

CS 540 Introduction to Artificial Intelligence Classification - Naive Bayes

University of Wisconsin–Madison Fall 2025, Section 3 October 3, 2025

Announcements

- HW3 due today, 10/3 at 11:59 PM
- HW4 out; build a clustering algorithm

• Class roadmap:

ML: Unsupervised Learning
ML Linear Regression

Machine Learning: K - Nearest Neighbors
& Naive Bayes

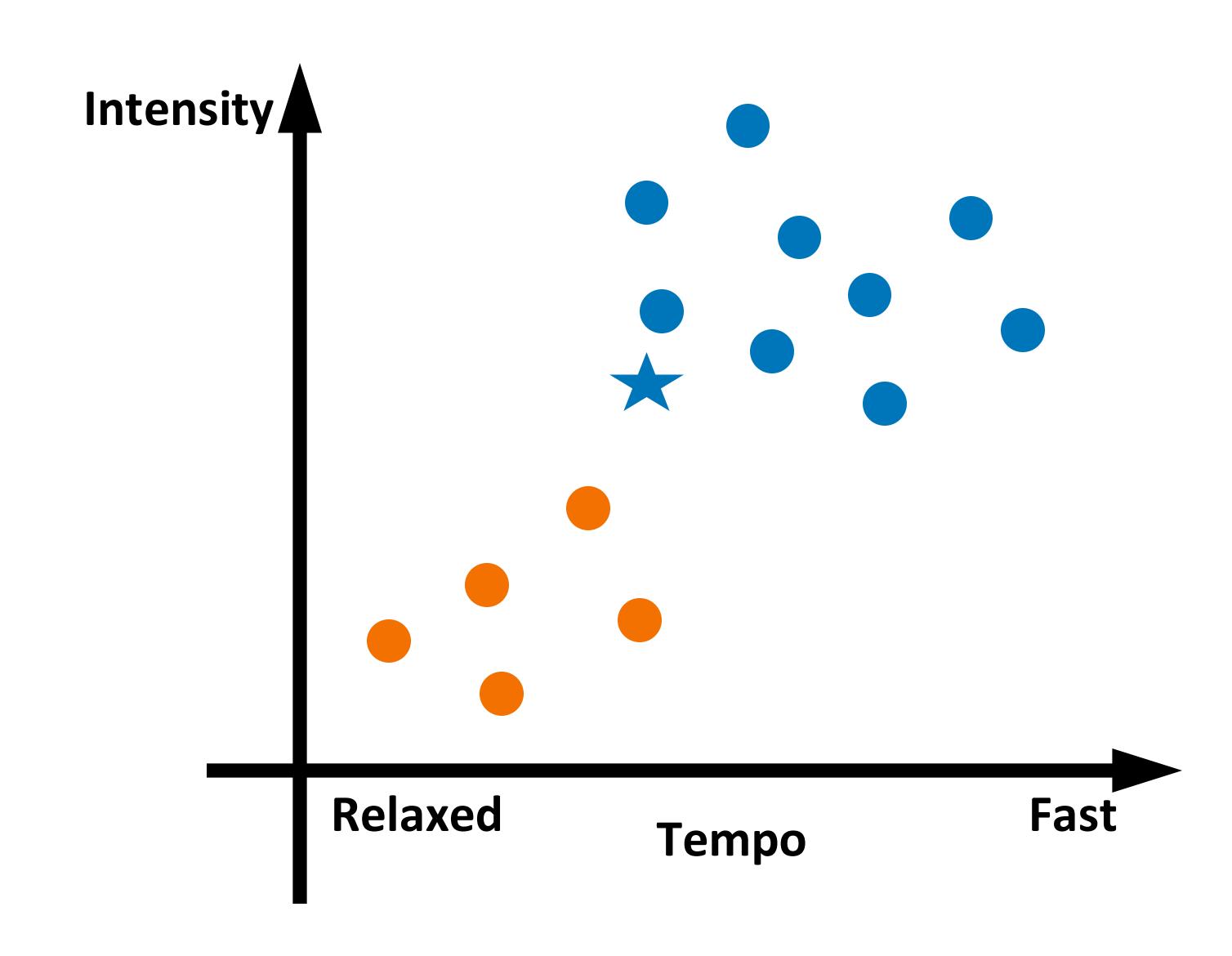
Machine Learning: Neural Networks I
(Perceptron)

Machine Learning: Neural Networks II

Supervised Learning

Last Class: k-Nearest Neighbor Classifier

- Dislike
- Like



Last Class: k-Nearest Neighbor Classifier

- Input: Training data $(\mathbf{X}_1, y_1), (\mathbf{X}_2, y_2), \dots, (\mathbf{X}_n, y_n)$ Distance function $d(\mathbf{X}_i, \mathbf{X}_i)$; number of neighbors k; test data \mathbf{X}^*
- 1. Find the k training instances $\mathbf{X}_{i_1},\ldots,\mathbf{X}_{i_k}$ closest to \mathbf{X}^* under $d(\mathbf{X}_i,\mathbf{X}_j)$
- 2. Output y^* , the majority class of y_{i_1}, \ldots, y_{i_k} . Break ties randomly.

Last Class: Maximum Likelihood Estimation

MLE solves

$$\underset{\theta}{\operatorname{argmax}} p(x_1, ..., x_n \mid \theta) = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i \mid \theta)$$

Rewrite the problem in an equivalent form

$$\underset{\theta}{\operatorname{argmax}} p(x_1, ..., x_n \mid \theta) = \underset{\theta}{\operatorname{argmin}} (-\log p(x_1, ..., x_n \mid \theta))$$

$$= \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} -\log p(x_i \mid \theta)$$

Connecting MLE and Loss Minimization

MLE solves

$$\underset{\theta}{\operatorname{argmax}} p(x_1, ..., x_n \mid \theta) = \underset{\theta}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i \mid \theta)$$

Rewrite the problem in an equivalent form

$$\underset{\theta}{\operatorname{argmax}} p(x_1, ..., x_n \mid \theta) = \underset{\theta}{\operatorname{argmin}} (-\log p(x_1, ..., x_n \mid \theta))$$

$$= \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} -\log p(x_i \mid \theta)$$

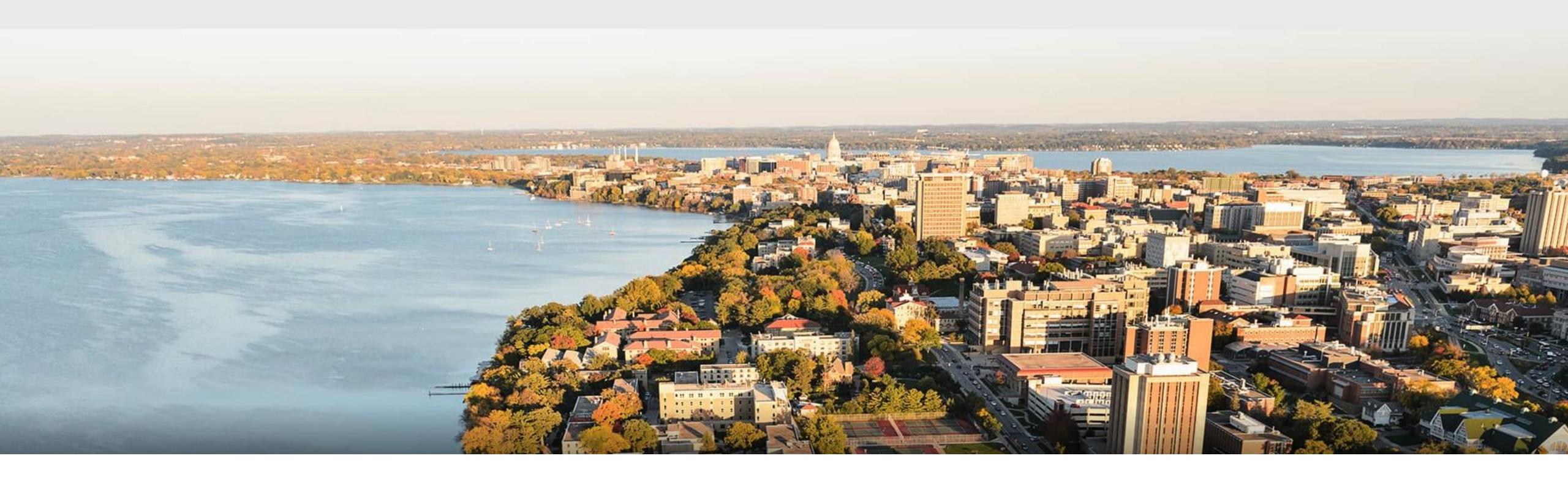
Connecting MLE and Loss Minimization

• We call " $-\log p(x_i \mid \theta)$ " the negative log likelihood

• May define $\ell(\theta; x_i) := -\log p(x_i \mid \theta)$

Maximum likelihood estimation is loss minimization.
 Different notation, same computation.

$$\underset{\theta}{\operatorname{argmax}} p(x_1, ..., x_n \mid \theta) = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} \ell(\theta; x_i)$$



Naïve Bayes Classifier

• If weather is sunny, will my 2-year-old daughter want to play outside?

Posterior probability p(Yes | 💥) vs. p(No |🎉)

• If weather is sunny, will my 2-year-old daughter want to play outside?

Posterior probability p(Yes | 💥) vs. p(No | 💥)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day m}, m={1,2,...,N}

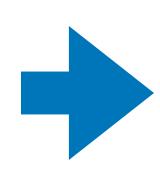
• If weather is sunny, would you like to play outside?

Posterior probability p(Yes |) vs. p(No |)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day m}, m={1,2,...,N}

Step 1: Convert the data to a frequency table of Weather and Play

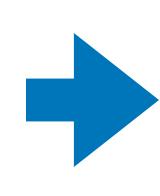
Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No



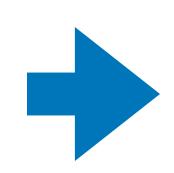
Frequency Table				
Weather	No	Yes		
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		

- Step 1: Convert the data to a frequency table of Weather and Play
- Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No



Frequency Table					
Weather	No	Yes			
Overcast		4			
Rainy	3	2			
Sunny	2	3			
Grand Total	5	9			



Like	lihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

$$p(Play = Yes) = 0.64$$

$$p(|Yes|) = 3/9 = 0.33$$

• Step 3: Based on the likelihoods and priors, calculate posteriors

$$P(No|)$$

$$=P(|No|)*P(No)/P(|)$$

• Step 3: Based on the likelihoods and priors, calculate posteriors

```
P(Yes |
 =P( *** | Yes)*P(Yes)/P( ****)
 =0.33*0.64/0.36
 =0.6
P(No
 =P( | No)*P(No)/P( | )
 =0.4*0.36/0.36
 =0.4
```


go outside and play!

 $= arg max p(\mathbf{x} | y)p(y)$

$$\hat{y} = \arg\max p(y \mid \mathbf{x}) \qquad \text{(Posterior)}$$

$$= \arg\max \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \qquad \text{(by Bayes' rule)}$$

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior) (Prediction)

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y \mid X_1, \dots, X_k) \quad \text{(Posterior)}$$

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

Independent of y

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

$$= \underset{y}{\operatorname{arg \, max}} p(X_1, \dots, X_k | y) p(y)$$

4

Class conditional likelihood

Class prior

Naïve Bayes Assumption

Conditional independence of feature attributes

Example 2: Classify emails as spam

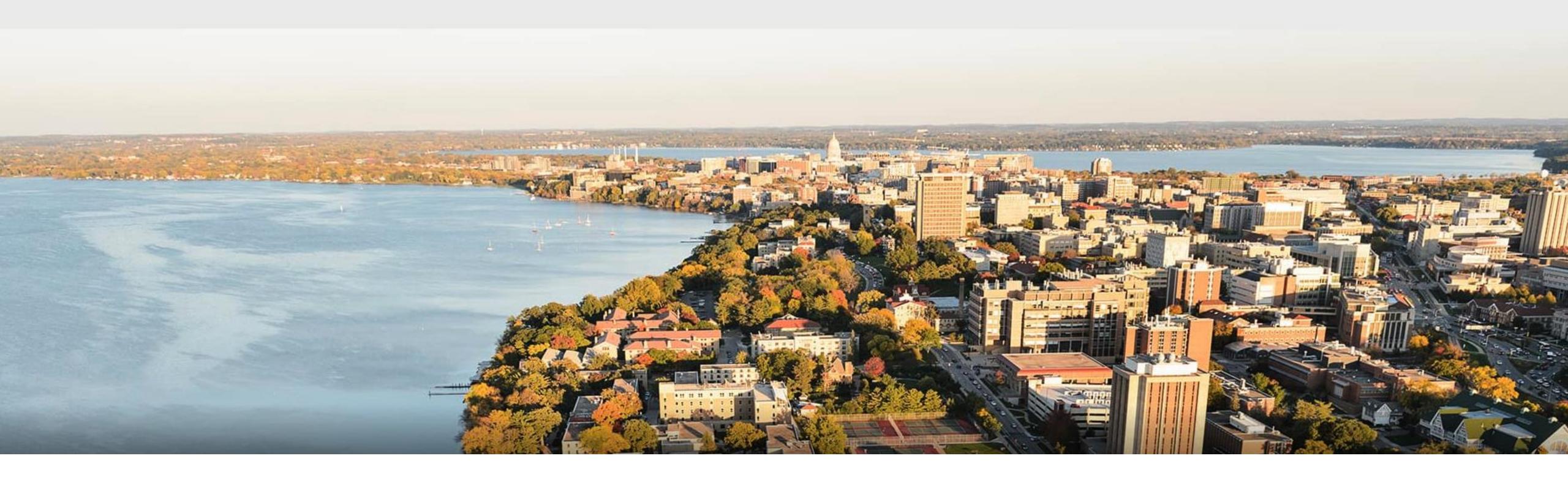
- Features = words in vocabulary
- One parameter θ_w for each word w
- Classify new emails as spam or not spam

Dear Valued Winner,

Congratulations! Your email address has been randomly selected as the GRAND PRIZE WINNER of \$5,000,000 USD in our International Lottery Promotion.

Reply immediately with your credit card information to claim your prize...

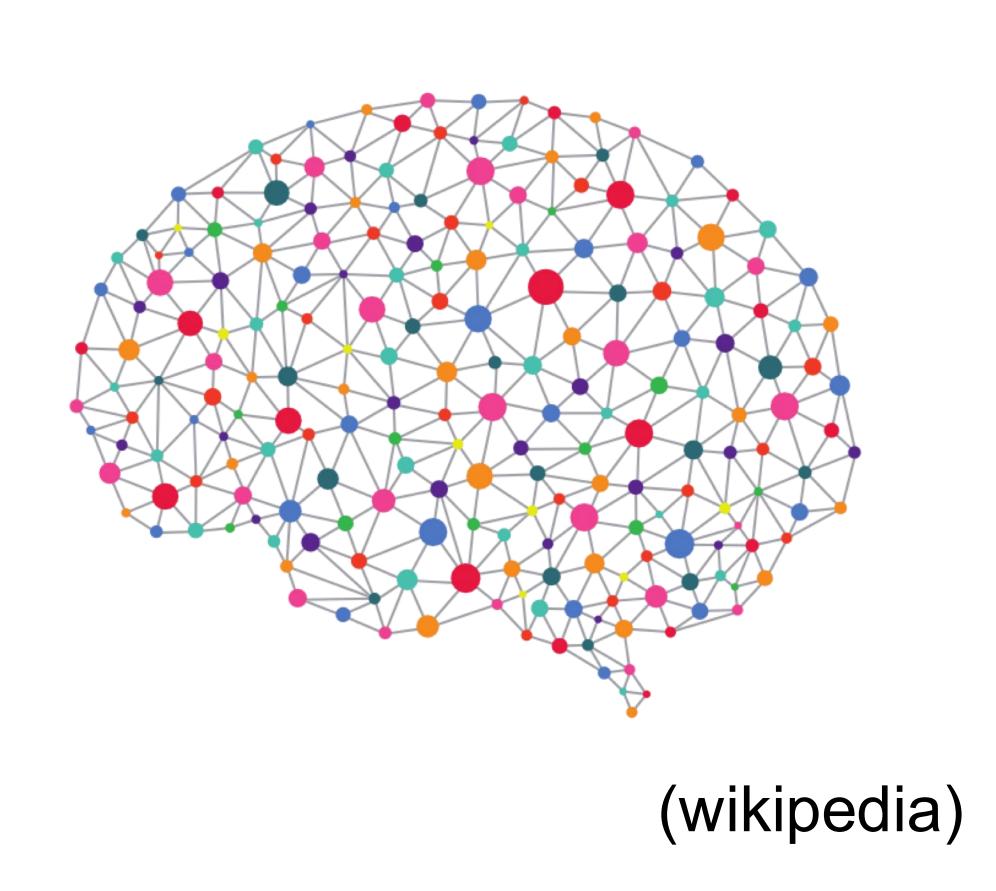
```
p(\text{spam} \mid \text{email}) \propto p(\text{email} \mid \text{spam})p(\text{spam})
use naïve Bayes assumption to simplify this term
p(\text{"dear"} \mid \text{spam})p(\text{"valued"} \mid \text{spam})p(\text{"winner"} \mid \text{spam}) \cdots p(\text{"prize"} \mid \text{spam})
```

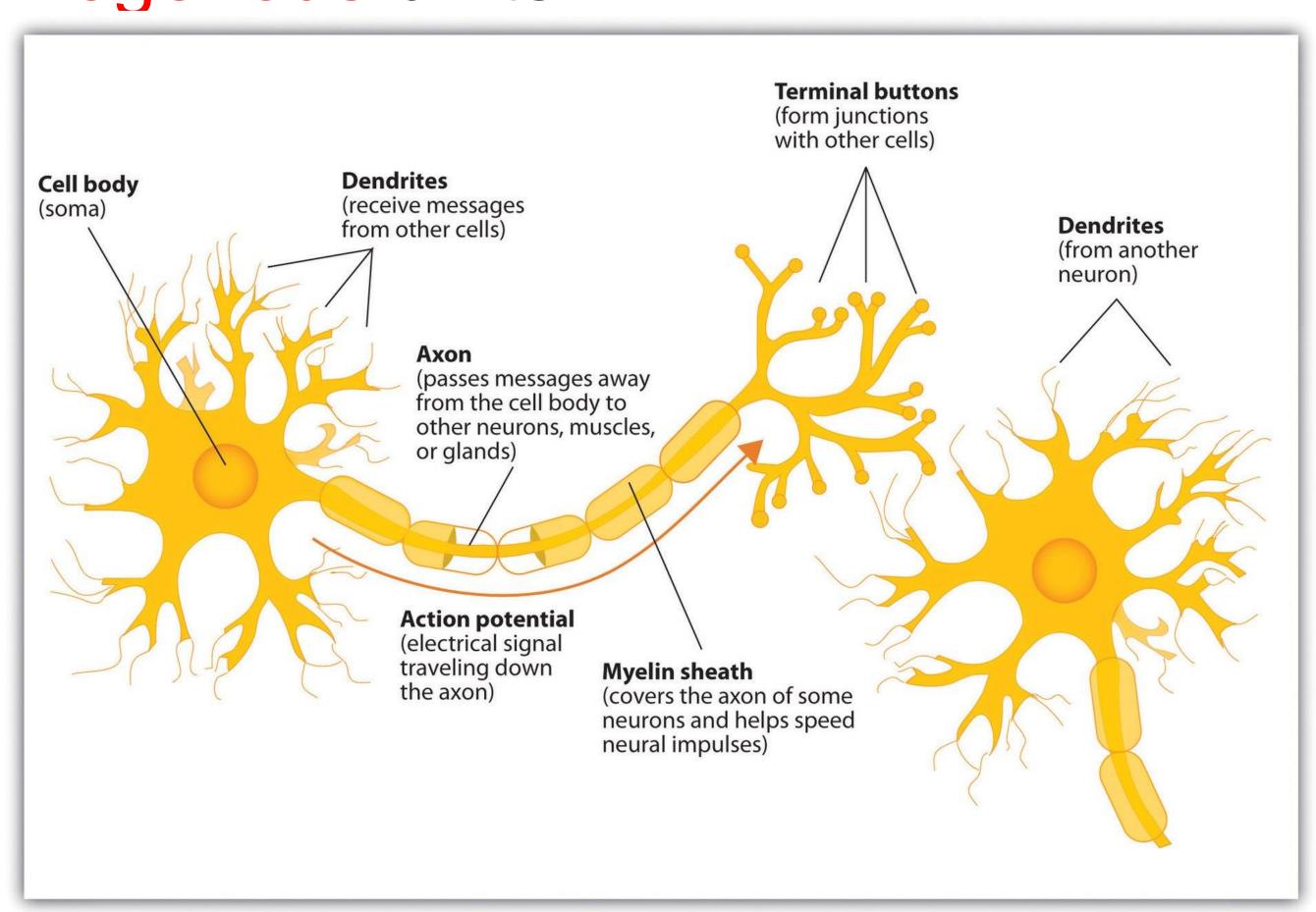


Looking Ahead: Single-layer Neural Network

Inspiration from neuroscience

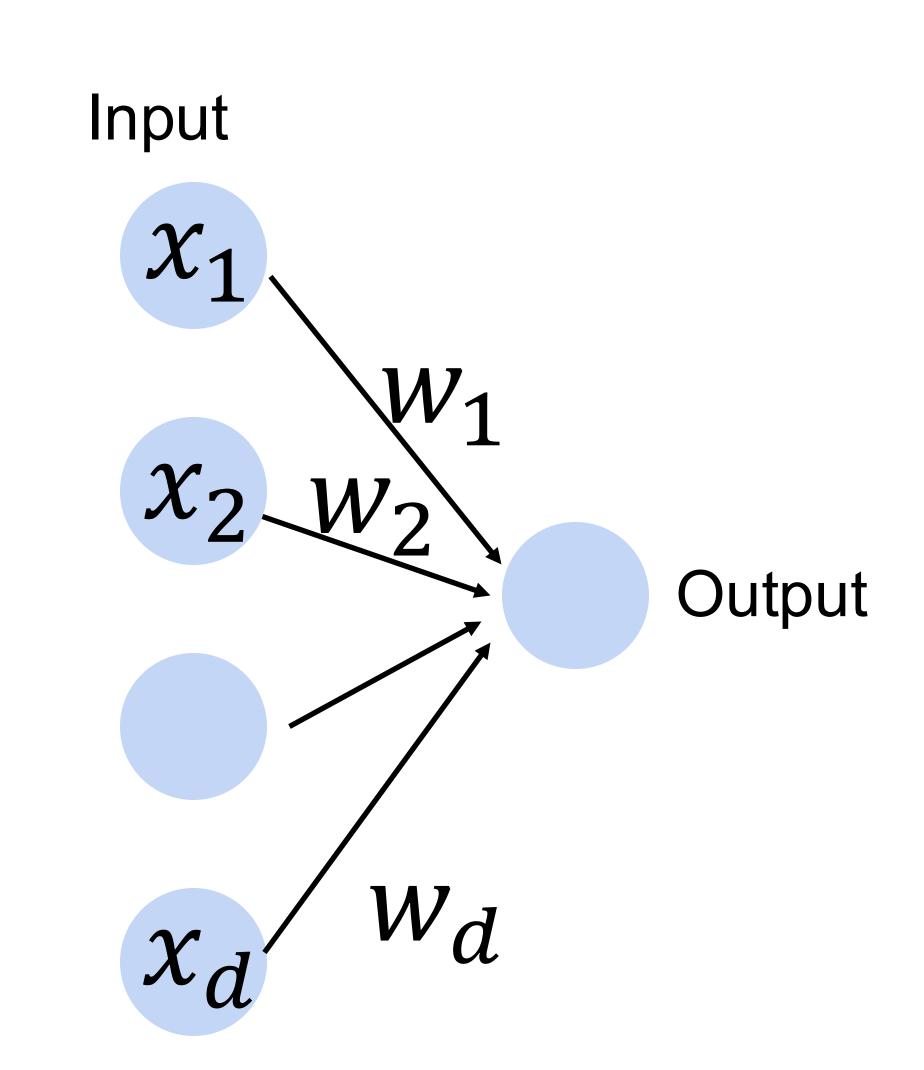
- Inspirations from human brains
- Networks of simple and homogenous units





Perceptron

Cats vs. dogs?

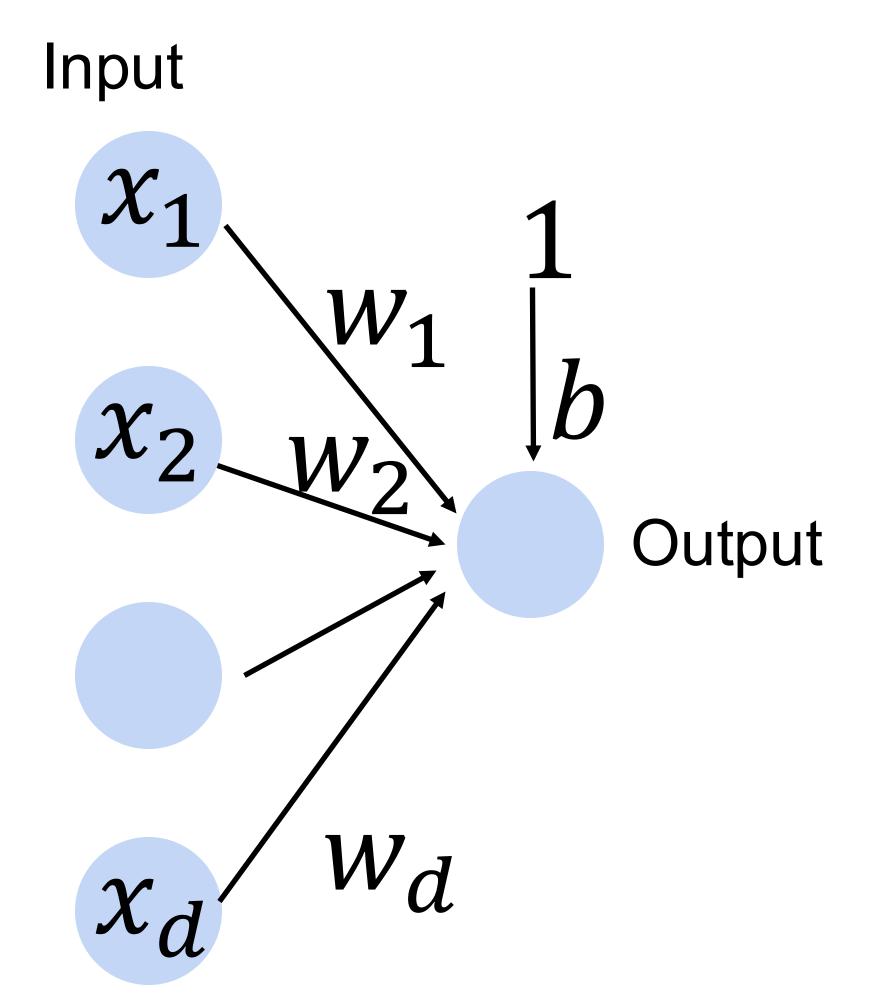


Linear Perceptron

Given input x, weight w and bias b, perceptron outputs:

$$f = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

Cats vs. dogs?



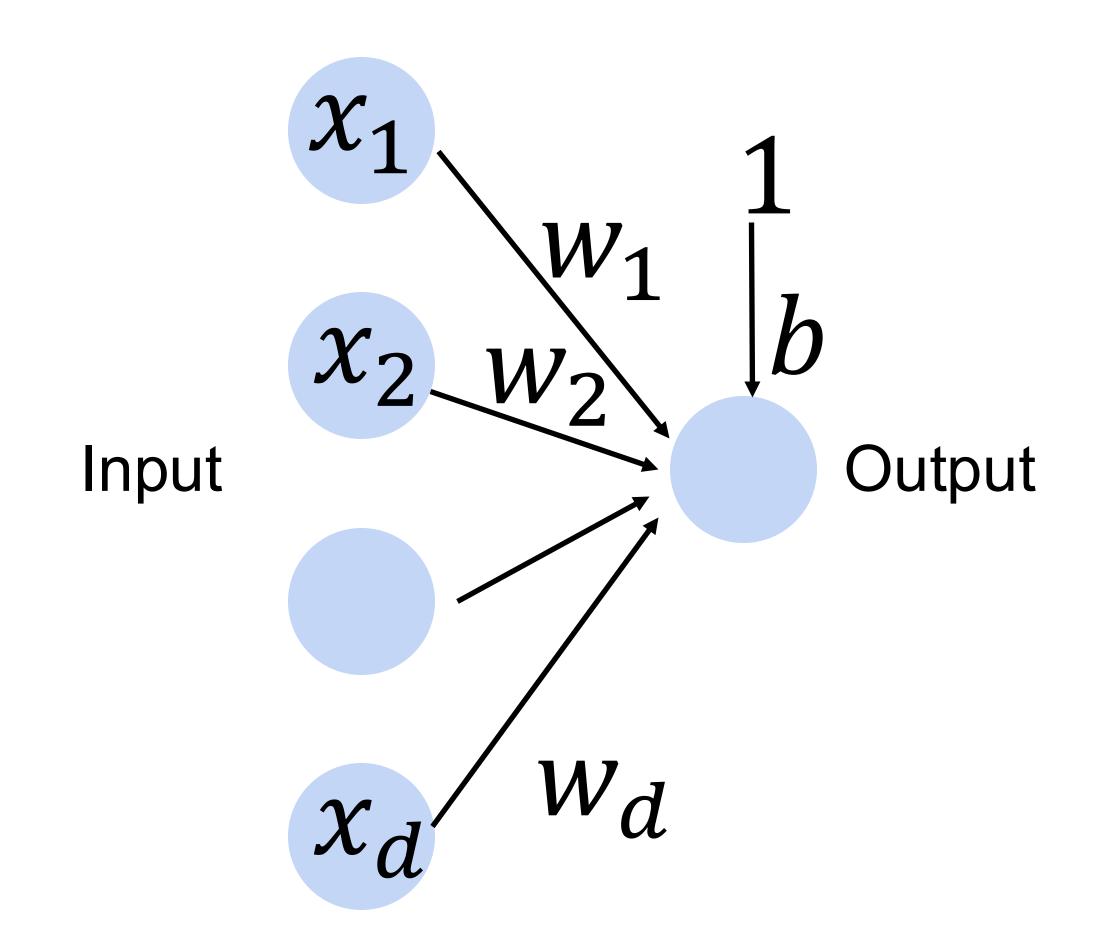
Perceptron

Given input x, weight w and bias b, perceptron outputs:

$$o = \sigma(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$

$$o = \sigma(\langle \mathbf{w}, \mathbf{x} \rangle + b)$$
 $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ Activation function

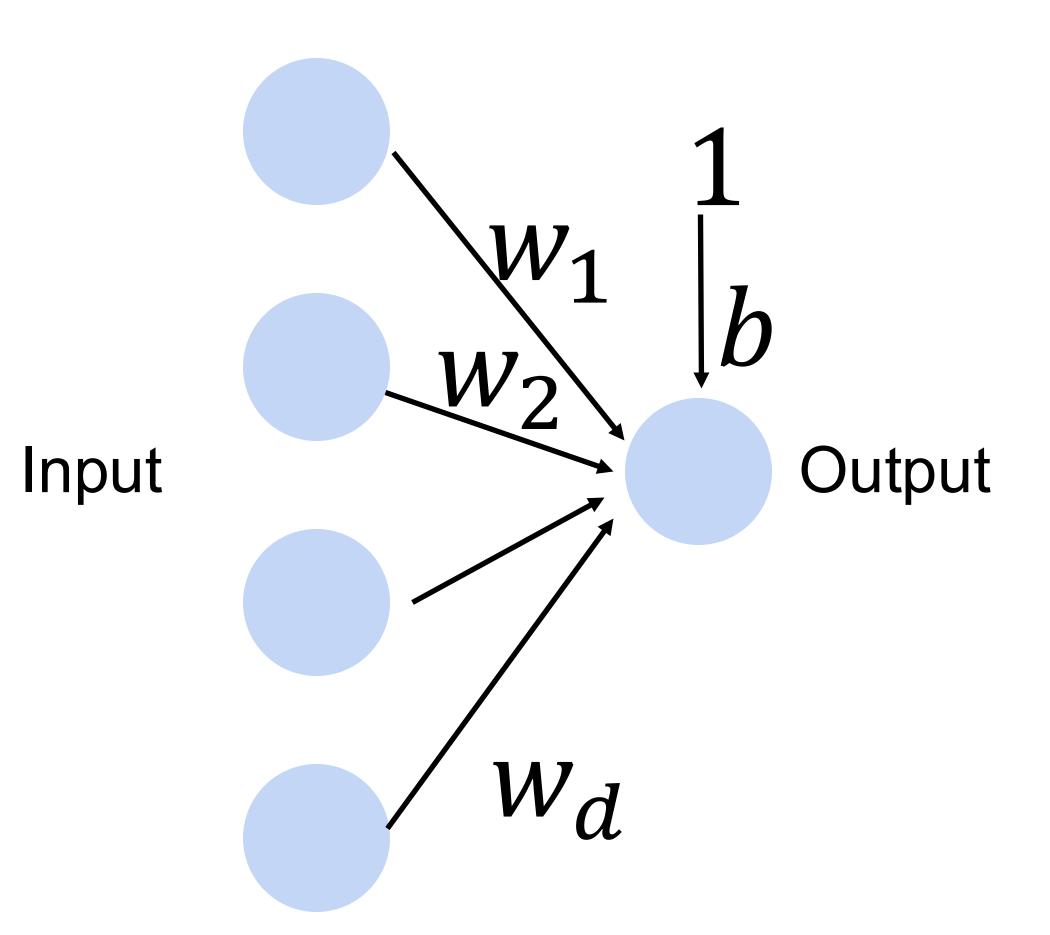
Cats vs. dogs?

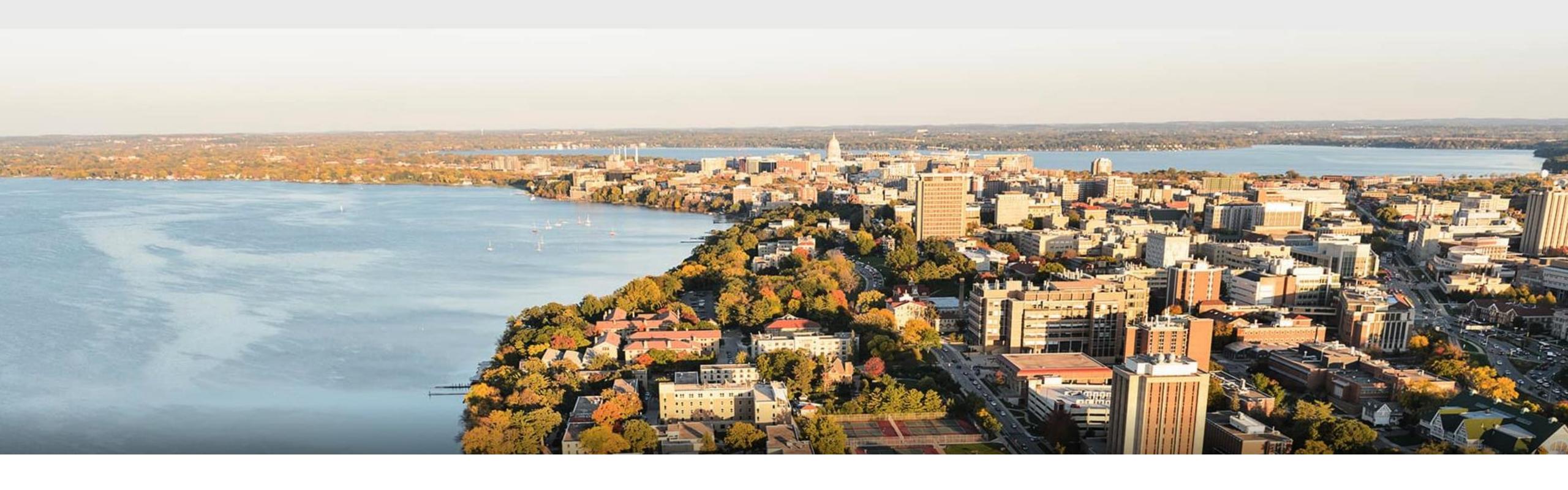


Perceptron

Goal: learn parameters $\mathbf{w} = \{w_1, w_2, \dots, w_d\}$ and b to minimize the classification error

Cats vs. dogs?





Thanks!