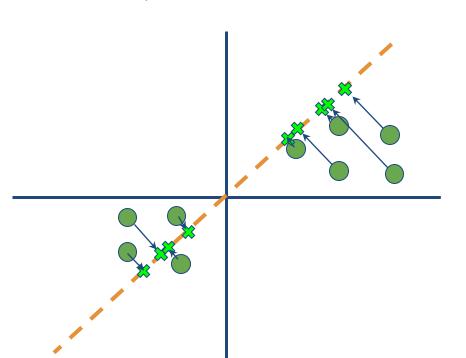


Plan for this lecture

- Applications of PCA
- Formalizing: what makes a good projection?
- Computing PCA
 - How do we find good projections?
 - Connections to eigenvectors

What makes a good projection?

$$x_1, x_2, \dots, x_n \in \mathbb{R}^2$$



After projection, we see a one-dimensional dataset

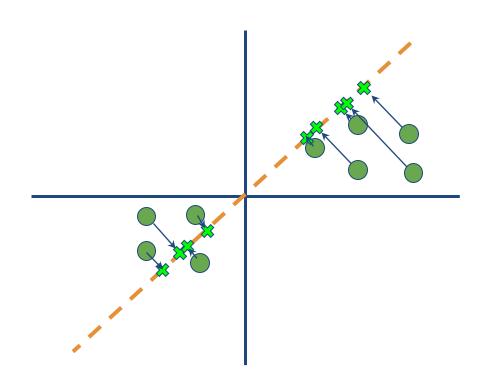
This projection **preserves** information about the data.

=

Good projection!

What makes a good projection?

$$x_1, x_2, \dots, x_n \in \mathbb{R}^2$$



PCA says: a good projection makes the data "spread out"

Direction to maximize variance

• Direction: vector v with length $||v||_2 = 1$

$$\underset{v:\|v\|_2=1}{\operatorname{argmax}} \sum_{i=1}^n \langle x_i, v \rangle^2$$

Inner product ⇔ projection

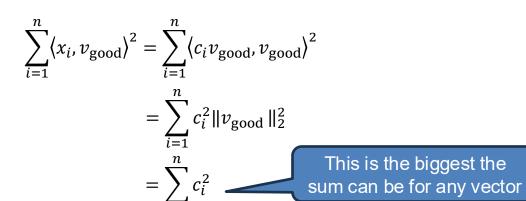
How can we solve this? Turn to linear algebra!

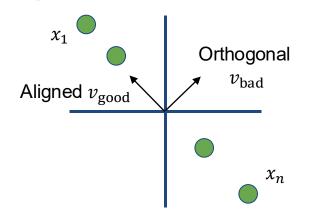
A simple example in detail

- n data points: $x_1, x_2, ..., x_n \in \mathbb{R}^2$
- All in a single line
- Exists vector $v_{good} \in \mathbb{R}^2$ such that:

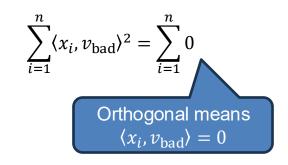
for all
$$i, x_i = c_i v_{good}$$

• Project onto v_{good} :





• Project onto orthogonal v_{bad} :



Plan for this lecture

- Applications of PCA
- Formalizing: what makes a good projection?
- Computing PCA
 - How do we find good projections?
 - Connections to eigenvectors

Step 0: Center the Dataset

Compute the mean

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

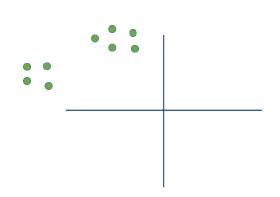
Center data at zero

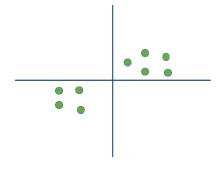
$$\bar{x}_1 = x_1 - \mu$$

$$\bar{x}_2 = x_2 - \mu$$

$$\vdots$$

$$\bar{x}_n = x_n - \mu$$





Step 1: Write the Dataset as Matrix

• Write $x_1, ..., x_n$ as a matrix X

$$X = \begin{bmatrix} - & x_1 & - \\ - & x_2 & - \\ - & \vdots & - \\ - & x_n & - \end{bmatrix} \qquad \begin{array}{c} X \in \mathbb{R}^{n \times d} \\ n \text{ rows and} \\ d \text{ columns} \end{array}$$

Step 2: Write the sum as a product

PCA objective:

Equivalent:

$$\underset{v:\|v\|_2=1}{\operatorname{argmax}} v^T X^T X v$$

Inner product!

$$Xv = \begin{bmatrix} - & x_1 & - \\ - & x_2 & - \\ - & \vdots & - \\ - & x_n & - \end{bmatrix} \begin{bmatrix} 1 \\ v \\ | \end{bmatrix} = \begin{bmatrix} \langle x_1, v \rangle \\ \langle x_2, v \rangle \\ \vdots \\ \langle x_n, v \rangle \end{bmatrix}$$

Step 3: Eigenvectors of X^TX

Equivalent to PCA objective:

$$\underset{v: ||v||_2 = 1}{\operatorname{argmax}} v^T X^T X v$$

Recall: eigenvector & eigenvalue of A satisfy

$$Av = \lambda v$$

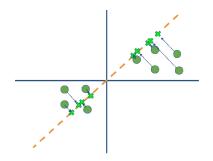
Suppose v is an eigenvector of X^TX

$$\underset{v: \|v\|_2 = 1}{\operatorname{argmax}} \, v^T X^T X v \qquad \bullet \qquad \text{Then} \qquad v^T \underline{X^T X v} = v^T \underline{(\lambda v)} \\ = \lambda v^T v \\ = \lambda \|v\|_2^2 = \lambda$$

- PCA objective \Leftrightarrow top eigenvector of X^TX
- $\frac{1}{2}X^TX$ is sample covariance

Putting it all together

Want to project down to one dimension



Goal: maximize variance after projection

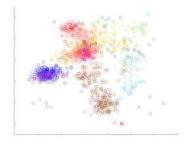
$$\underset{v: \|v\|_2 = 1}{\operatorname{argmax}} \sum_{i=1}^{n} \langle x_i, v \rangle^2$$

 Principal component = top eigenvector of sample covariance

$$(X^TX)v = \lambda v$$

Projecting to > 1 dimension

Found single best direction: now what?



- Look at k largest eigenvalues!
- Use eigendecomposition
- Equivalent to recursion/"deflation"
 - Subtract out top eigenvector

Further Reading

- Vast literature on linear algebra.
- Local class: Math 341
- More on PCA (and other matrix methods in ML): ECE/CS 532

- Suggested reading: Lecture notes on PCA by Roughgarden and Valiant
 - https://web.stanford.edu/class/cs168/l/l7.pdf
 - https://web.stanford.edu/class/cs168/I/I8.pdf