

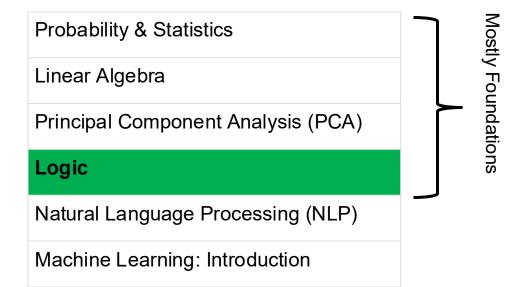
CS 540 Introduction to Artificial Intelligence **Logic**

University of Wisconsin–Madison Fall 2025, Section 3 September 15, 2025

Announcements

- HW 1 online:
 - Writing assignment---nothing too stressful
 - Deadline Friday, 9/19, 11:59PM
- HW 2 released Friday 9/19
 - Probability & Statistics

Class Roadmap



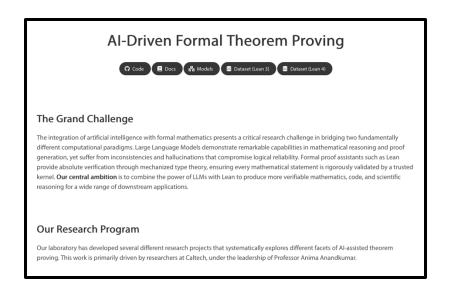
Logic & Artificial Intelligence

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
 - "Symbolic AI"
 - The Logic Theorist 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Programming languages, databases, etc.

Logic, AI, and the Future of Math

Tools of logic might allow AI to write new, formally verifiable proofs

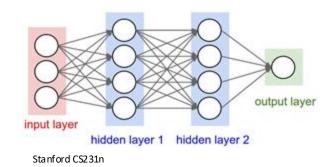


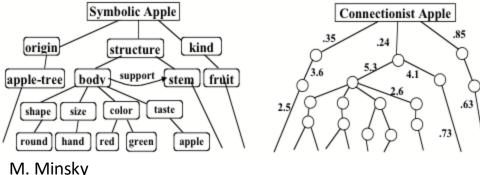
Symbolic vs Connectionist

Rival approach: connectionist

- Probabilistic models
- Neural networks
- Extremely popular last 20

years

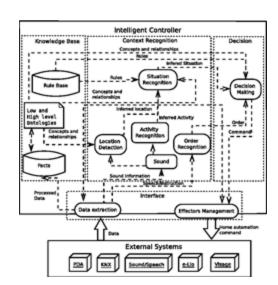




Symbolic vs Connectionist

Best of both worlds?

- "Neurosymbolic AI"
- Example: Markov Logic Networks



Outline

- Introduction to Logic
 - Arguments, validity, soundness
- Propositional Logic
 - Sentences, semantics, inference
- First-Order Logic (FOL)
 - Predicates, objects, formulas, quantifiers

Basics of Logic

Syntax

Semantics

Possible Worlds

Satisfaction

Well-formed Not well-formed "x + y = 4" "x4y +="

"x + y = 4" is true when x is 2 and y is 2

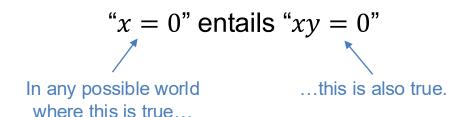
All possible values for x and y

If m has x = 2 and y = 2, then m satisfies "x + y = 4" A possible world is called a **model** *m*

Basics of Logic

Entailment

Inference



How do we:

- Check if sentence P entails sentence Q?
- Make new conclusions?
- Prove theorems from assumptions?

We'll see examples soon.

Propositional Logic: A Very Simple Logic

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (atomic sentences)
 - Connectives:

```
∧ and∨ or⇒ implies⇔ is equivalent¬ not
```

[conjunction]
[disjunction]
[implication]
[biconditional]
[negation]

Literal: P or negation ¬P

Propositional Logic Basics

Examples:

- $(P \lor Q) \Rightarrow S$
 - "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
 - "If it is raining, then it is cold"
- ¬R
 - "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Syntax: well-formed or not well-formed:
 - P ⇒ Q ⇒ S not well-formed (not associative!)

Sentences & Semantics

- Sentences: built up from symbols with connectives
 - Interpretation: assigning True / False to symbols (a row in truth table)
 - **Semantics**: interpretations for which sentence evaluates to True
 - Model: (of a set of sentences) interpretation for which all sentences are True

Another kind of model:)

Evaluating a Sentence

• Example:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Note:

- If P is false, P ⇒ Q is true regardless of Q ("5 is even implies 6 is odd" is True!)
- Causality not needed: "5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

• Ex:

Р	Q	R	¬ P	QAR	¬P V Q∧R	¬PVQ∧R⇒Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

Satisfiable

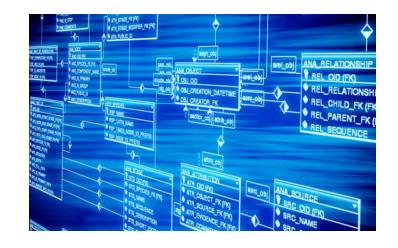
 There exists some interpretation where the sentence is true.

Knowledge Bases

- Knowledge Base (KB): A set of sentences $\{A_1, ..., A_n\}$
 - Like a long sentence, connect with conjunction
 - KB: $A_1 \wedge A_2 \wedge ... \wedge A_n$

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences



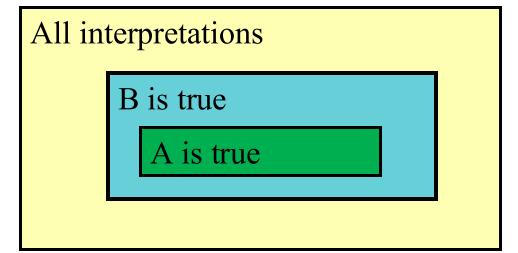
Entailment

Entailment: a sentence B logically follows from A

• Write $A \models B$

• $A \models B$ if in every interpretation where A is true, B is

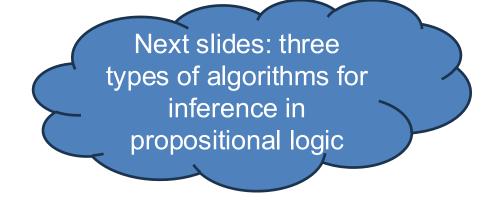
also true



Goals of Logical Inference

- Given knowledge base: $\{A_1, A_2, ..., A_n\}$
- Common goal: Does KB entail sentence B?
- More generally: produce new sentences

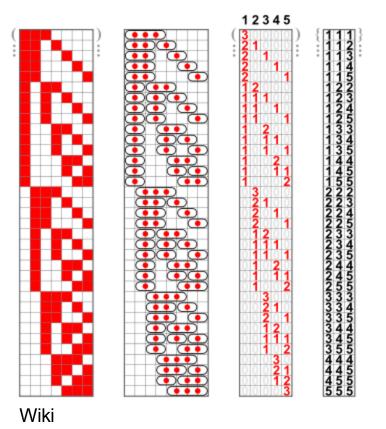
- · Challenges:
 - Soundness
 - Completeness
 - Efficiency



Methods of Inference: 1. Enumeration

- Enumerate all interpretations;
 look at the truth table
 - "Model checking"

 Downside: 2ⁿ interpretations for n symbols



Methods of Inference: 2. Using Rules

• Modus Ponens: $(A \Rightarrow B, A) \models B$

$$\frac{A \Rightarrow B \qquad A}{B}$$

• And-elimination: $(A \land B) \models A$

$$\frac{A \wedge B}{B}$$

- Other rules on the next page
 - Commutativity, associativity, de Morgan's laws, distribution for conjunction/disjunction

Logical equivalences

You can use these equivalences to modify sentences.

Methods of Inference: 3. Resolution

- Only one rule (the Resolution Rule)
- Write every sentence in a special format (Conjunctive Normal Form, CNF)

Foundation of many practical implementations

Resolution and Conjunctive Normal Form

- Everything needs to be in Conjunctive Normal Form (CNF)
 - "AND" of clauses; each clause an "OR" of literals

$$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$
a clause

New sentence may be very long!

The Resolution Rule

- "Resolve" the conflict between two clauses
 - For example:

$$\frac{A \lor B \qquad \neg B \lor C}{A \lor C}$$

- The rule is sound (everything we infer is entailed)
- In practice: need to decide where to apply the rule

Logical Inference with Resolution

- Resolution is complete.
 - Theorem: If a set of clauses is unsatisfiable, then repeatedly applying resolution eventually yields the empty clause.

• To check if $A_1, ..., A_n \models B$, run resolution on $\{A_1, ..., A_n, \neg B\}$

Break and Quiz

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg P \Rightarrow \neg Q) \land R$
- (ii) $(\neg P \lor \neg Q) \rightarrow (P \lor \neg R)$
- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg P \Rightarrow \neg Q) \land R$
- (ii) $(\neg P \lor \neg Q) \rightarrow (P \lor \neg R)$
- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

(i)
$$\neg(\neg P \Rightarrow \neg Q) \land R$$

(ii)
$$(\neg P \lor \neg Q) \rightarrow (P \lor \neg R)$$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Plug interpretation into each sentence.

For (i): $(\neg p \rightarrow \neg q)$ will be false so $\neg(\neg p \rightarrow \neg q)$ will be true and r is true by assignment.

For (ii): $(\neg p \lor \neg q)$ is true and $(p \lor \neg r)$ is false which makes the implication false.

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A V $(\neg A \rightarrow B)$
- b. A V B
- c. A \vee (A \rightarrow B)
- d. A \rightarrow B

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A V B (equivalent!)
- c. A \vee (A \rightarrow B)
- d. A \rightarrow B

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A V B (equivalent!)
- c. A \vee (A \rightarrow B)
- d. A \rightarrow B

Answer a. is the exact translation of the English sentence into a logic sentence. You can see that answer b. is also correct by writing out the truth table for all answers and seeing that a and b have the same truth tables.

Or you can use the fact that $\neg A \rightarrow B = A$ $\lor B$ and that $A \lor A \lor B = A \lor B$ to prove equivalence.

Q 2.1: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Q 2.1: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Must have one entry for every possible assignment of values to variables. That number is (C).

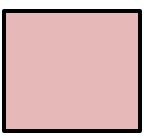
First-Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"?
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

Facts, Objects, Relations, Functions



First-Order Logic Syntax

- Term: an object in the world
 - Constant: Alice, 2, Madison, Green, ...
 - Variables: x, y, a, b, c, ...
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A ground term is a term without variables.
 - Constants or functions of constants

FOL Syntax

- **Atom**: smallest T/F expression
 - Predicate(term₁, ..., term_n)
 - Manager(Alice, Bob), Blue(table)
 - Convention: read "Alice (is) Manager (of) Bob"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - term₁ = term₂
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object

FOL Syntax

- **Sentence**: T/F expression
 - Atom
 - Complex sentence using connectives: $\Lambda V \Rightarrow \Leftrightarrow$
 - Less(x,22) ∧ Less(y,33)
 - Complex sentence using quantifiers **∀**, **∃**
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets define the predicates

FOL Quantifiers

- Universal quantifier: ∀
- Sentence is true for all values of x in the domain of variable x.

- Main connective typically is ⇒
 - Forms if-then rules
 - "all humans are mammals"

```
\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)
```

Means if x is a human, then x is a mammal

FOL Quantifiers

- Existential quantifier: 3
- Sentence is true for some value of x in the domain of variable x.

- Main connective typically is
 - -"some humans are male"

```
\exists x \text{ human}(x) \land \text{male}(x)
```

-Means there is an x who is a human and is a male