

CS 540 Introduction to Artificial Intelligence Review: Neural Networks and Deep Learning

University of Wisconsin–Madison Fall 2025, Section 3 October 31, 2025

Announcements

- HW 6 online:
 - Due tonight 10/31 11:59PM

- HW7 out, due November 14
 - Two weeks!
 - Long assignment!
 - Start early!

Neural Networks: Perceptron

Neural Networks: MLP

Deep Learning: CNNs

Deep Learning: ResNets

Deep Learning: RNNs and

Transformers

Neural Networks & Deep Learning Review

Search, Games, and Reinforcement Learning

What have we seen?

- Perceptron
- . Multilayer Perceptron
- Convolutional Neural Network
 - Filters
 - Padding, Stride
 - Pooling
- ResNet
- Graph Neural Network (briefly)
- Recurrent Neural Network (briefly)
- . Transformer
 - Attention

- Loss functions
- Activation functions
- Softmax
- . (Stochastic) Gradient Descent
- Backpropagation

Today's Plan:

- 1. More on transformers
- 2. Neural networks review

Transformers & Attention

Word Representations and Context

- We use vectors to represent words ("embeddings")
- . Recall:
 - One-hot representation

"dog"
[0 1 0 0 0 0 0 0 0]

- Dense embedding
 - Vector captures **meaning**

 $[0.13 \quad 0.87 \quad -0.23 \quad 0.46]$

The attention mechanism produces contextual embeddings.

Attempt 1: Naïve Contextual Embedding

- Each token has a fixed embedding vector x_i
- A crude attempt at contextual embedding: average over context

Equal "attention" to every previous token

Tokens

1	the
2	monkey
3	ate
4	the
5	banana
6	it
7	was
8	ripe
9	wasn't
10	it

Fixed Embeddings

[0.45]	0.23]
[0.39]	0.72]
[0.83	0.61]
[0.45]	0.23]
[0.25	0.18]
[0.63	0.41]
[0.63	0.41]
[0.70	0.67]
[0.14	0.61]
[0.63	0.41]

In math: for the *i*-th token

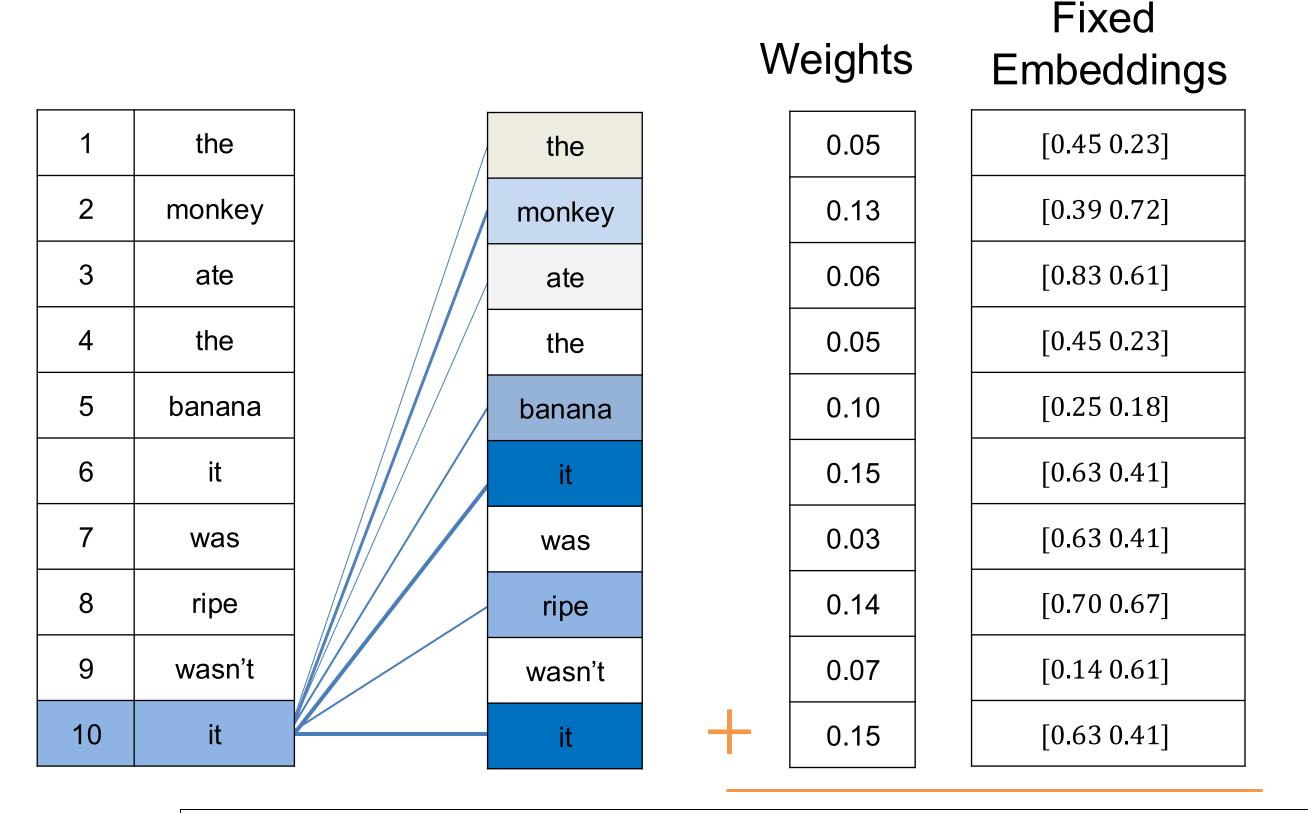
$$c_i = \frac{1}{i} \sum_{i=1}^{l} x_i$$

 $[4.98 \ 4.93]$

Contextual embedding for "it": [0.498 0.493]

Attempt 2: Assigning Weights

- Humans focus selectively
 - machines can too
- We can assign weights based on relevance
 - Idea: weight similar words highly
 - If $\langle x_i, x_j \rangle$ large, assign large weight
- Then take weighted sum



Contextual embedding for "it": [0.37 0.42]

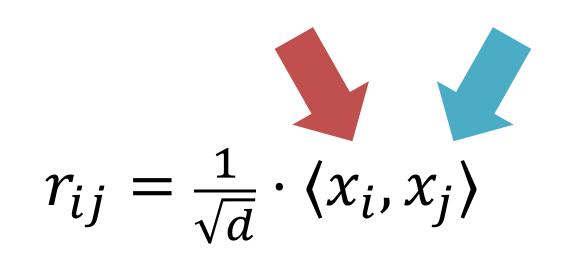
In math: for
$$i$$
-th token
$$r_{ij} = \frac{1}{\sqrt{d}} \langle x_i, x_j \rangle \qquad c_i = \sum_{j=1}^i p_{ij} \cdot x_j$$

$$p_{i::} = \operatorname{softmax}(r_{i::})$$

Final Attempt: The Attention Mechanism

Previous attempt:

Used fixed embeddings in three locations.

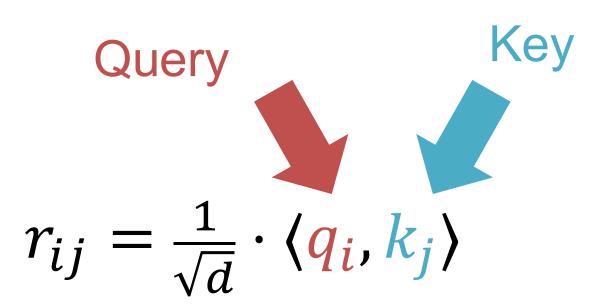


$$p_{i,:} = \operatorname{softmax}(r_{i,:})$$

$$c_i = \sum_{j=1}^i p_{ij} \cdot x_j$$

In the attention mechanism:

- Each token is associated with three vectors
- Query: q_i , the one attended from
- Key: k_i , the one attended to
- Value: v_i , the context being generated

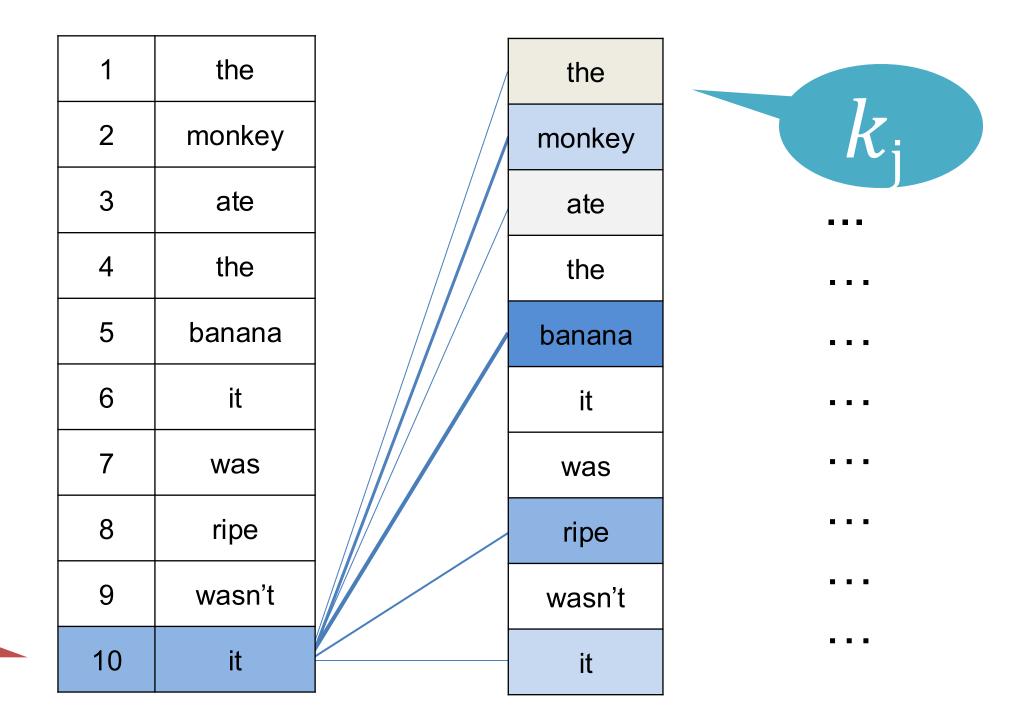


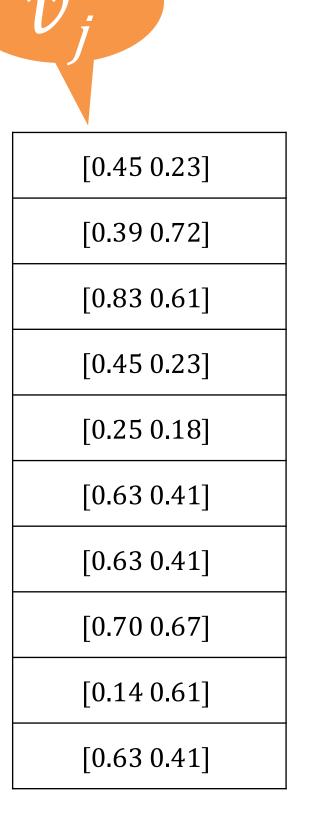
$$p_{i,:} = \operatorname{softmax}(r_{i,:})$$

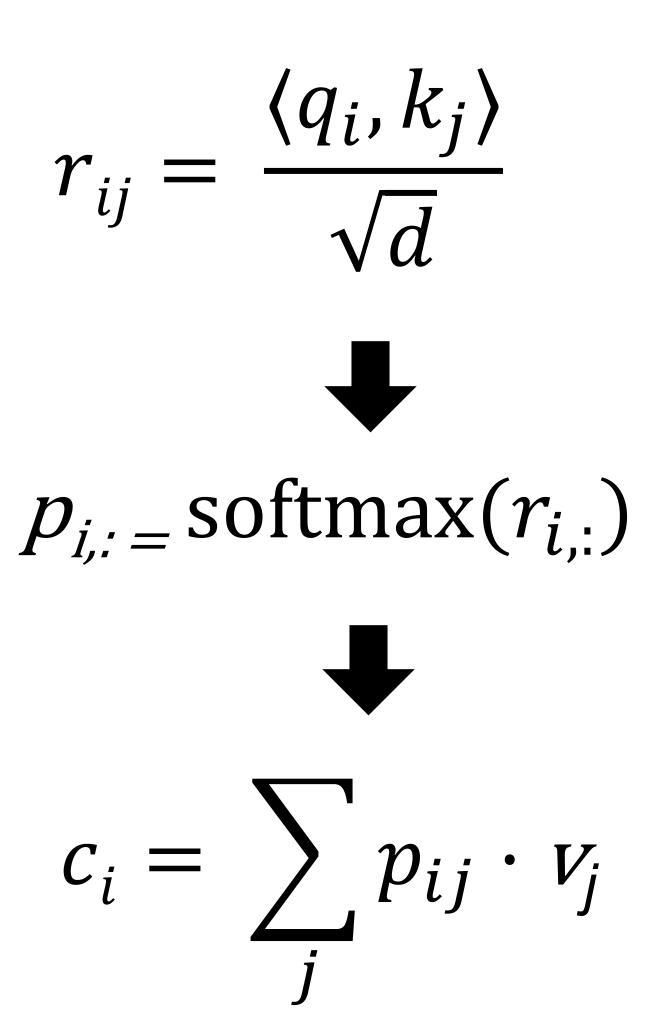
$$c_i = \sum_{j=1}^{i} p_{ij} \cdot v_j$$

The Attention Mechanism

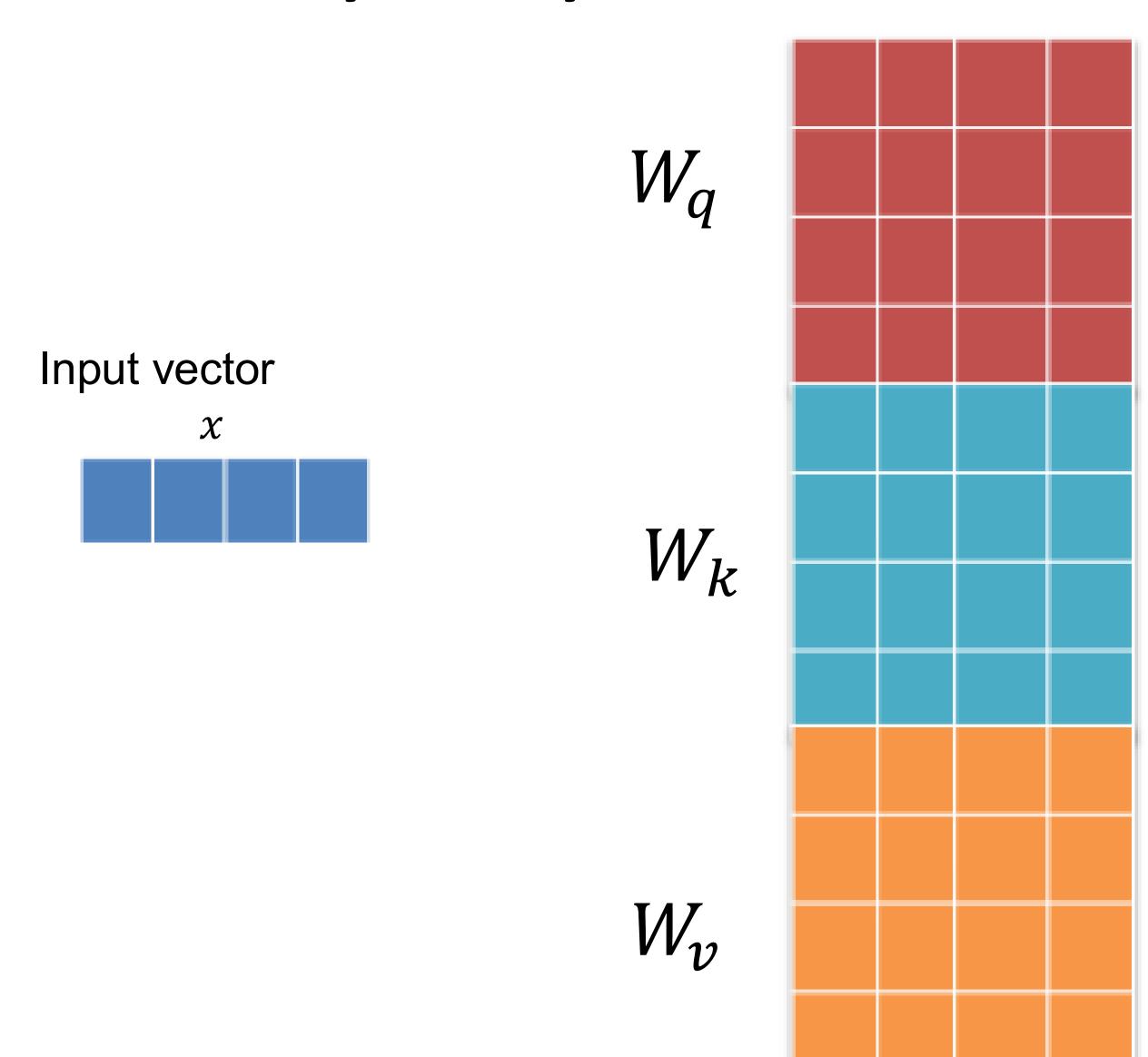
Each token attends to all previous tokens in the same sequence







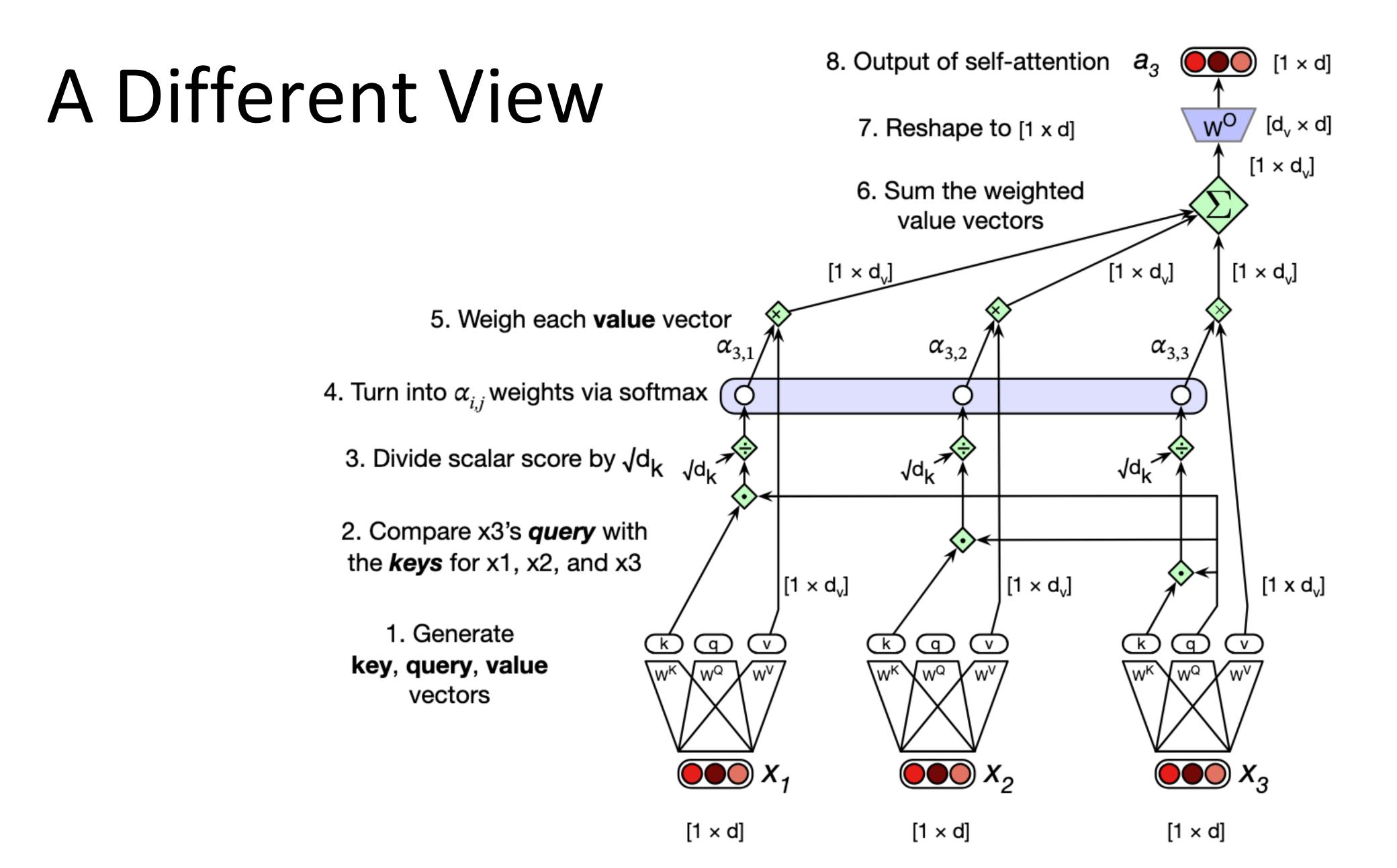
Query, Key, and Value Matrices



$$q = W_q x$$
 Query

$$k = W_k x$$
 Key

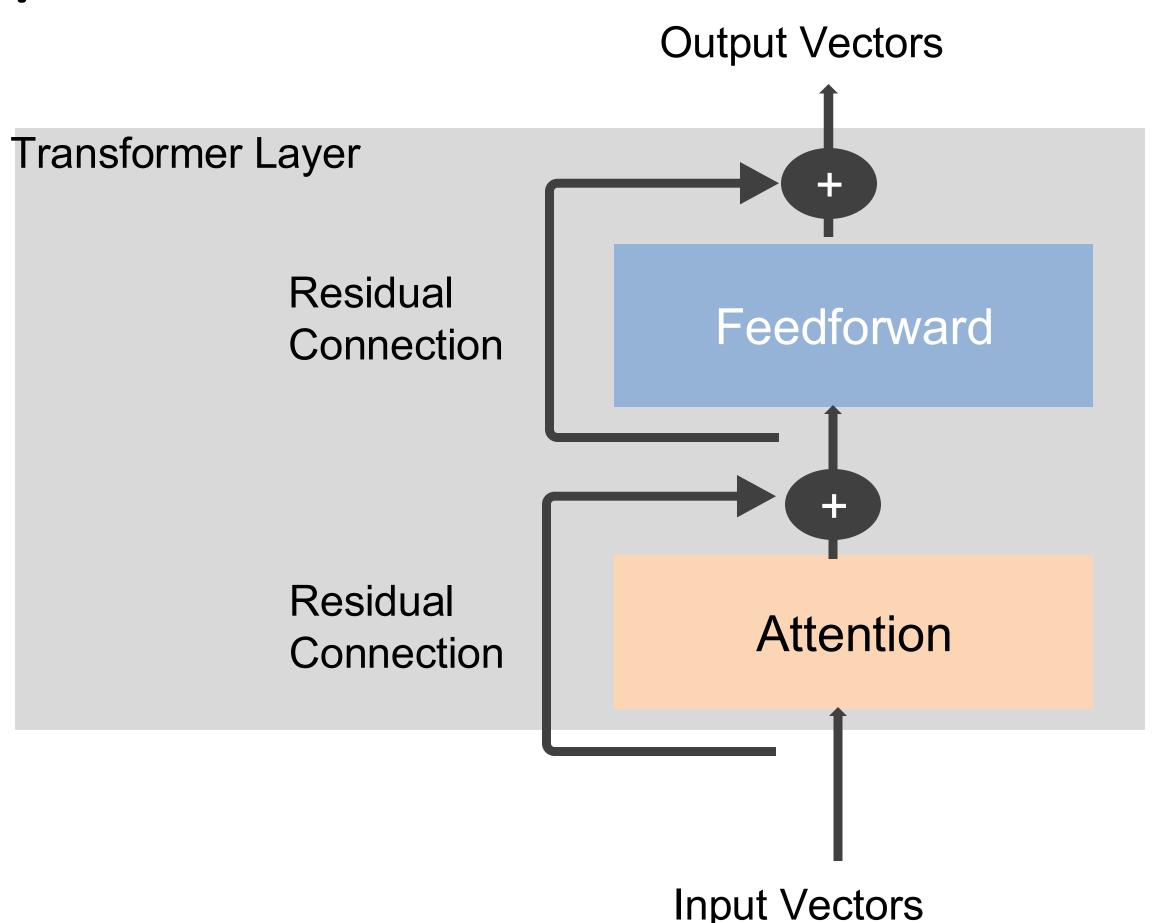
$$v = W_v x$$
 Value



From Attention to Transformer

A single layer transformer consists of:

- Attention Mechanism
- Feed-Forward Network
- Residual Connections

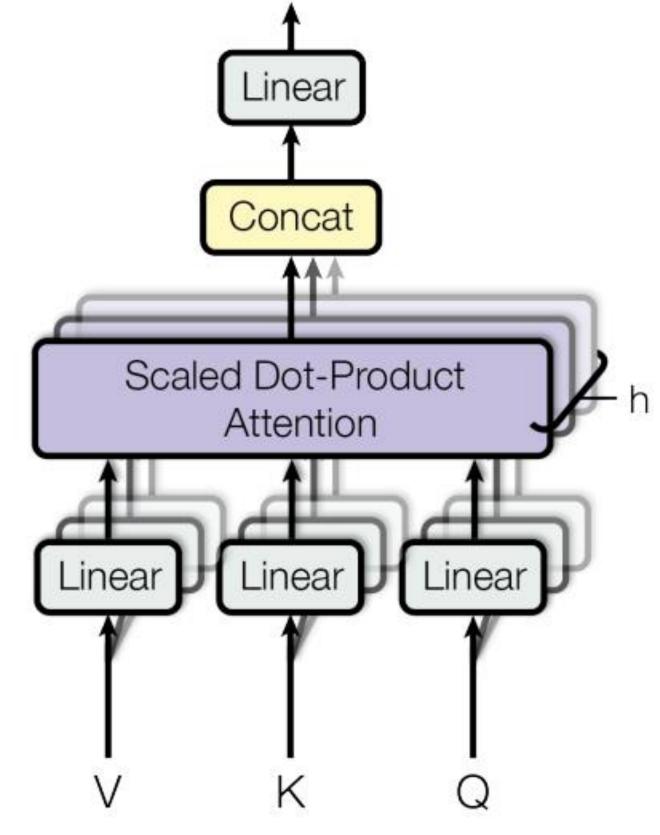


Multi-Head Attention

Outputs combined for richer representations

Multiple heads learn different relationships

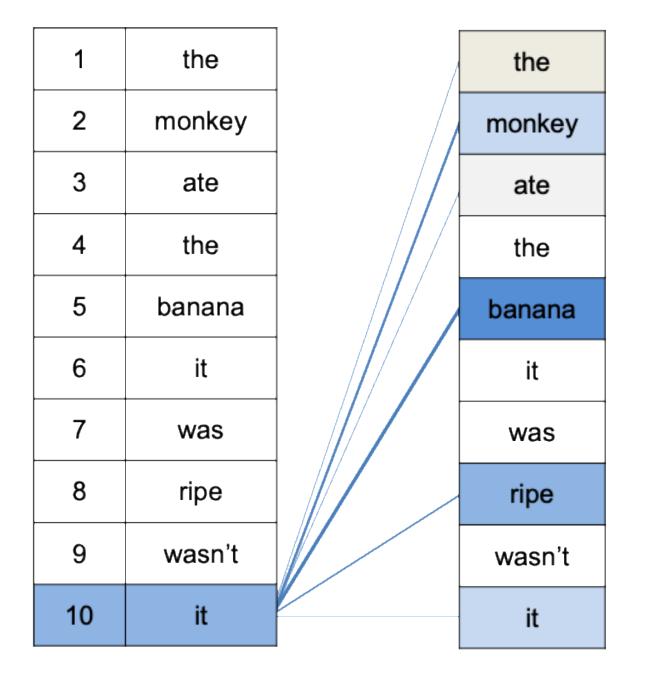
(syntax, meaning, position)



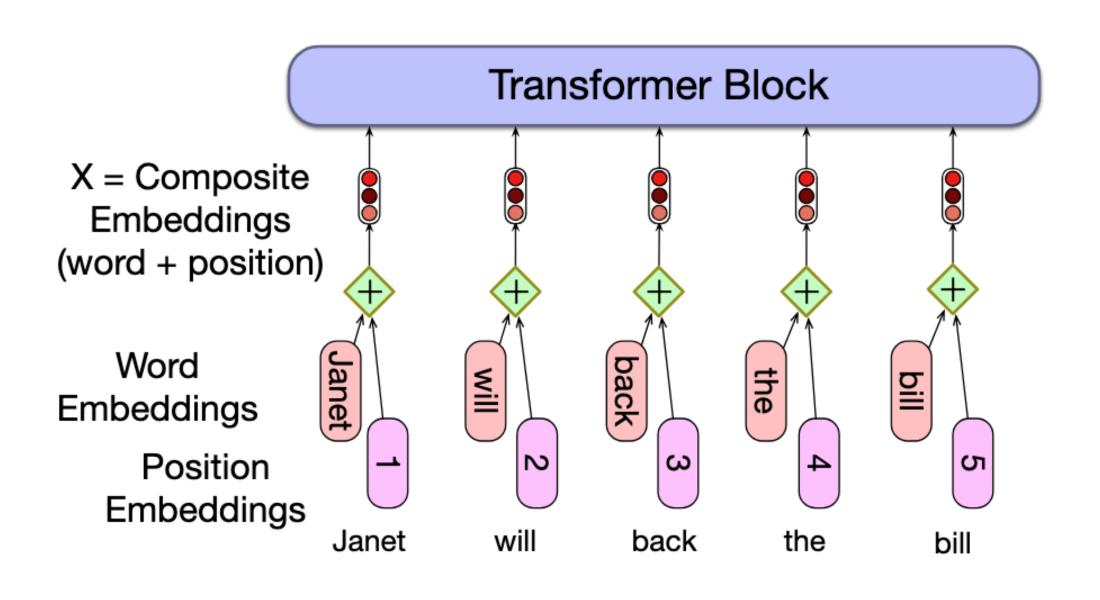
Vaswani, A., et al. (2017). Attention Is All You Need

Positional Encoding

- Transformers have no recurrence order must be added explicitly
- Positional Encoding: Information about the relative or absolute position of the tokens in the sequence
- Added to the input embeddings



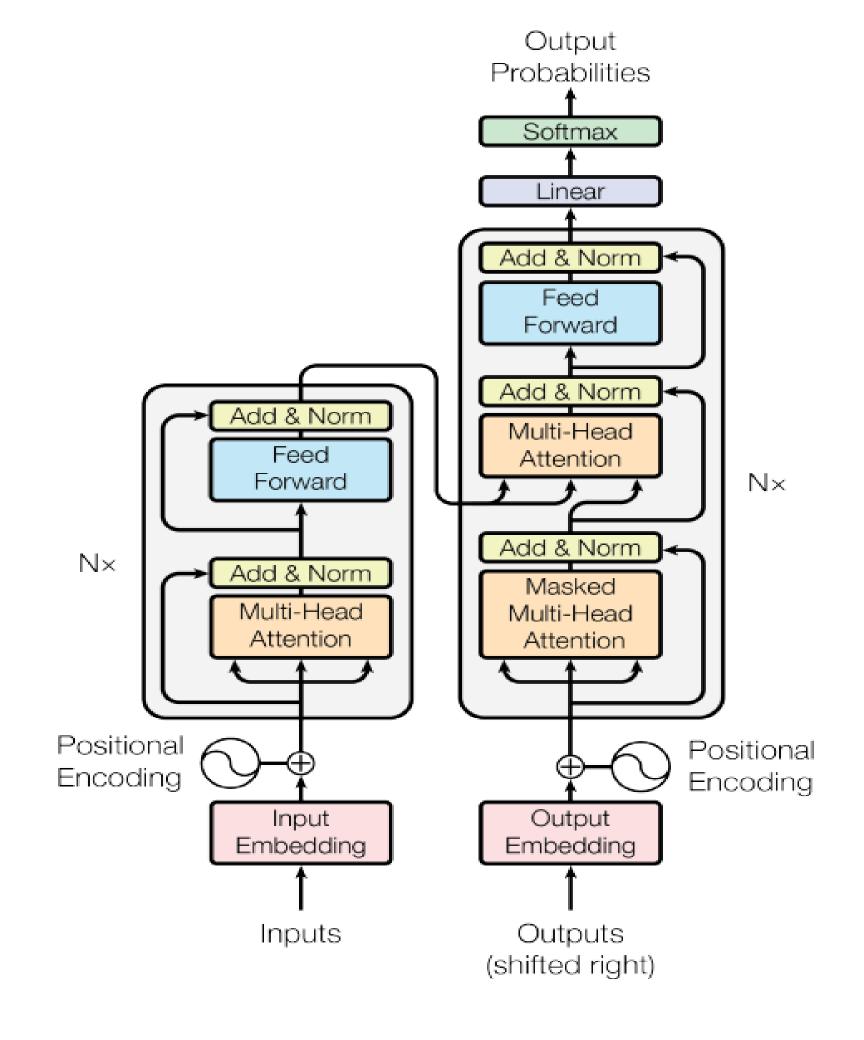
[0.45 0.23]	
[0.39 0.72]	
[0.83 0.61]	
[0.45 0.23]	
[0.25 0.18]	
[0.63 0.41]	
[0.63 0.41]	
[0.70 0.67]	
[0.14 0.61]	
[0.63 0.41]	



Jurafsky and Martin, Speech and Language Processing https://web.stanford.edu/~jurafsky/slp3/ed3book_aug25.pdf

Transformer Architecture

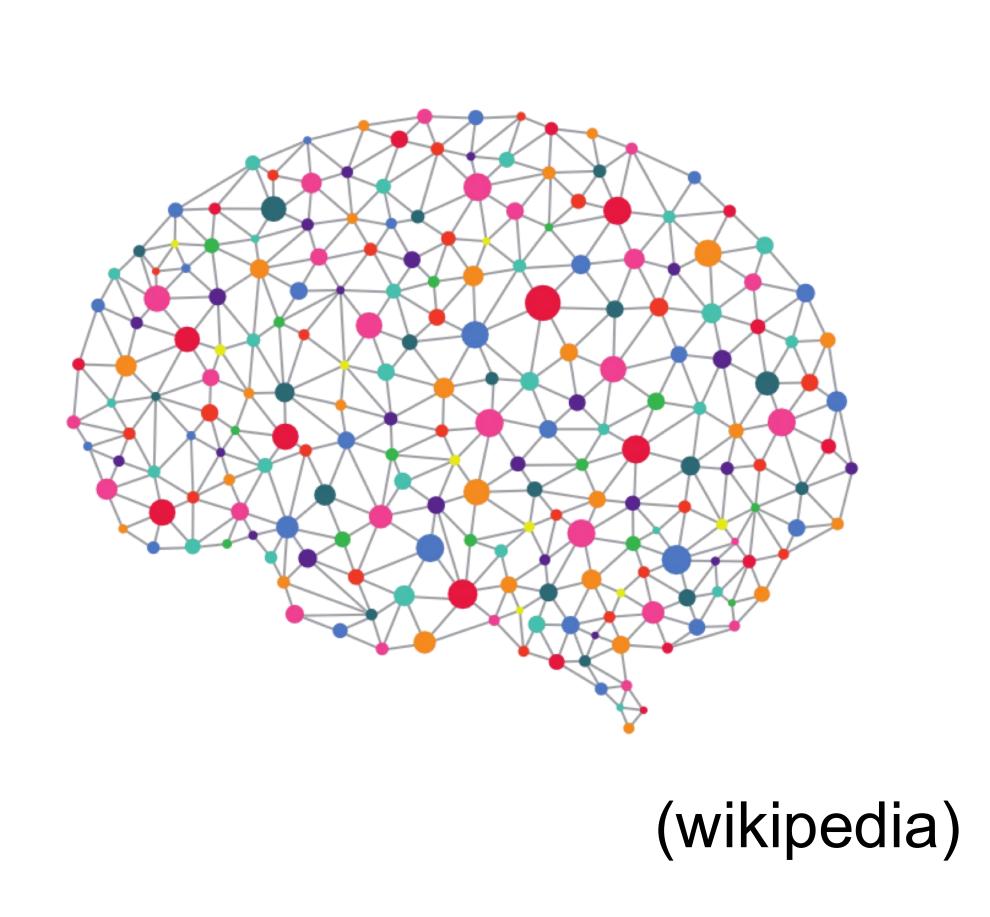
- Encoder-Decoder structure
- Encoder: maps an input sequence to a sequence of continuous representations z.
 - Useful for classification/translation
- Decoder: Given z, the decoder generates an output sequence of symbols one element at a time.
 - Useful for generation

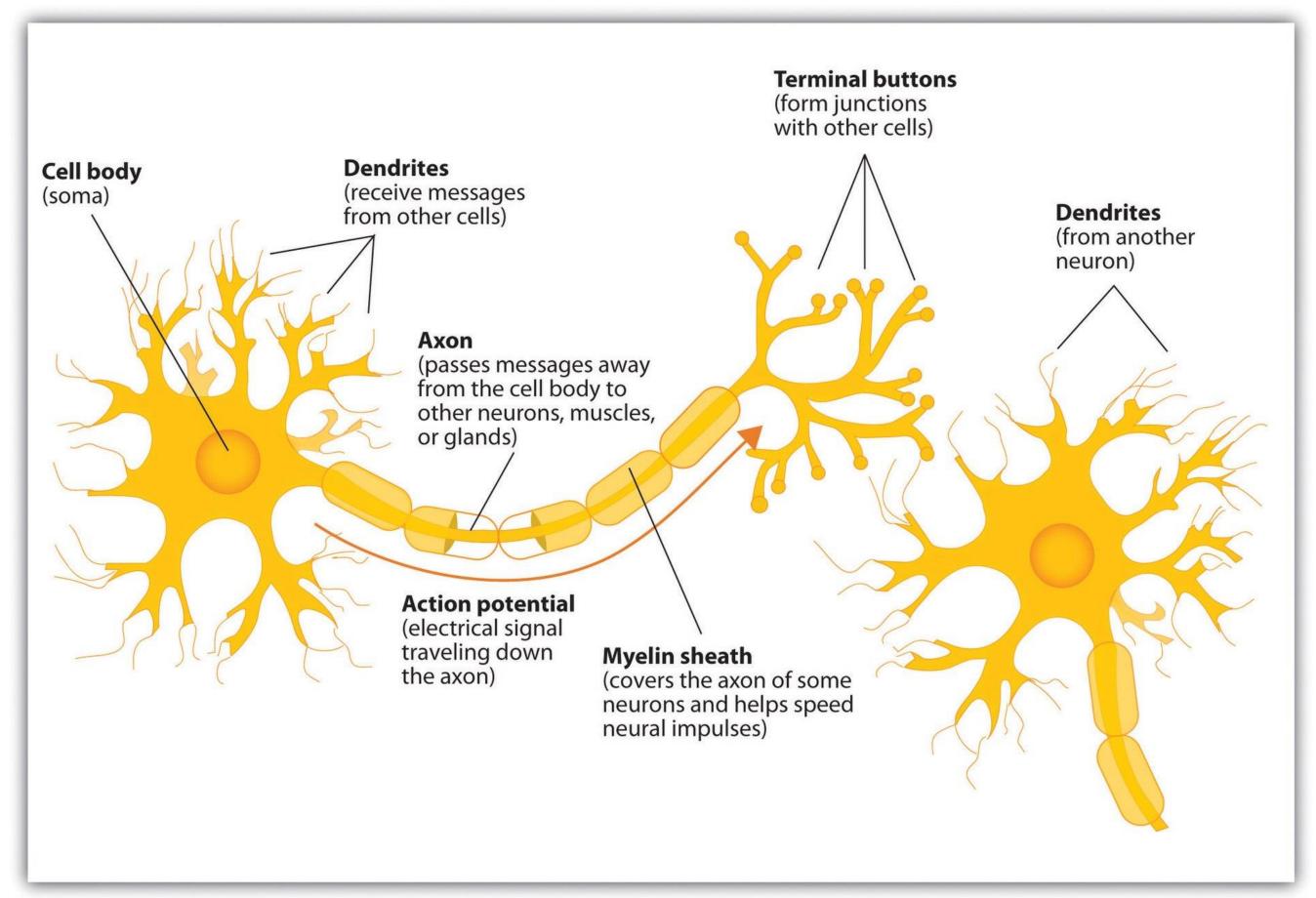


Neural Networks Review

Inspiration from neuroscience

- Inspirations from human brains
- Networks of simple and homogenous units (a.k.a neuron)





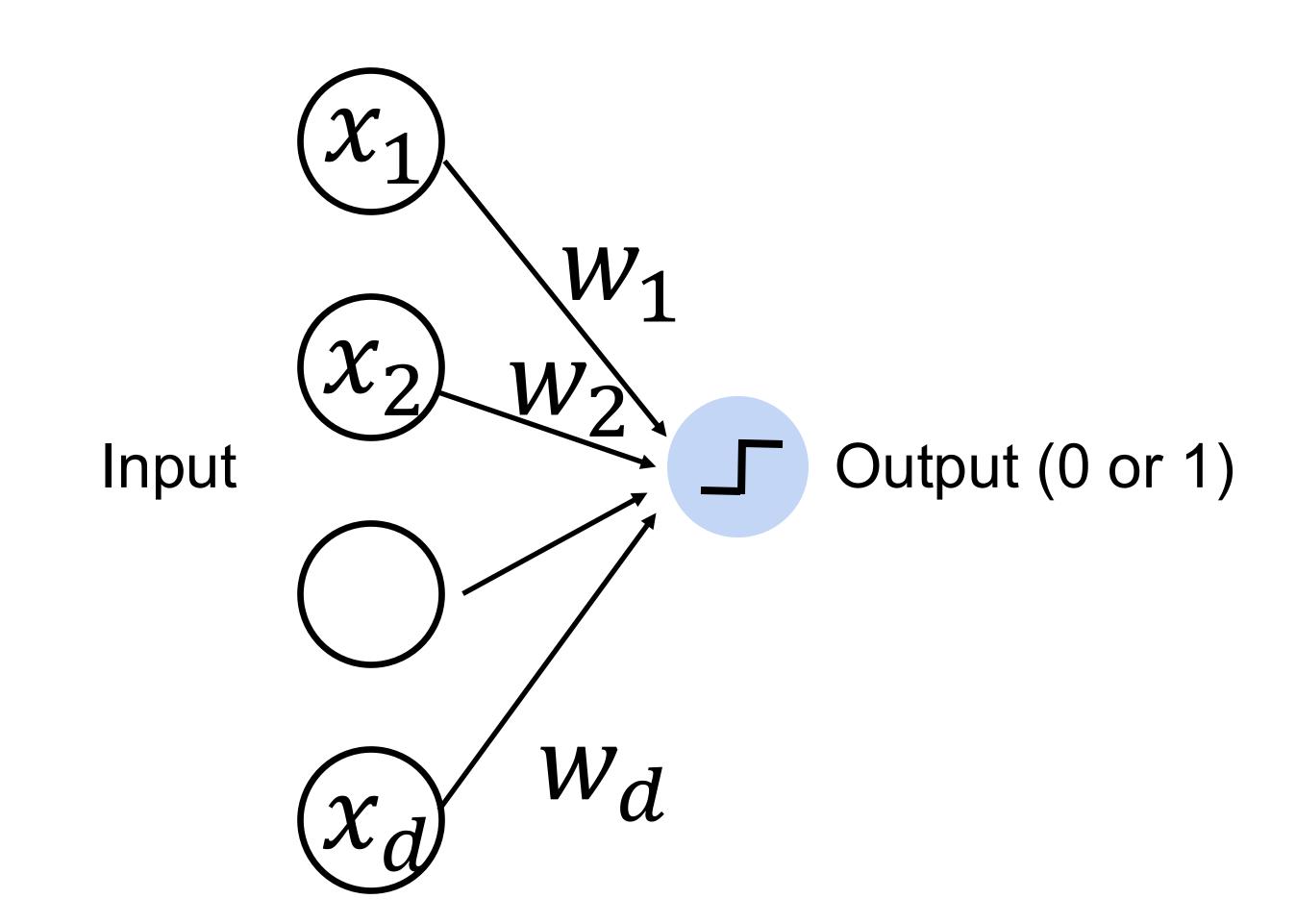
Perceptron

Given input x, weight w and bias b, perceptron outputs:

$$o = \sigma(\mathbf{w}^\mathsf{T}\mathbf{x} + b)$$

$$o = \sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$
 $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$ Activation function

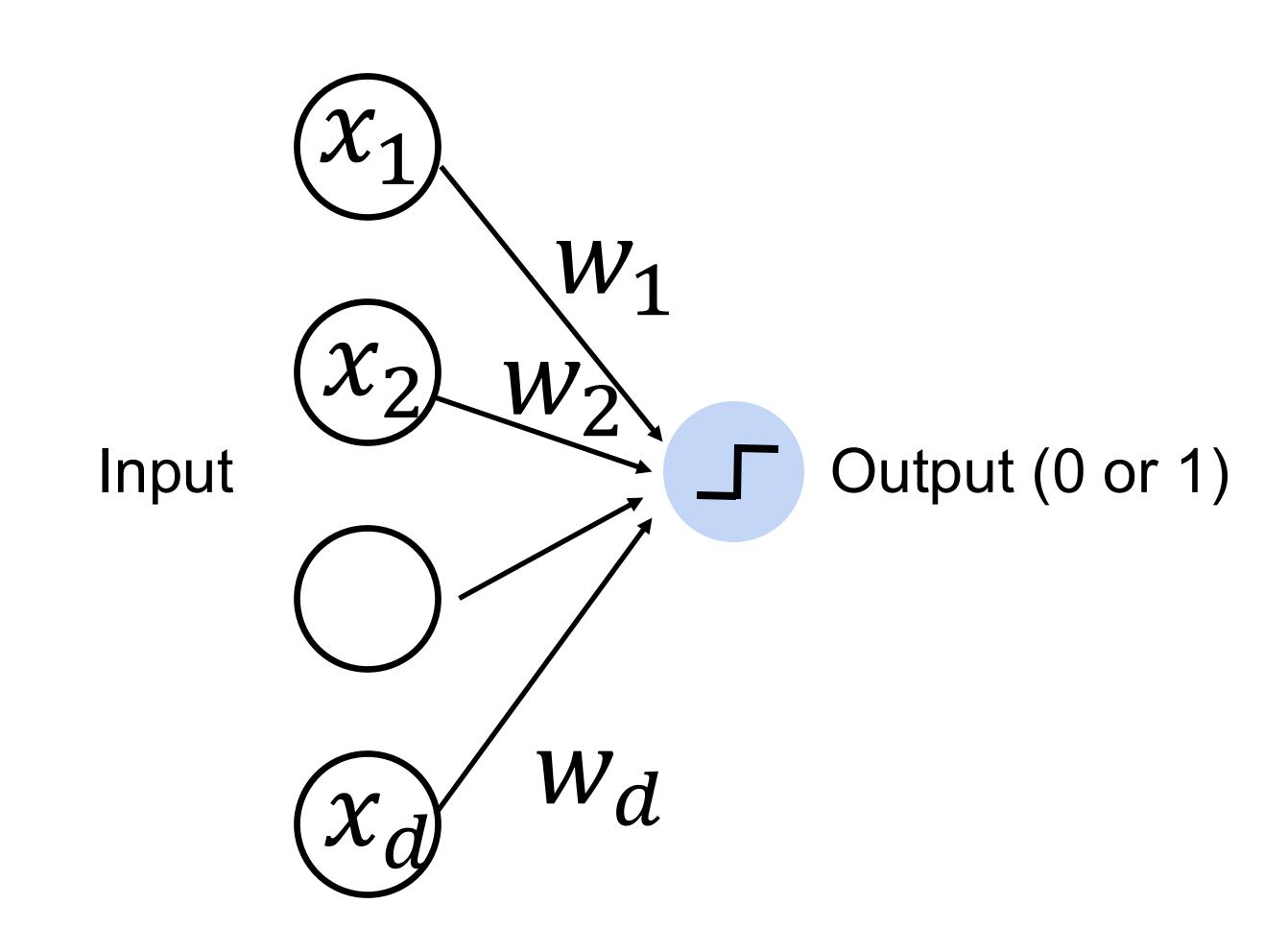
Cats vs. dogs?



Perceptron

• Goal: learn parameters $\mathbf{w} = \{w_1, w_2, \dots, w_d\}$ and b to minimize the classification error

Cats vs. dogs?



The Perceptron Learning Rule

Perceptron Learning Algorithm

```
Input: dataset (X, y) number of steps T, step size \eta
```

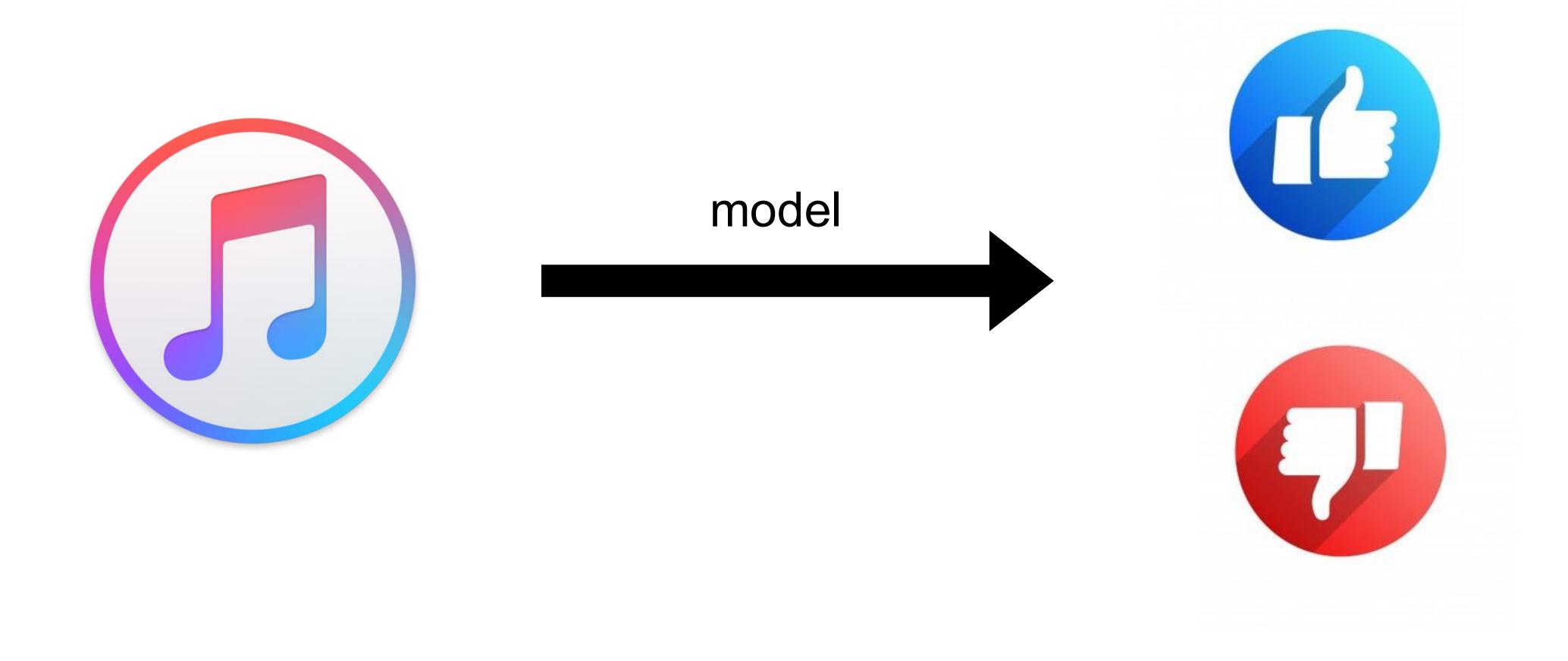
- 1. Initialize w_0 , b_0
- 2. For t = 1, 2, ..., T
- 3. Pick random (x_i, y_i)
- 4. Predict $\hat{y}_i \leftarrow \sigma(\langle w_{t-1}, x_i \rangle + b_{t-1})$
- 5. If $\hat{y}_i \neq y_i$:
- 6. $w_t \leftarrow w_{t-1} + \eta (y_i \hat{y}_i) x_i$
- 7. $b_t \leftarrow b_{t-1} + \eta(y_i \hat{y}_i)$
- 8. Return w_T

Gradient Descent

Input: dataset (X, y), loss function L, number of steps T, step size η

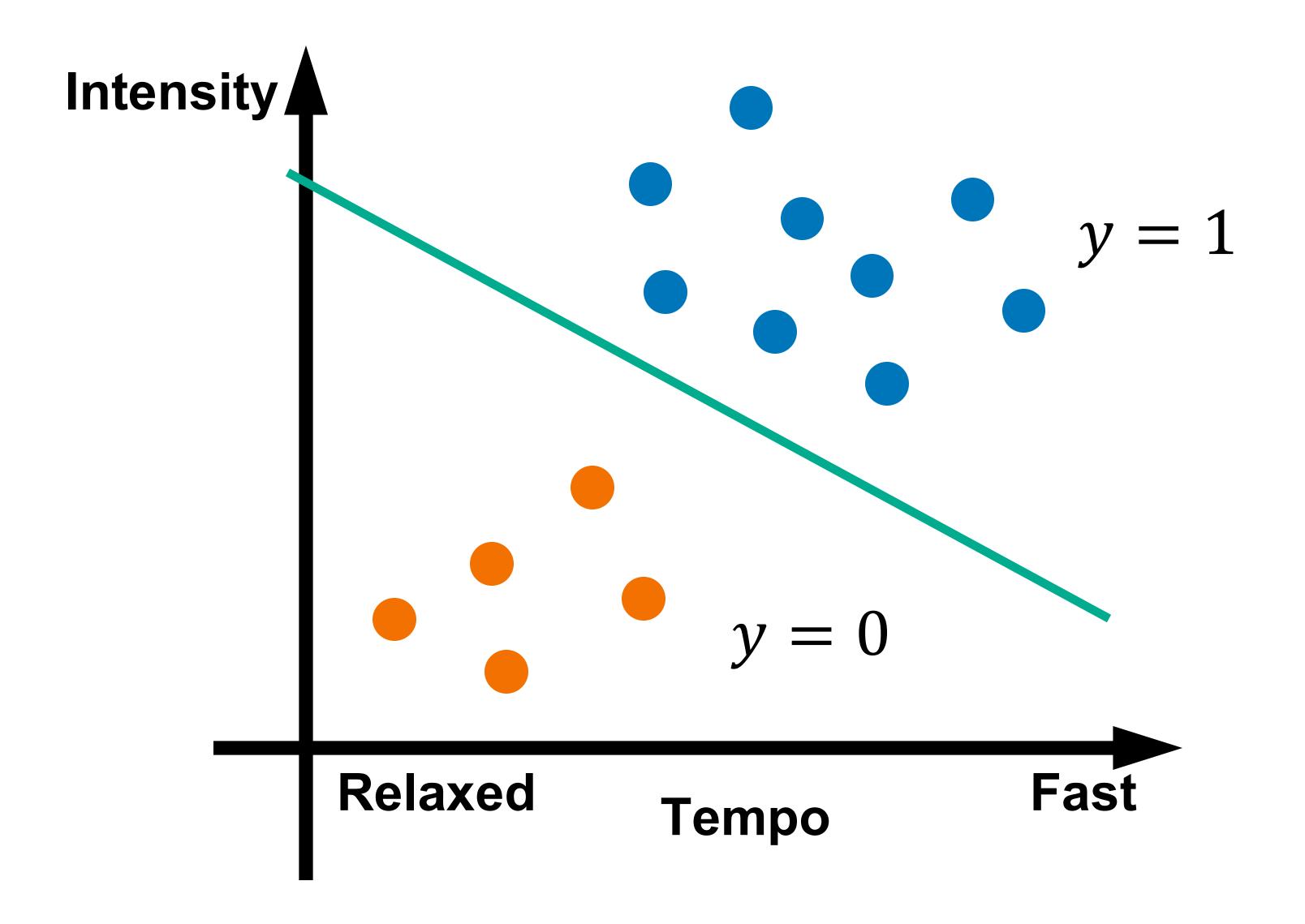
- 1. Initialize w_0
- 2. For t = 1, 2, ..., T
- 3. Calculate $g_t = \nabla L(w_{t-1}; X, y)$
- 4. Update $w_t \leftarrow w_{t-1} \eta g_t$
- 5. Return w_T

Example 2: Predict whether a user likes a song or not

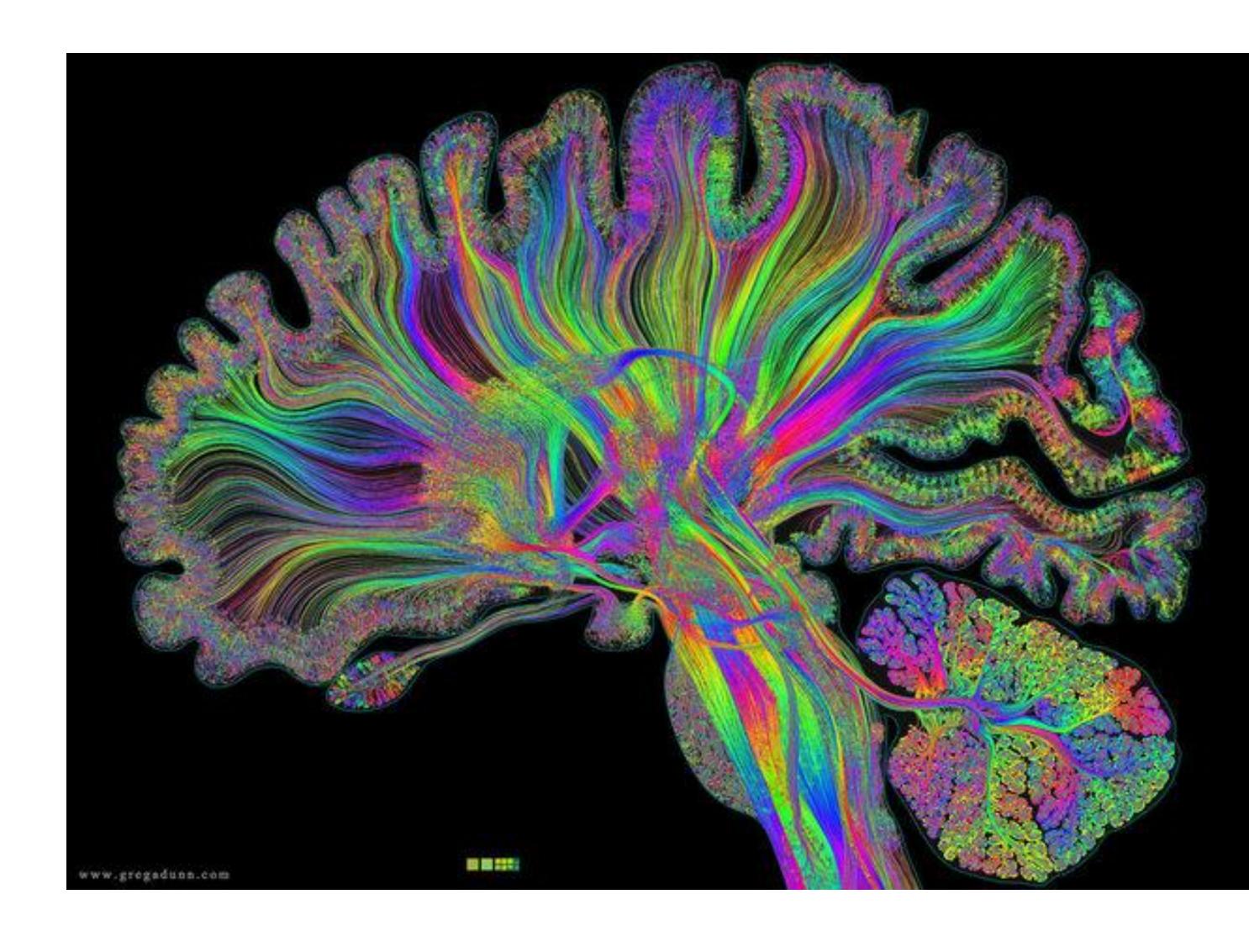


Example 2: Predict whether a user likes a song or not using Perceptron

- DisLike
- Like

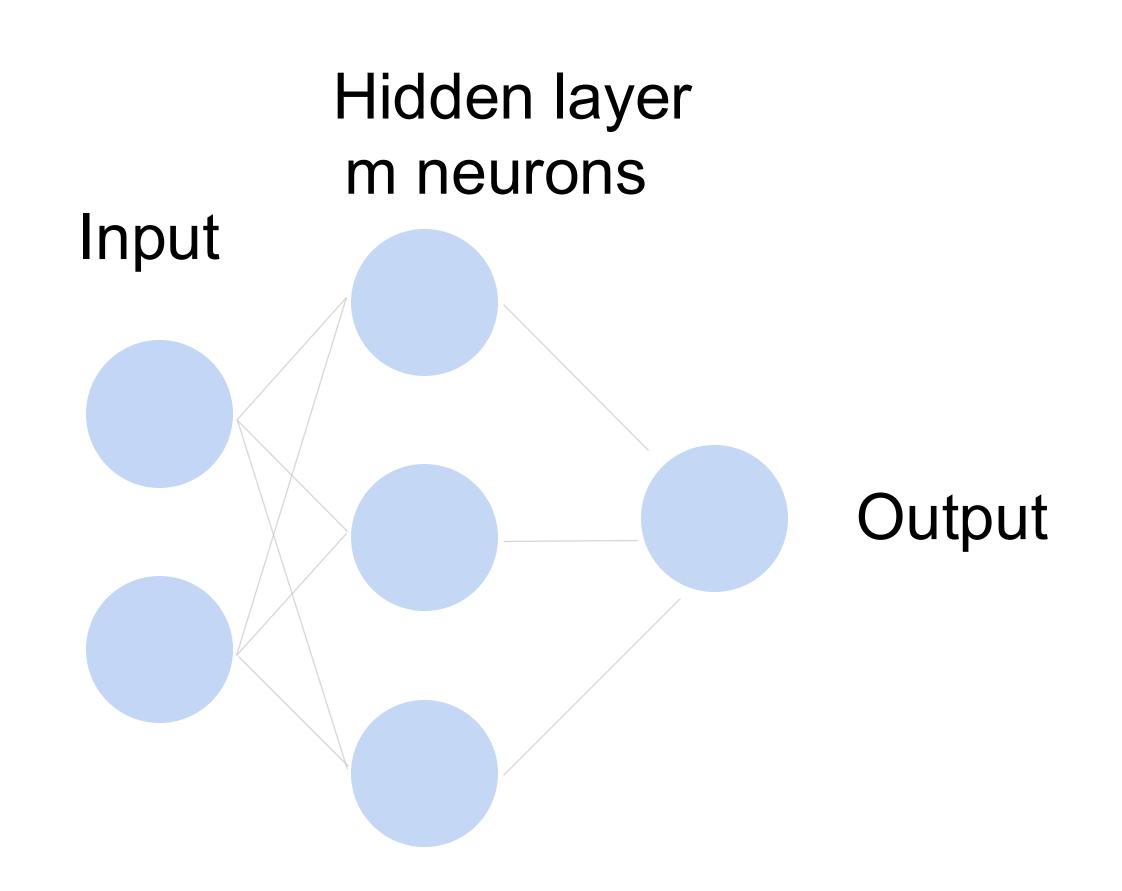


Multilayer Perceptron



Single Hidden Layer

How to classify Cats vs. dogs?

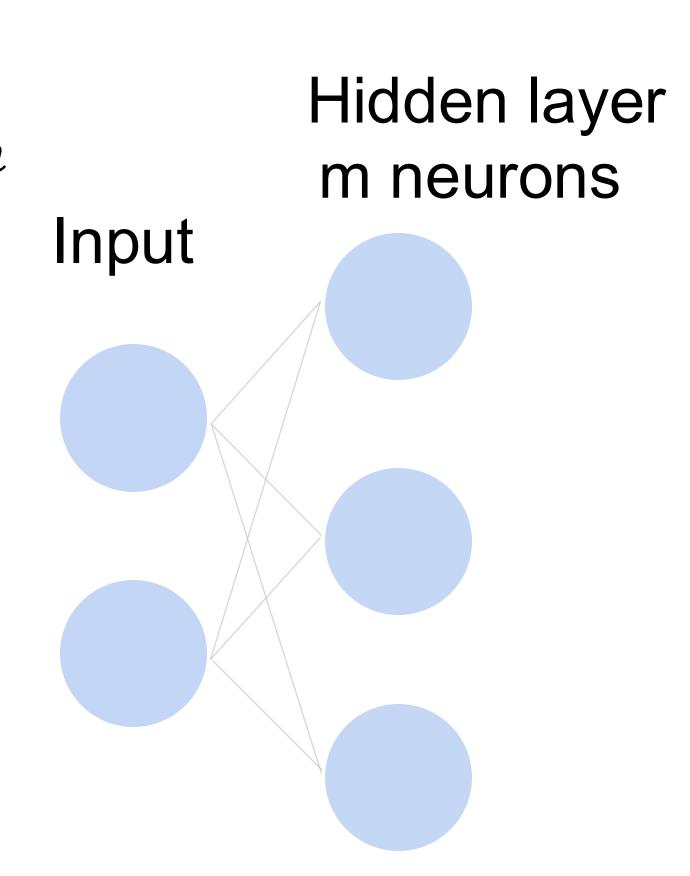


Single Hidden Layer

- Input $\mathbf{x} \in \mathbb{R}^d$
- Hidden $\mathbf{W} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^m$
- Intermediate output

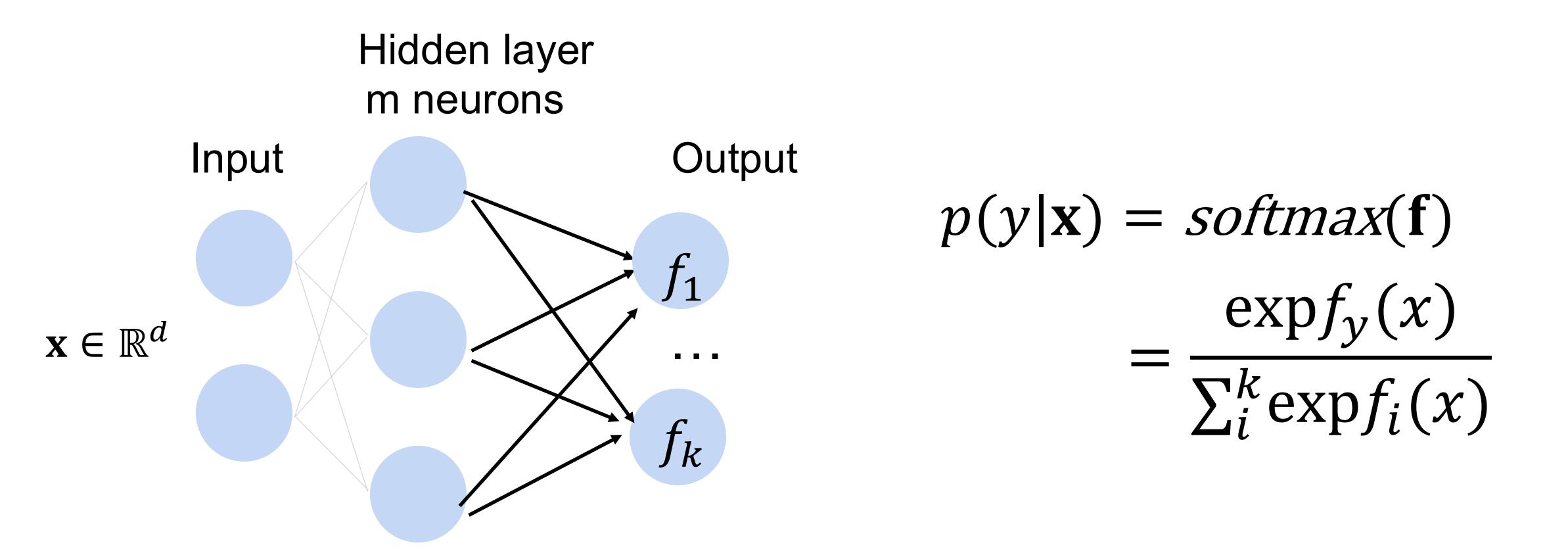
$$\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$

 σ is an element-wise activation function



Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)



Activation Functions

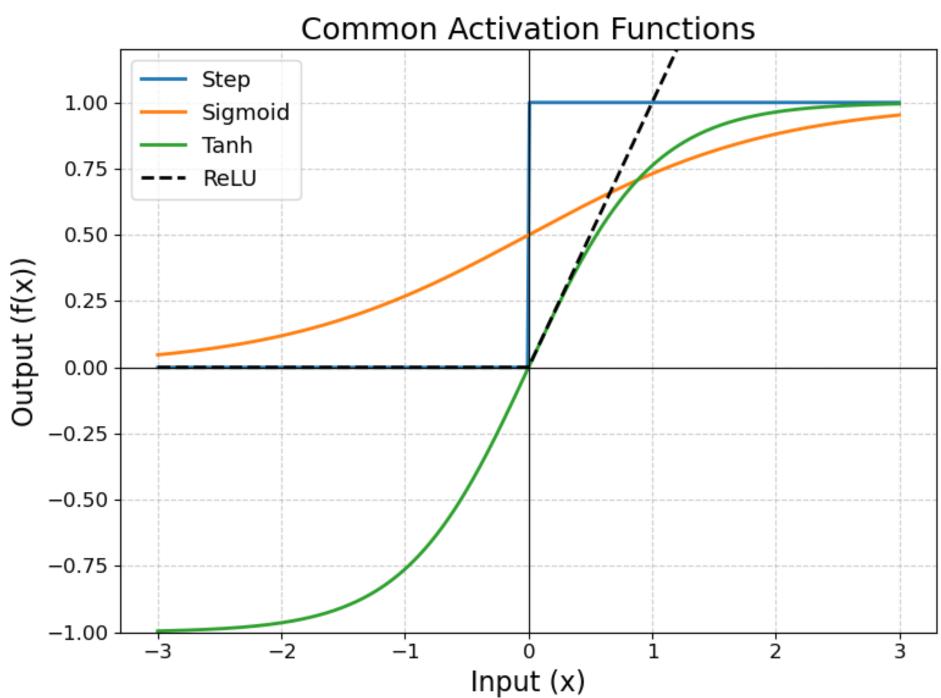
Used for neural network hidden nodes

Step/Hard Threshold:
$$\sigma(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & o.w. \end{cases}$$

Sigmoid:
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

tanh:
$$\sigma(z) = \tanh(z) = \frac{e^{2z}-1}{e^{2z}+1}$$

ReLU: $\sigma(z) = \max\{0, z\}$



Loss Functions: Regression

Squared Error: $\ell(y, \hat{y}) = (\hat{y} - y)^2$

If our model predicts $\hat{y} = f_{\theta}(x)$, we write $\ell(\theta; x, y) = (f_{\theta}(x) - y)^2$

Over a dataset of *n* examples: MSE

$$L(\theta; X, y) = \frac{1}{n} \sum_{i=1}^{n} (f_{\theta}(x_i) - y_i)^2$$

Loss Functions: Classification

- . Misclassification Error
 - Used for perceptron

$$\ell(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{if } y \neq \hat{y} \end{cases}$$

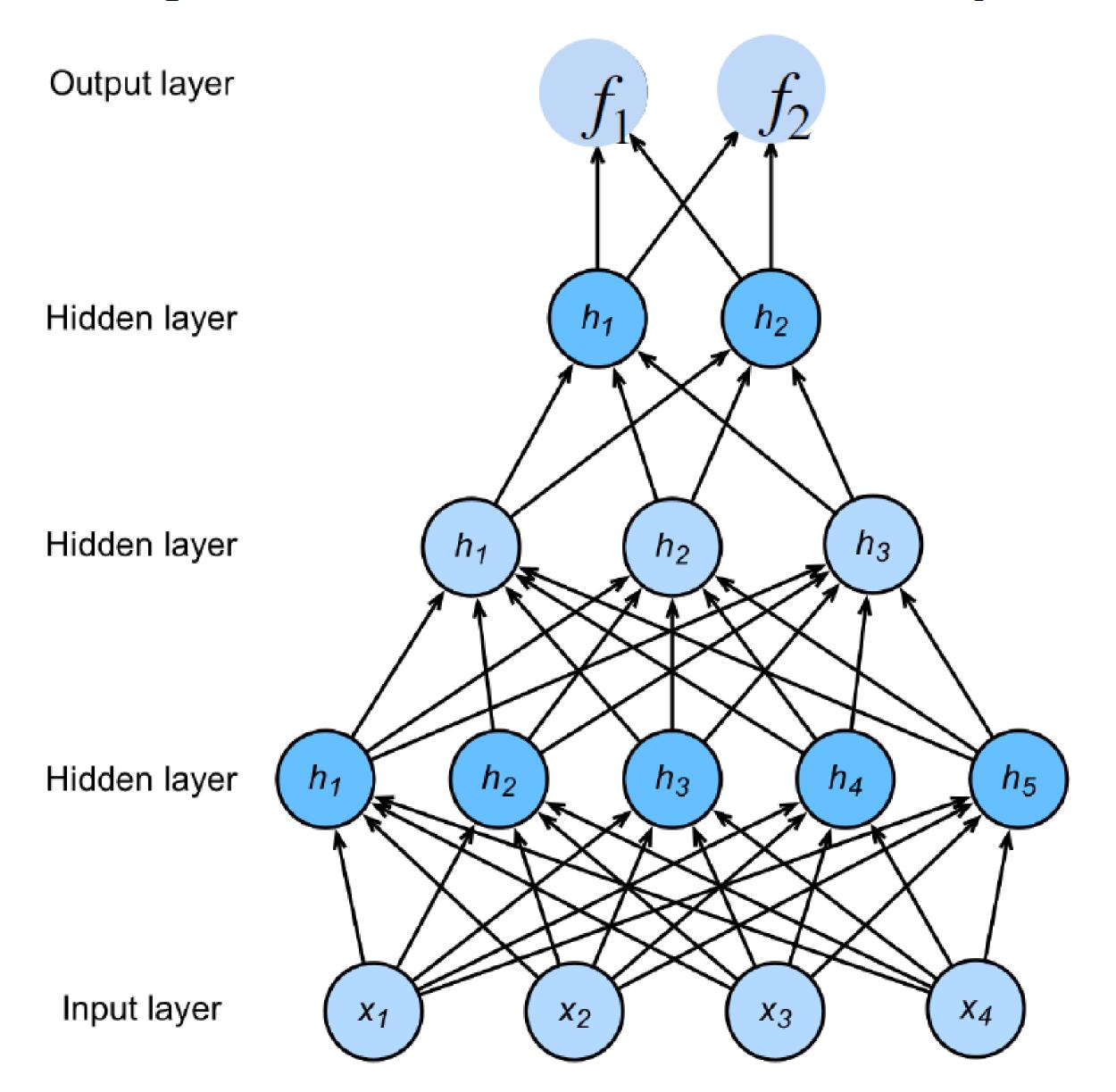
 $\ell(y, \hat{y}) = -\sum_{i=1}^{N} y_i \log \hat{y}_i$

- Binary Cross-Entropy
 - $y \in \{0,1\}, \hat{y} \in [0,1]$

 $\ell(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$

- Cross Entropy
 - For $k \ge 2$ classes
 - True label y is one-hot vector
 - Prediction \hat{y} is a probability distribution over k classes (like the output of softmax)

Deep neural networks (DNNs)



$$\mathbf{h}_1 = \sigma(\mathbf{W}_1\mathbf{x} + \mathbf{b}_1)$$

$$\mathbf{h}_2 = \sigma(\mathbf{W}_2\mathbf{h}_1 + \mathbf{b}_2)$$

$$\mathbf{h}_3 = \sigma(\mathbf{W}_3\mathbf{h}_2 + \mathbf{b}_3)$$

$$\mathbf{f} = \mathbf{W}_4\mathbf{h}_3 + \mathbf{b}_4$$

$$\mathbf{y} = \text{softmax}(\mathbf{f})$$

NNs are composition of nonlinear functions

Gradients and Gradient Descent

• When f maps vector $x \in \mathbb{R}^d$ to scalar $f(x) \in \mathbb{R}$

$$\nabla f(x) \in \mathbb{R}^d$$

 We will work with functions of many vectors (and matrices!)

$$L(\theta; X, y)$$

• Write gradient with respect to θ

$$\nabla_{\theta}L(\theta_{t-1};X,y)$$

Gradient Descent

Input: dataset (X, y), loss function L, number of steps T, step size η

- 1. Initialize θ_0
- 2. For t = 1, 2, ..., T
- 3. Calculate $g_t = \nabla_{\theta} L(\theta_{t-1}; X, y)$
- 4. Update $\theta_t \leftarrow \theta_{t-1} \eta g_t$
- 5. Return θ_T

(Minibatch) Stochastic Gradient Descent

 Gradient descent uses loss on entire dataset every step:

$$\nabla L(\theta; X, y) = \sum_{i=1}^{n} \nabla \ell(\theta; x_i, y_i)$$

This is extremely inefficient!

 On big datasets, better to update based on a few examples

Stochastic Gradient Descent

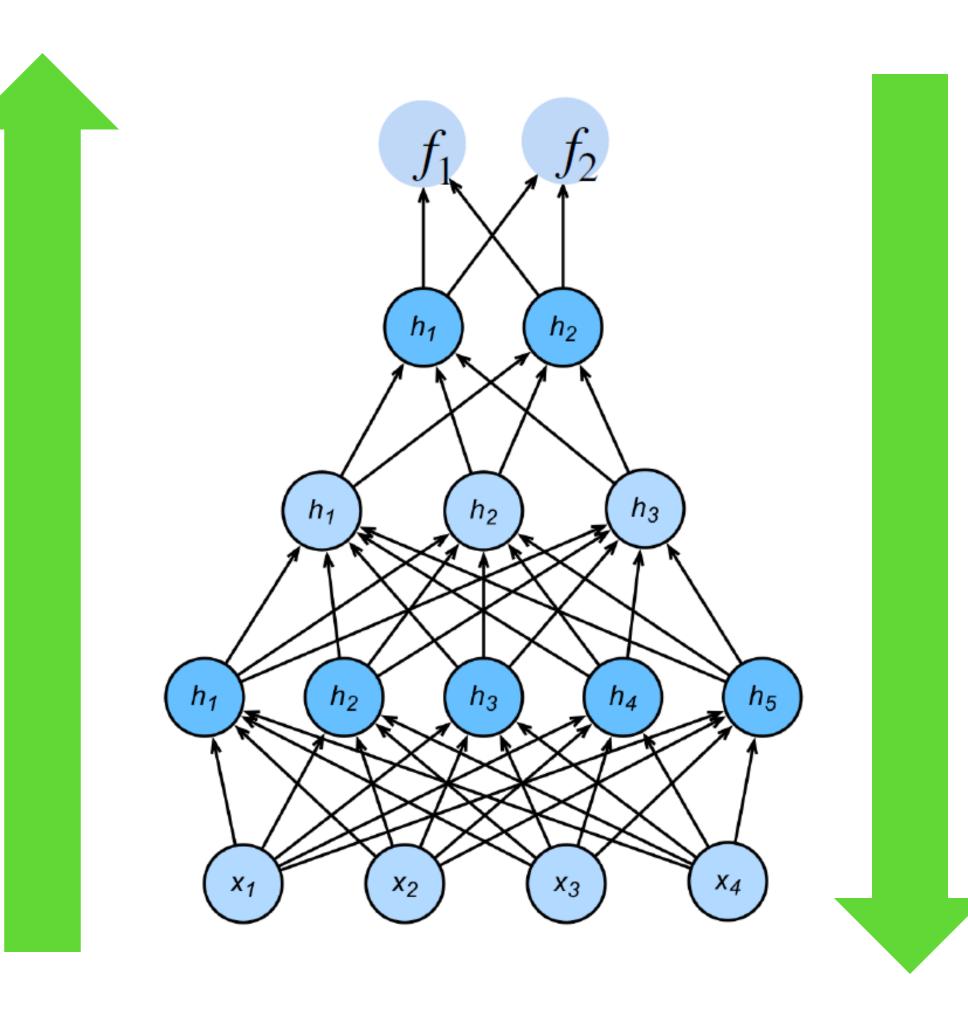
Input: dataset (X, y), loss function L, number of steps T, step size η , batch size m

- 1. Initialize θ_0
- 2. For t = 1, 2, ..., T
- 3. Select random $(x_1, y_1), ..., (x_m, y_m)$
- 4. Calculate $g_t = \sum_{i=1}^m \nabla_{\theta} \ell(\theta_{t-1}; x_i, y_i)$
- 5. Update $\theta_t \leftarrow \theta_{t-1} \eta g_t$
- 6. Return θ_T

Backpropagation: An Efficient Algorithm for Gradients in Neural Networks

Forward pass:

Start with input layer, compute all hidden nodes and outputs layer-by-layer



Backward pass:

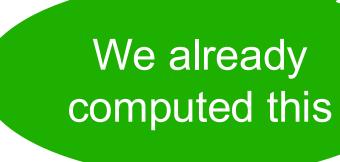
Start with output layer, compute all partial derivatives layer-by-layer

The Backpropagation Algorithm: Layer-by-Layer, Backwards

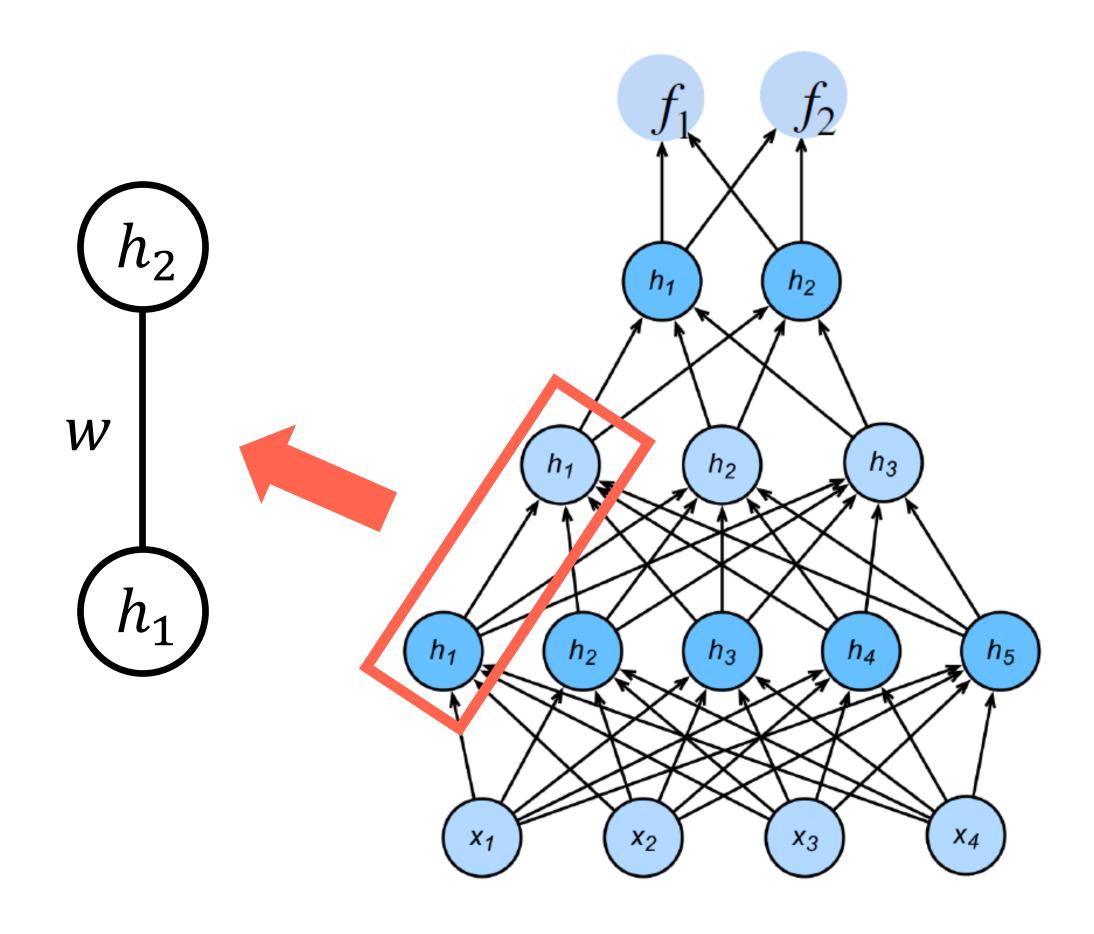
Want to find partial derivative for weight w in middle of network

Connects from h_1 to h_2

Chain rule:
$$\frac{\partial \ell}{\partial w} = \frac{\partial \ell}{\partial h_2} \times \frac{\partial h_2}{\partial w}$$



This is simple to compute



How to classify Cats vs. dogs?

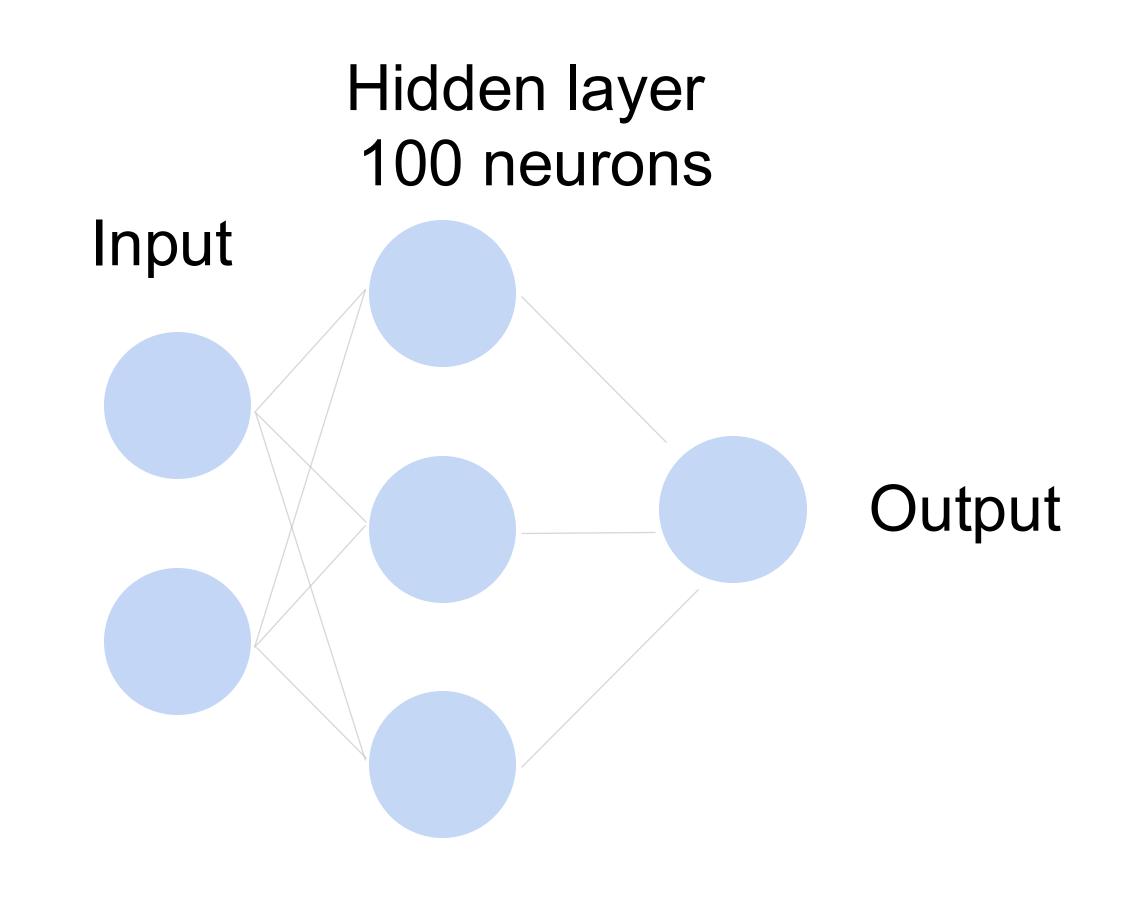
12MP

wide-angle and telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?



~ 36M elements x 100 = ~3.6B parameters!

Convolutions come to rescue!

Where is Waldo?

Why Convolution?

- Translation
 Invariance
- Locality

2-D Convolution

Input

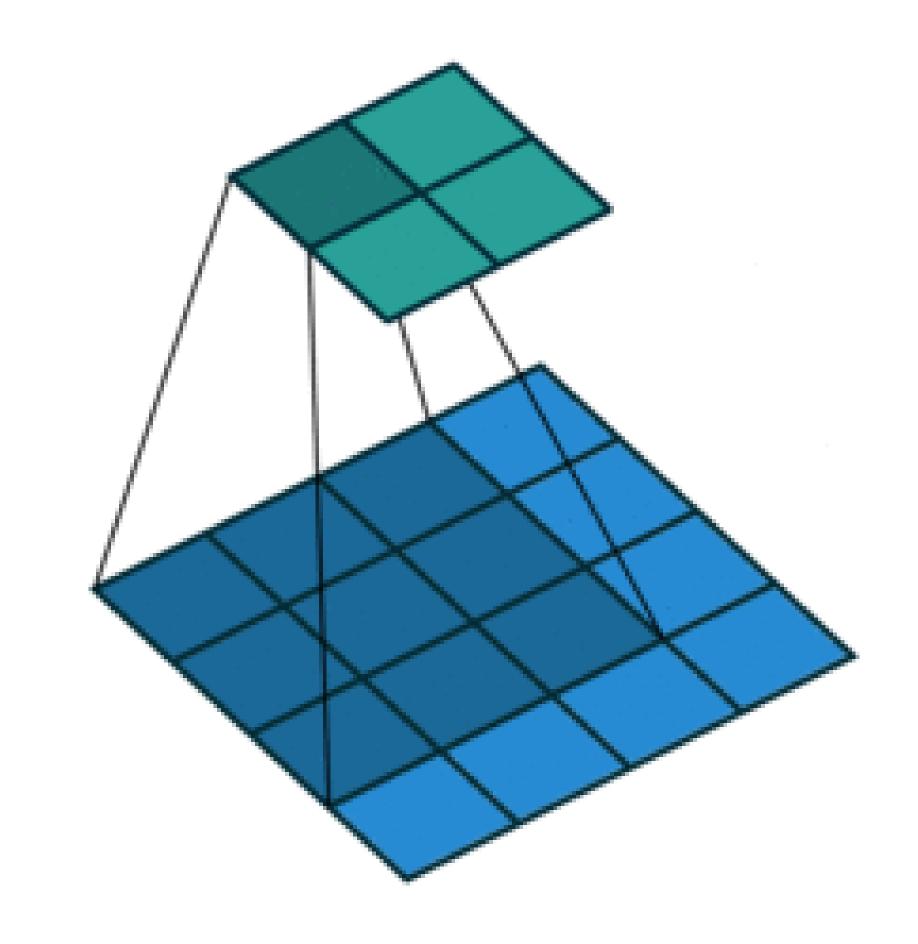
0	1	2	
3	4	5	
6	7	8	

Kernel

Output

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,$$

 $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,$
 $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,$
 $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$



(vdumoulin@ Github)

2-D Convolution Layer

0	1	2						
0	•			0	1		19	25
3 4	4	5	*		•	_		
0	•		**	2	3		37	43
6	7	R		_	J			
U	<i>'</i>	O						

- $\mathbf{X}: n_h \times n_w$ input matrix
- $\mathbf{W}: k_h \times k_w$ kernel matrix
- b: scalar bias
- Y: $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix

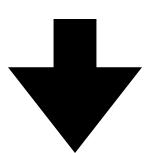
$$\mathbf{Y} = \mathbf{X} \star \mathbf{W} + b$$

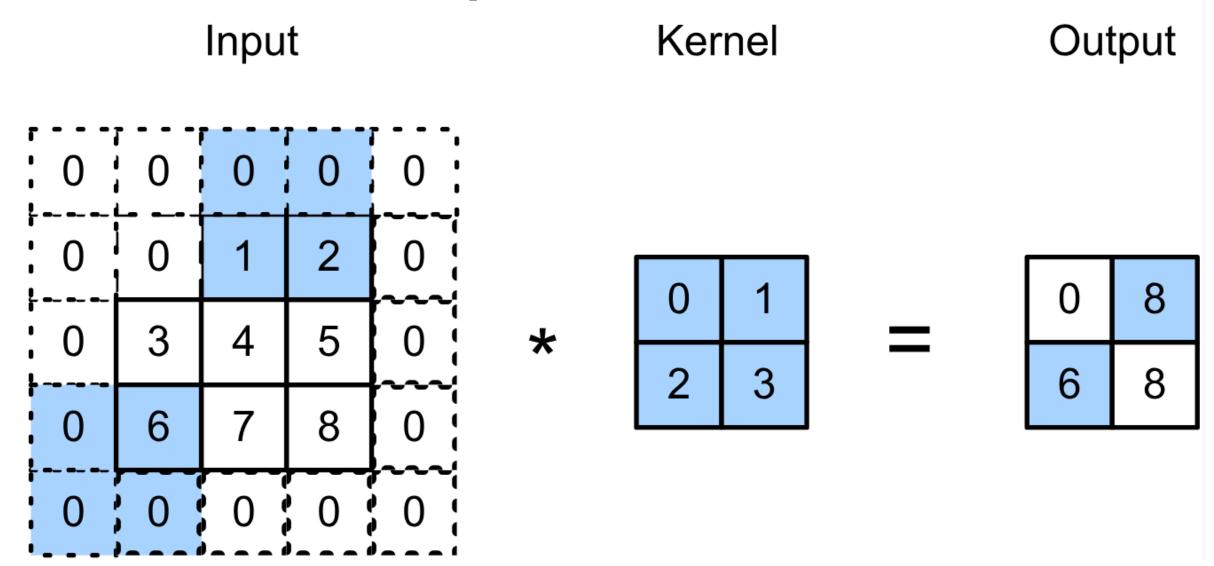
• W and b are learnable parameters

2-D Convolution Layer with Stride and Padding

- Stride is the #rows/#columns per slide
- Padding adds rows/columns around input
- Output shape

Kernel/filter size





$$\lfloor (n_h - k_h + p_h + s_h)/s_h \rfloor \times \lfloor (n_w - k_w + p_w + s_w)/s_w \rfloor$$

Input size

Pad

Stride

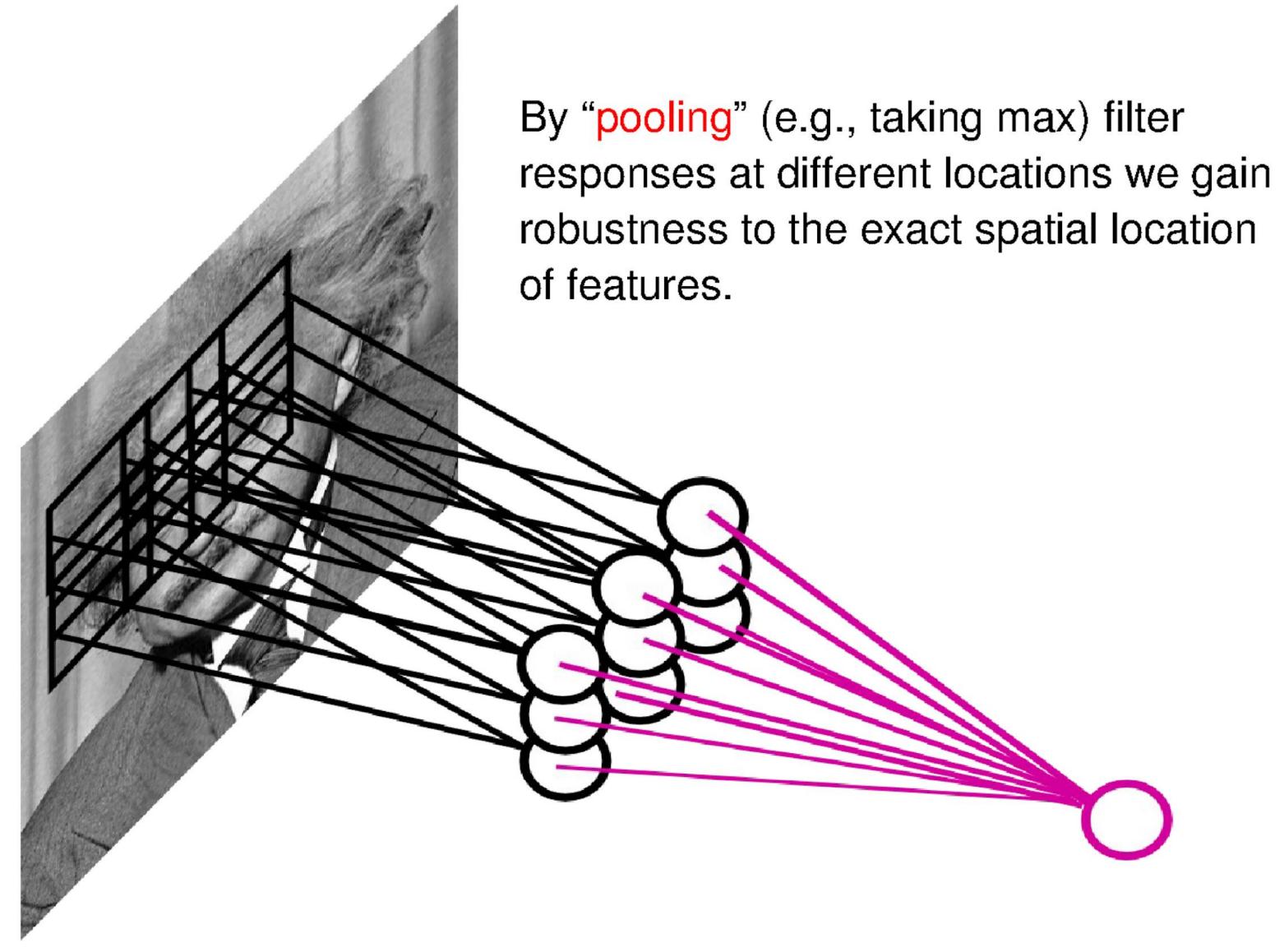
Multiple Input Channels

Input and kernel can be 3D, e.g., an RGB image have 3 channels

Have a 2D kernel for each channel, and then sum results over

channels One 3D kernel

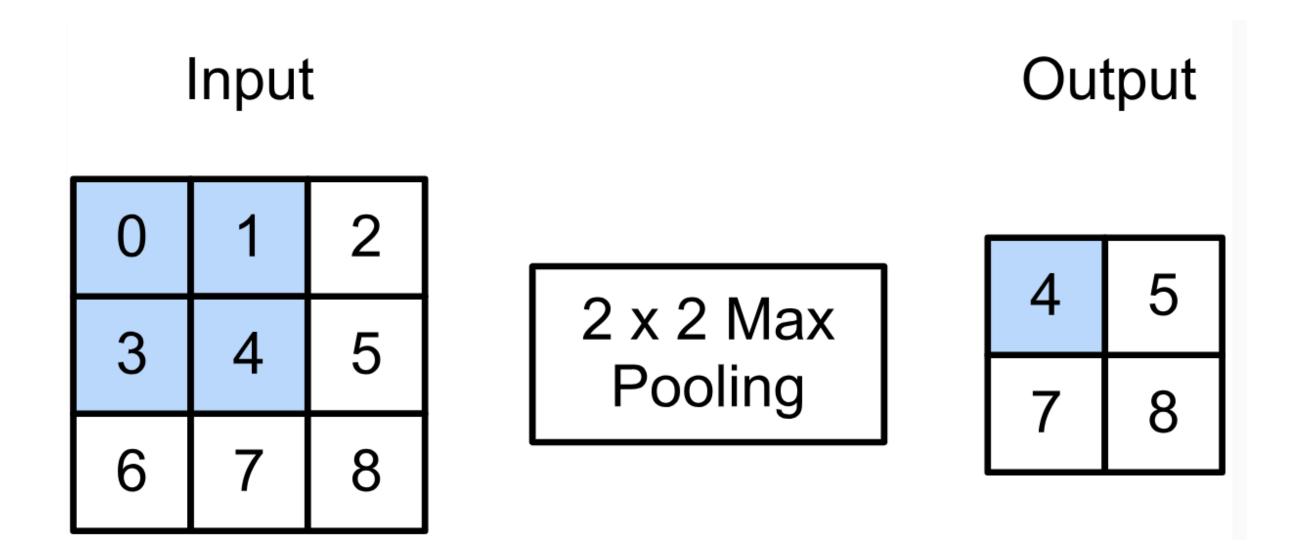
Pooling



Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

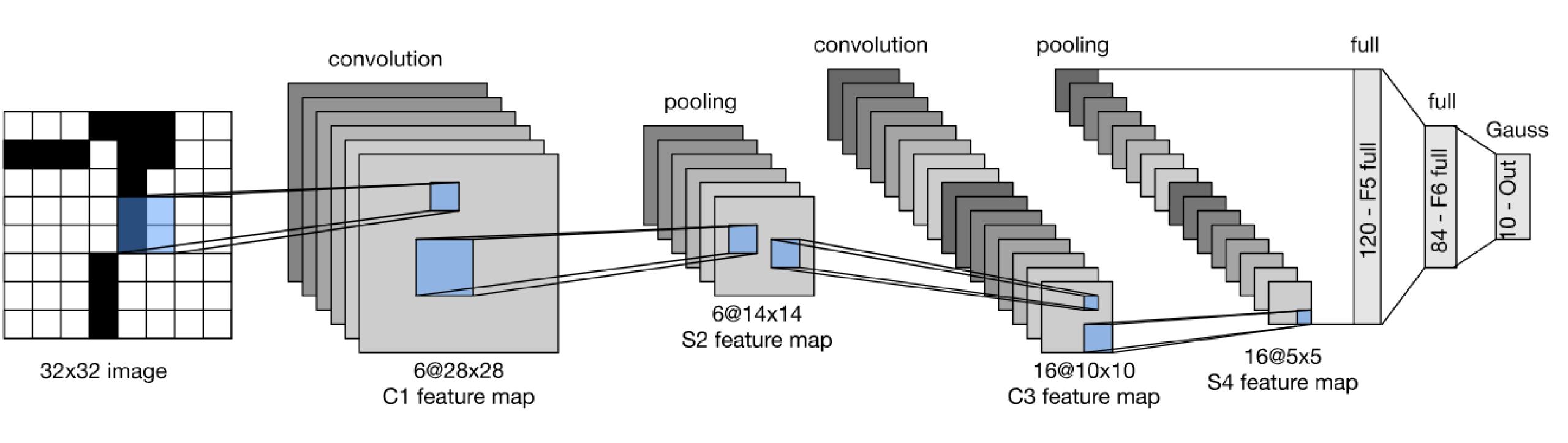
2-D Max Pooling

Returns the maximal value in the sliding window

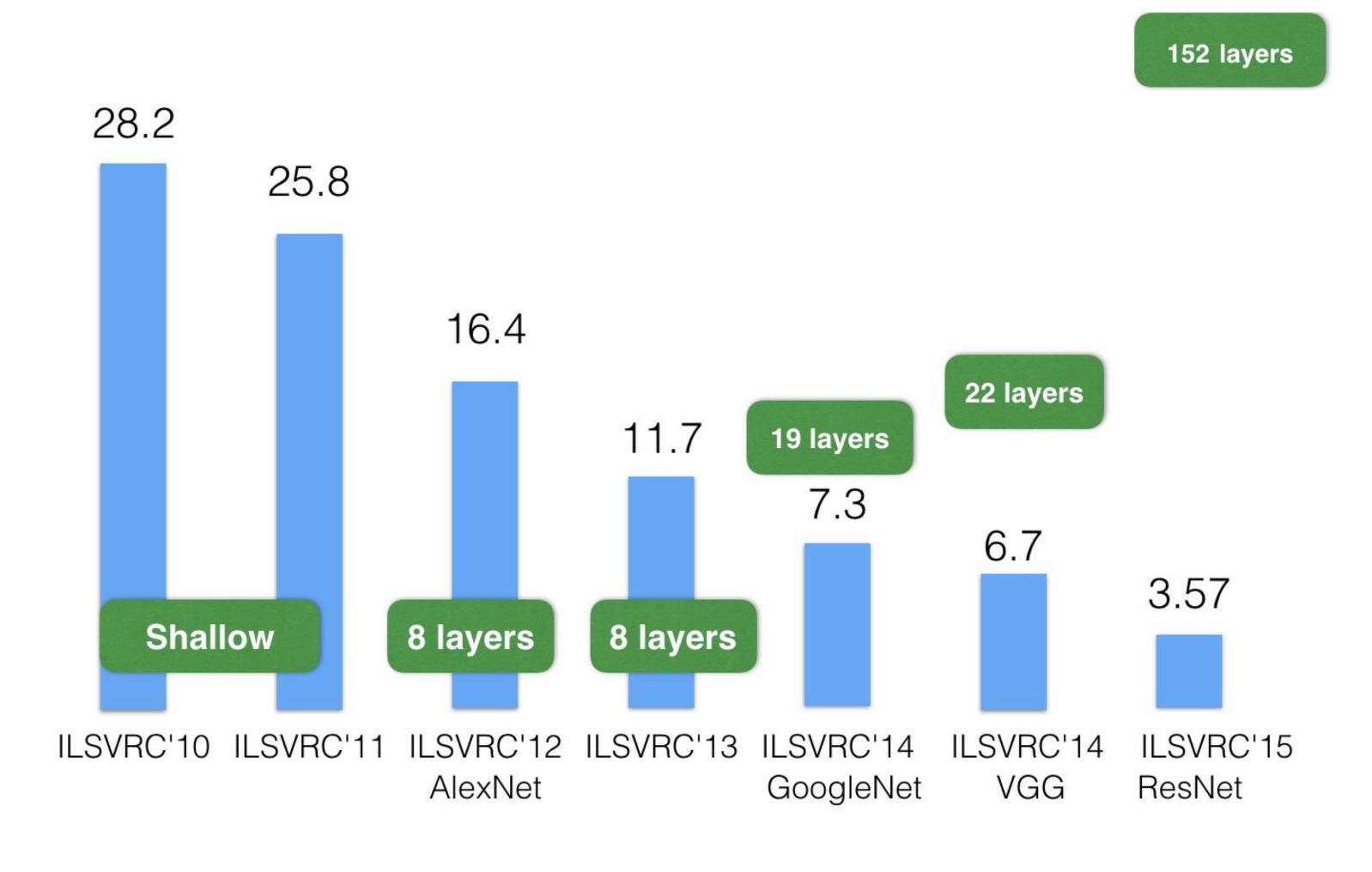


$$max(0,1,3,4) = 4$$

LeNet Architecture



ResNet: Going deeper in depth

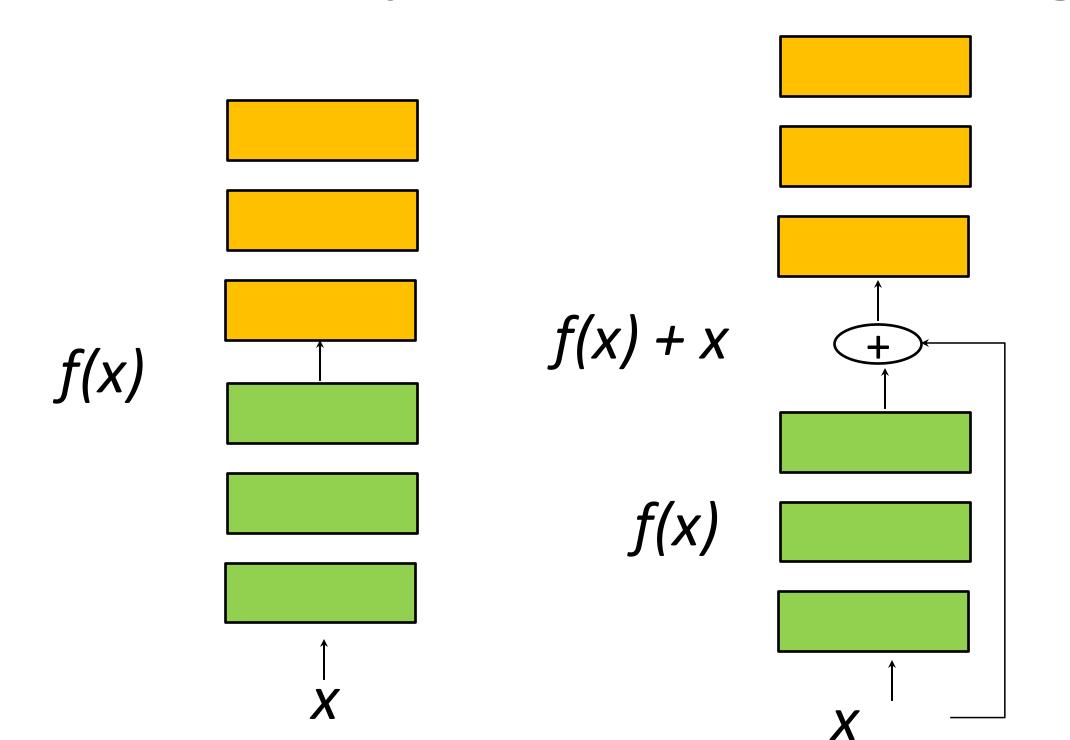


ImageNet Top-5 error%

Residual Connections

Idea: Identity might be hard to learn, but zero is easy!

- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:



Left: Conventional layers block

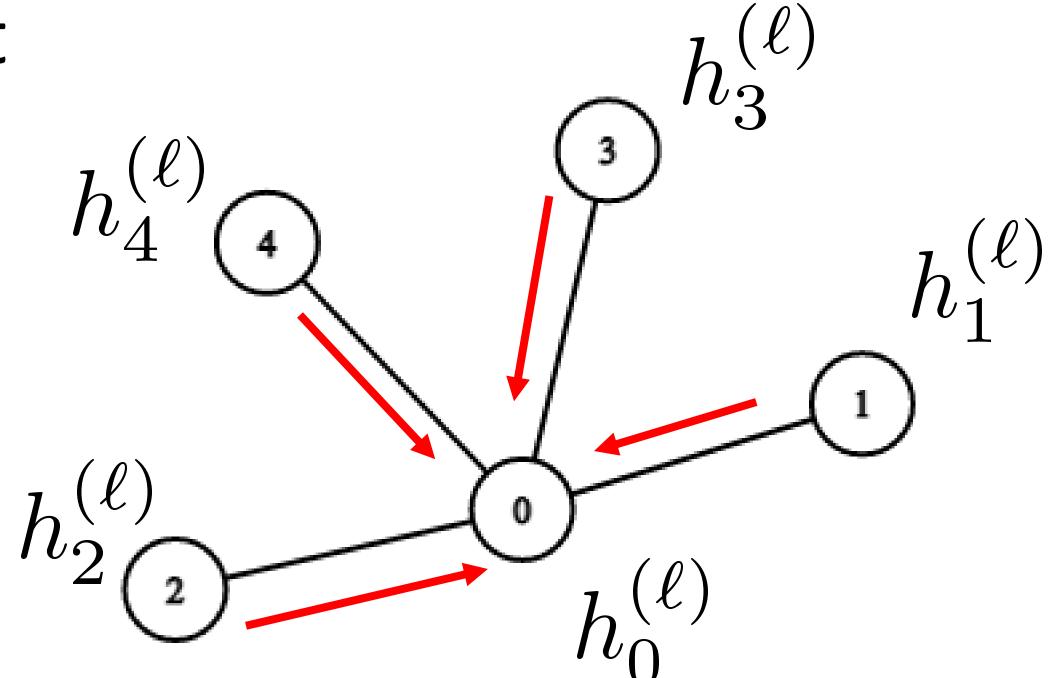
Right: Residual layer block

To learn identity f(x) = x, layers now need to learn $f(x) = 0 \rightarrow$ easier

Graph Neural Networks

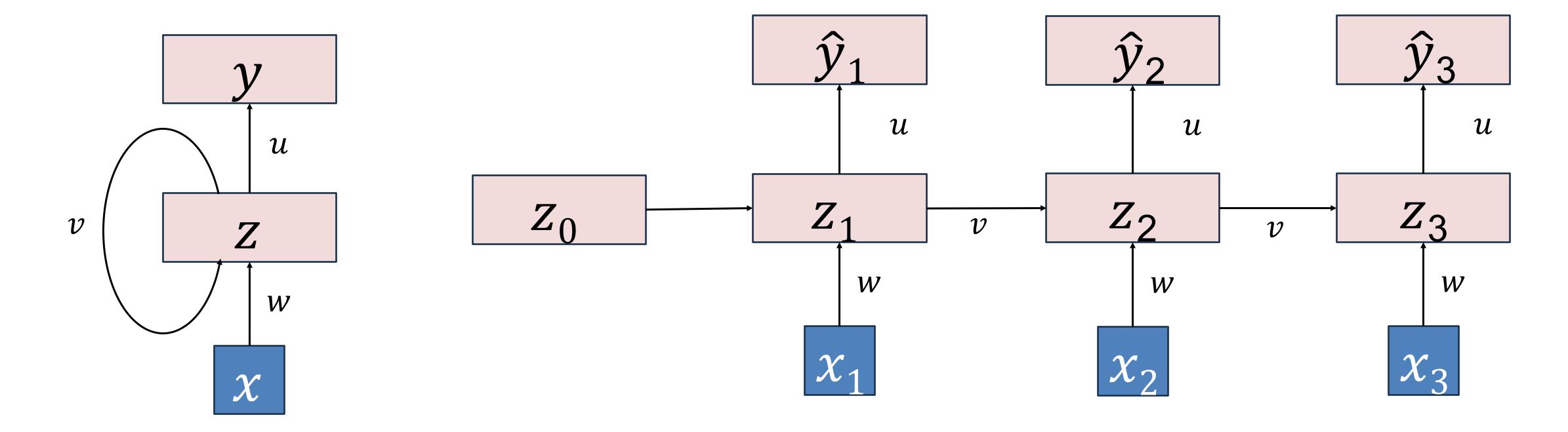
Model connections between data (e.g. social networks)

- Difference: "graph mixing" component
- At each layer, get representation at each node
- Combine node's representation with neighboring nodes



Recurrent Neural Networks (RNNs)

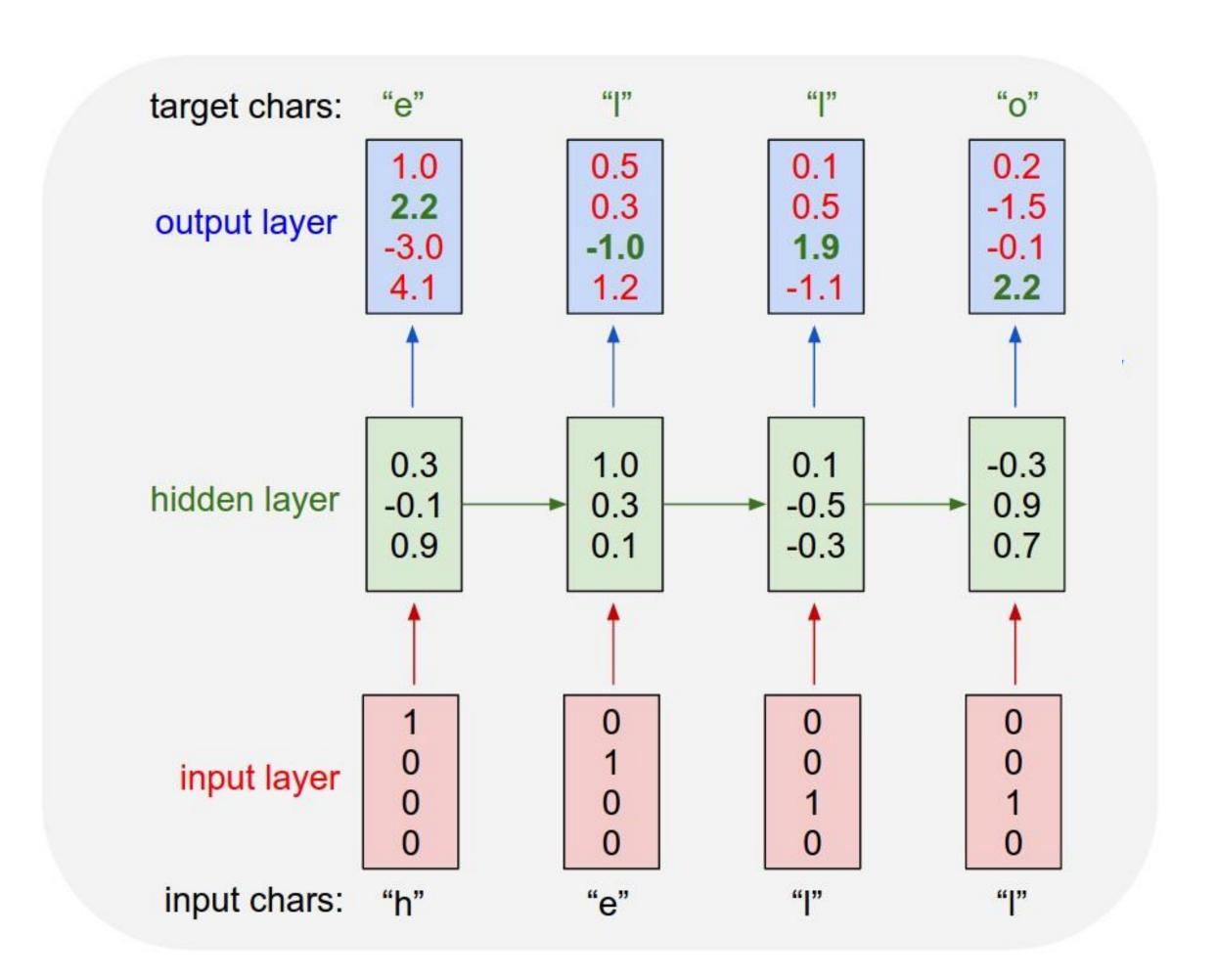
- RNNs introduce cycles in the computational graph
- Allowing information to persist; memory



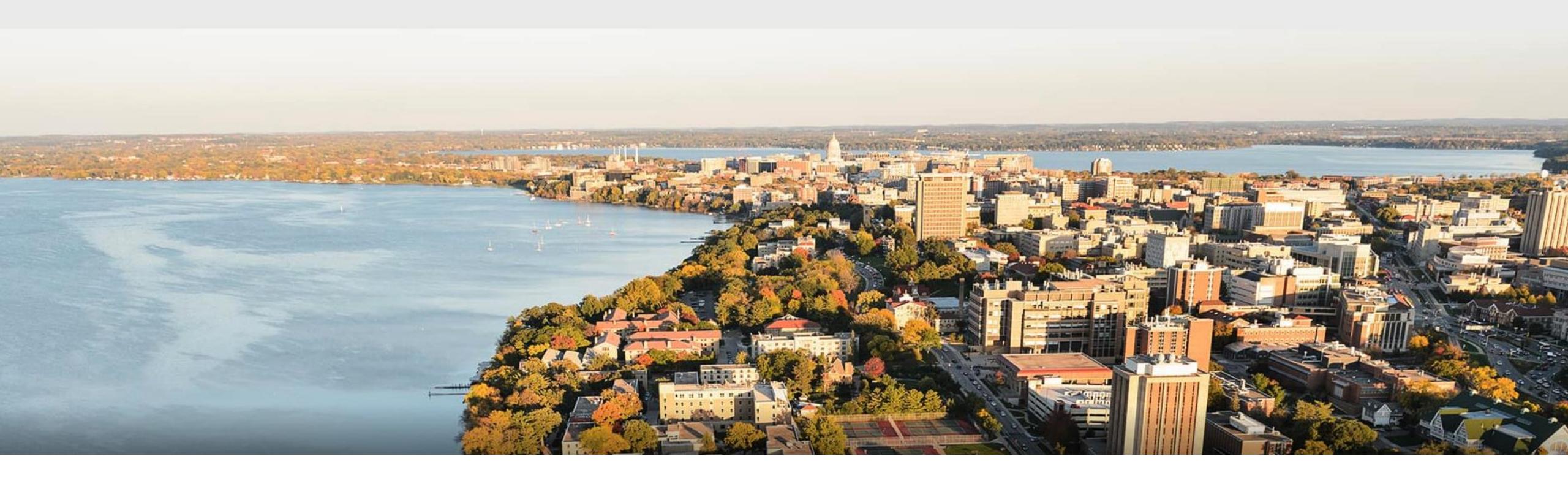
RNNs for language modeling

- Simple example
 - 4 tokens: "h", "e", "l", "o"
 - Hidden state has 3 dimensions

- Training: try to make output match targets
- Generation: sample!
 - (Same as with n-gram)



https://karpathy.github.io/2015/05/21/rnn-effectiveness/



Thank you!

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html