

CS540 Intro to Al Uninformed Search

University of Wisconsin–Madison Fall 2025, Section 3
November 3, 2025

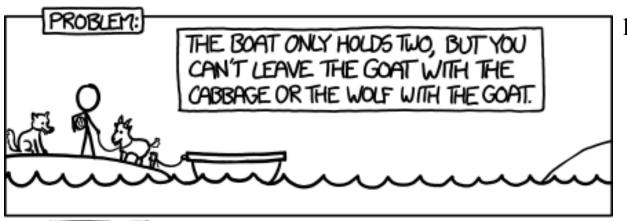
Many Al problems can be formulated as search.

How to make a sequence of decisions to reach a desired goal.

Leverage computation and a known model of world dynamics to make decisions.

"How the world changes in response to agent actions"

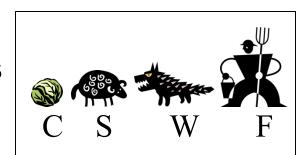
http://xkcd.com/1134/





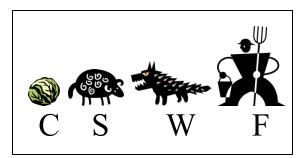
The search problem

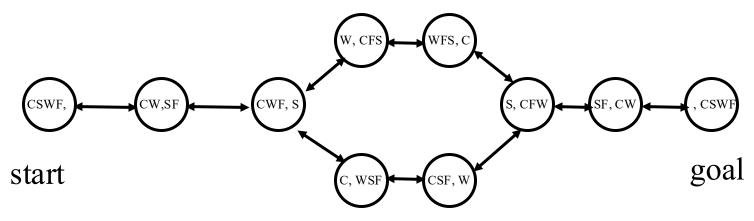
- State space S: all valid configurations
- Initial state *I* = {(CSWF,)} ⊆ *S*
- Goal state **G** = {(,CSWF)} ⊆ **S**



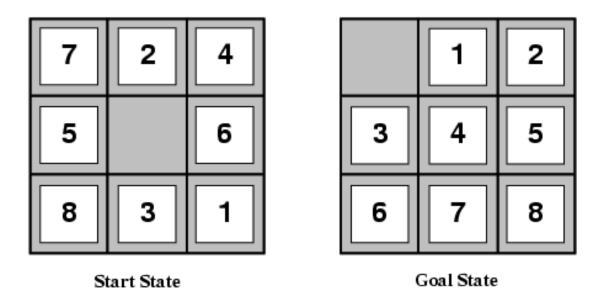
- Successor function succs(s) ⊆ S: states reachable in one step from state s
 - **succs**((CSWF,)) = {(CW, SF)}
 - succs((CWF,S)) = {(CW,FS), (W,CFS), (C, WFS)}
- Cost(s,s')=1 for all steps. (weighted later)
- The search problem: find a solution path from a state in / to a state in G.
 - Optionally minimize the cost of the solution.

A directed graph in state space



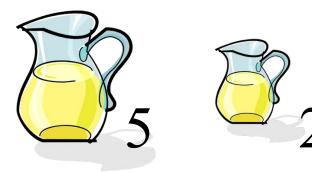


8-puzzle



- States = 3x3 array configurations
- Actions / Operators = up to 4 kinds of movement
- Cost = 1 for each move

Water jugs: how to get 1?



5

State = (x,y), where x = number of gallons of water in the 5-gallon jug and y is gallons in the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

Water jugs: how to get 1?

5

State = (x,y), where x = number of gallons of water in the 5-gallon jug and y is gallons in the 2-gallon jug

Initial State = (5,0)

Goal State = (*,1), where * means any amount

Operators

(x,y) -> (0,y); empty 5-gal jug

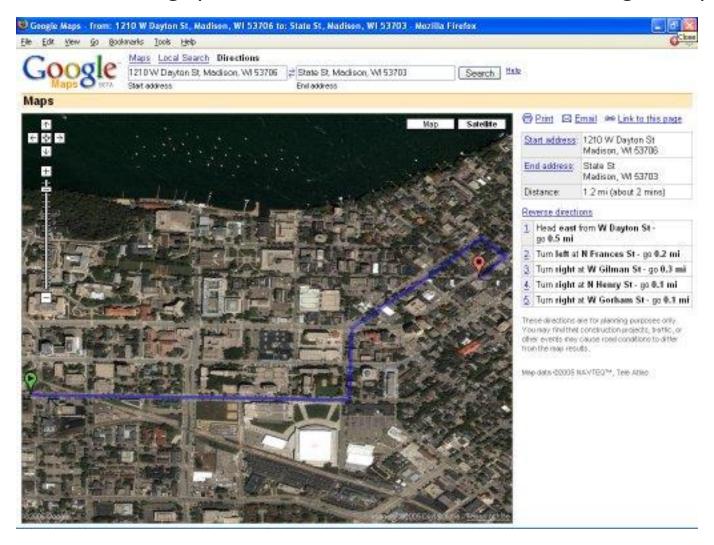
(x,y) -> (x,0); empty 2-gal jug

(x,2) and x <= 3 -> (x+2,0); pour 2-gal into 5-gal

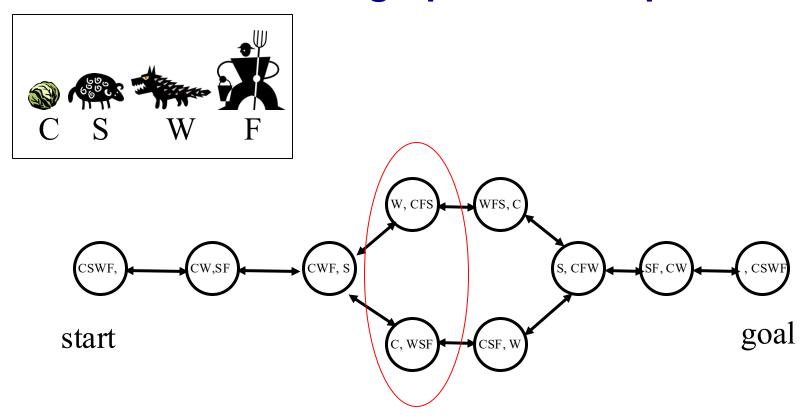
(x,0) and x>=2 -> (x-2,2); pour 5-gal into 2-gal

 $(1,0) \rightarrow (0,1)$; empty 5-gal into 2-gal

Route finding (State? Successors? Cost weighted)



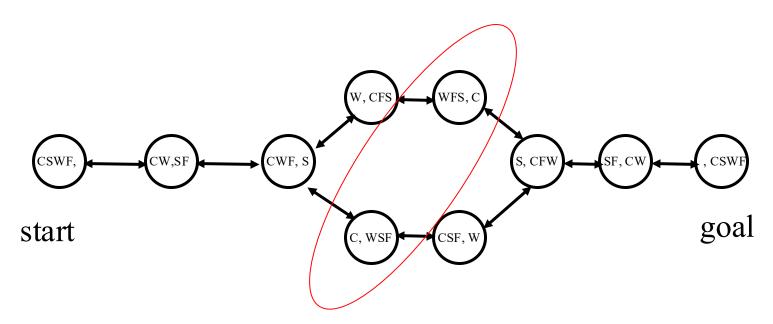
A directed graph in state space



- In general there will be many generated, but un-expanded states at any given time
- One has to choose which one to expand next

Different search strategies

- The generated, but not yet expanded states form the fringe (OPEN).
- The essential difference is which one to expand first.
- Deep or shallow?



Uninformed search on trees

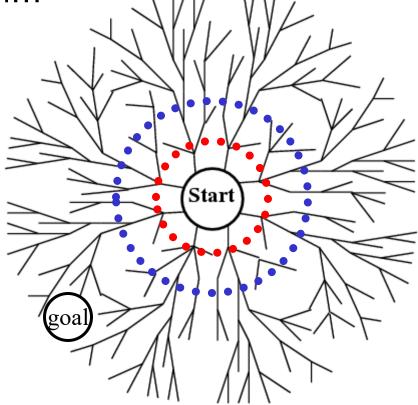
- Uninformed means we only know:
 - The goal test
 - The *succs*() function
- But not which non-goal states are better: that would be informed search (next topic).
- For now, we also assume succs() graph is a tree.
 - Won't encounter repeated states.
 - We will relax it later.
- Many search strategies:
 - We will see BFS, UCS, DFS, IDS
- Differ by what un-expanded nodes to expand

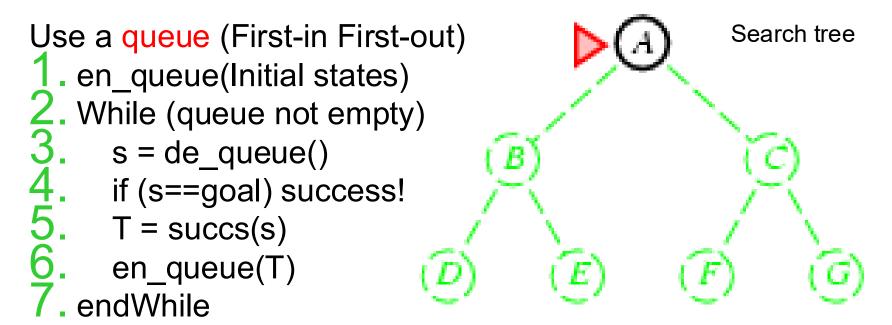
Expand the shallowest node first

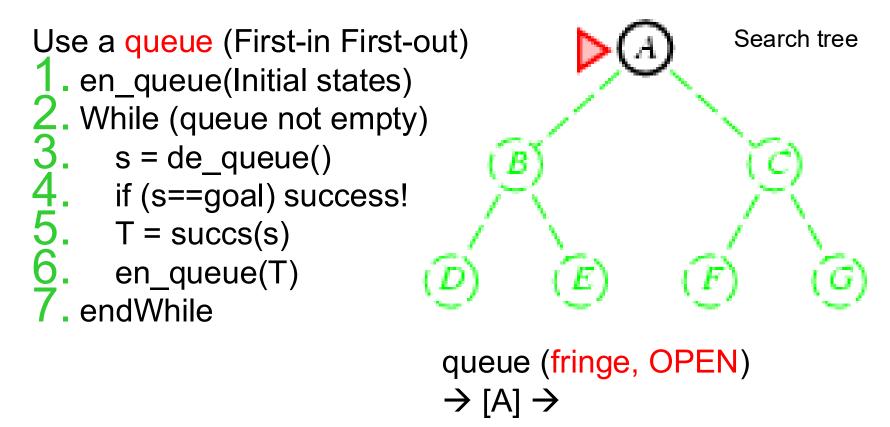
- Examine states one step away from the initial states
- Examine states two steps away from the initial states

and so on...

ripple







Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

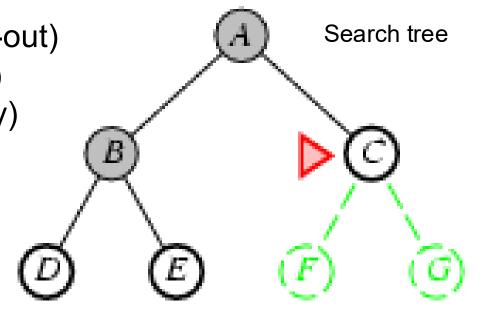
6. en_queue(T)

7. endWhile

queue (fringe, OPEN)

→ [CB] → A

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile



queue (fringe, OPEN)

→ [EDC] → B

Use a queue (First-in First-out)
1. en_queue(Initial states)
2. While (queue not empty)
3. s = de_queue()
4. if (s==goal) success!
5. T = succs(s)
6. en_queue(T)
7. endWhile

Search tree

queue (fringe, OPEN)

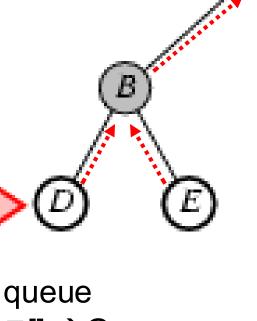
 \Box [GFED] \rightarrow C

Initial state: **A** Goal state: **G**

If G is a goal, we've seen it, but we don't stop!

Use a queue (First-in First-out)

- 1. en_queue(Initial states)
- 2. While (queue not empty)
- 3. $s = de_queue()$
- 4. if (s==goal) success!
- 5. T = succs(s)
- 6. en_queue(T)
- 7. endWhile



Search tree

□[] →G

Looking foolish? Indeed. But let's be consistent...

... until much later we pop G.

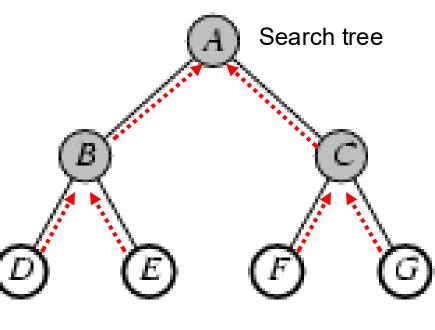
Use a queue (First-in First-out)

- 1. en_queue(Initial states)
- 2. While (queue not empty)
- 3. $s = de_queue()$
- 4. if (s==goal) success!
- 5. T = succs(s)
- 6. en_queue(T)
- 7. endWhile

Looking foolish? Indeed. But let's be consistent...

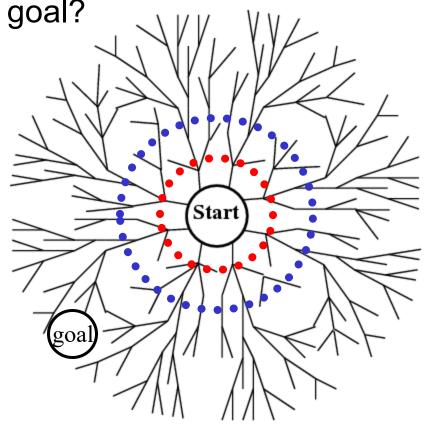
... until much later we pop G.

We need back pointers to recover the solution path.



Performance of BFS

- Assume:
 - the graph may be infinite.
 - Goal(s) exists and is only finite steps away.
- Will BFS find at least one goal?
- Will BFS find the least cost goal?
- Time complexity?
 - # states generated
 - Goal d edges away
 - Branching factor b
- Space complexity?
 - # states stored



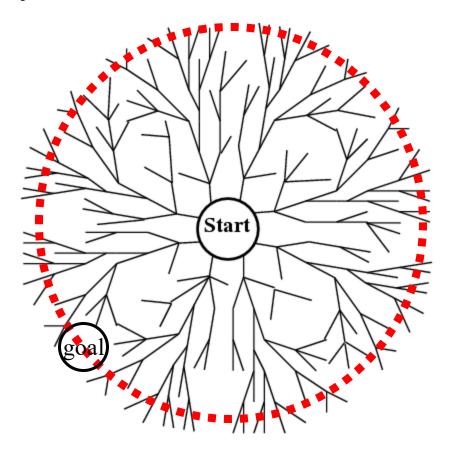
Performance of BFS

Four measures of search algorithms:

- Completeness (not finding all goals): yes, BFS will find a goal.
- Optimality: yes if edges cost 1 (more generally positive non-decreasing in depth), no otherwise.
- Time complexity (worst case): goal is the last node at radius d.
 - Have to generate all nodes at radius d.
 - $b + b^2 + ... + b^d \sim O(b^d)$
- Space complexity (bad)
 - Back pointers for all generated nodes O(b^d)
 - The queue / fringe (smaller, but still O(b^d))

What's in the fringe (queue) for BFS?

• Convince yourself this is $O(b^d)$



Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth

	Complete	optimal	time	space
Breadth-first search	Y	Y, if ¹	O(b ^d)	O(b ^d)

1. Edge cost constant, or positive non-decreasing in depth

Performance of BFS

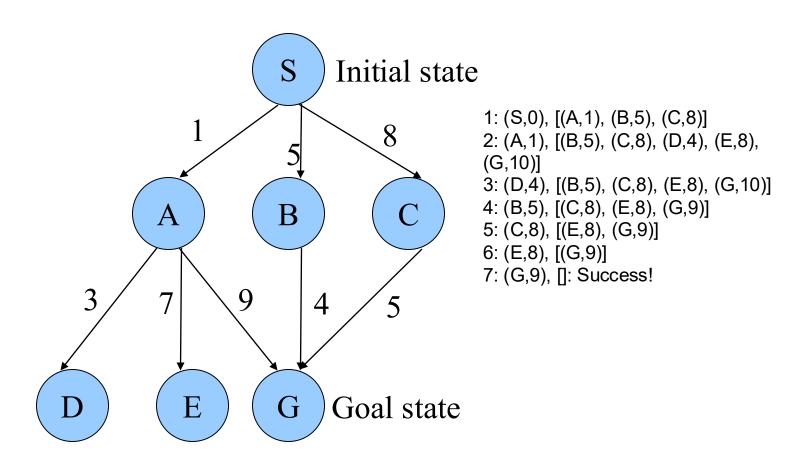
Four measures of search algorith

- Solution:
 Uniform-cost
 search
- Completeness (not finding all gind a goal.
- Optimality: yes if edges cost 1 (mon generally positive non-decreasing in depth), no otherwise.
- Time complexity (worst case): goal is the last node at radius d.
 - Have to generate all nodes at radius d.
 - $b + b^2 + ... + b^d \sim O(b^d)$
- Space complexity (bad)
 - Back pointers for all generated nodes O(b^d)
 - The queue / fringe (smaller, but still O(b^d))

Uniform-cost search

- Find the least-cost goal
- Each node has a path cost from start (= sum of edge costs along the path).
- Expand the least cost node first.
- Use a priority queue instead of a normal queue
 - Always take out the least cost item

Example

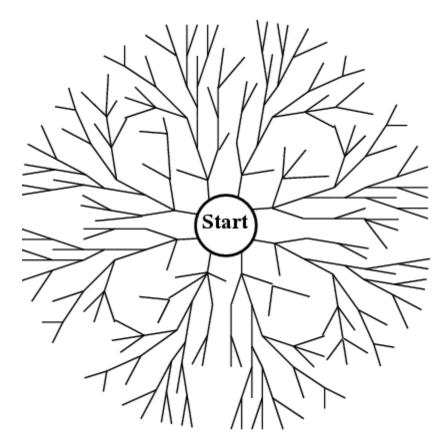


(All edges are directed, pointing downwards)

Uniform-cost search (UCS)

- Complete and optimal (if edge costs $\geq \epsilon > 0$)
- Time and space: can be much worse than BFS
 - Let C* be the cost of the least-cost goal

• $O(b^{C*/\varepsilon})$



Performance of search algorithms on trees

b: branching factor (assume finite) d: goal depth

	Complete	optimal	time	space
Breadth-first search	Y	Y, if ¹	O(b ^d)	O(b ^d)
Uniform-cost search ²	Y	Y	$O(b^{C^*/\epsilon})$	O(b ^{C*/ε})

- 1. edge cost constant, or positive non-decreasing in depth
- 2. edge costs $\geq \epsilon > 0$. C* is the best goal path cost.

Performance of BFS

Four measures of search algorith

- Solution:
 Uniform-cost swill search
- Completeness (not finding all gind a goal.
- Optimality: yes if edges cost 1 (mong generally positive non-decreasing in depth), no otherwise.
- Time complexit at radius **d**. Solution: Depth-first search

 - $b + b^2 + ... + b^d \sim O(b^d)$
- Space complexity (bad)
 - Back pointers for all generated nodes O(b^d)
 - The queue / fringe (smaller, but still O(b^d))

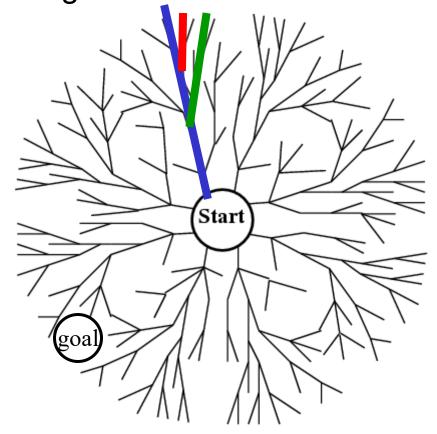
Depth-first search

Expand the deepest node first

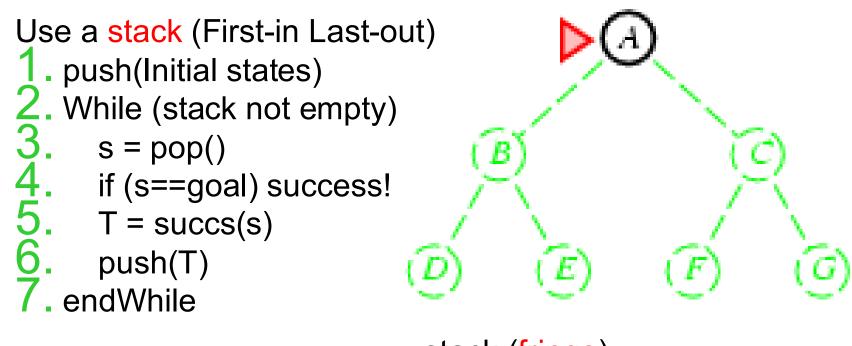
- 1. Select a direction, go deep to the end
- 2. Slightly change the end

3. Slightly change the end some more...

fan



Depth-first search (DFS)



stack (fringe)

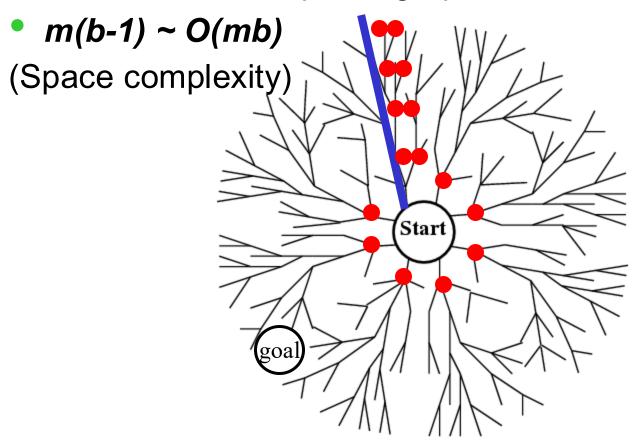
1. A, [B, C] 2. B, [D, E, C] 3. D, [E, C] 4. E, [C] 5. C, [F, G] 6. F, [G]

7. G

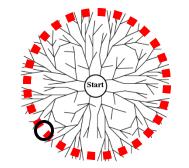
42

What's in the fringe for DFS?

m = maximum depth of graph from start



c.f. BFS $O(b^d)$



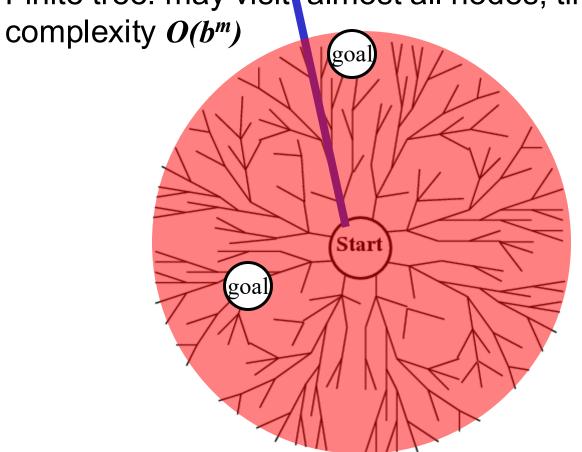
- "backtracking search" even less space
 - generate siblings (if applicable)

What's wrong with DFS?

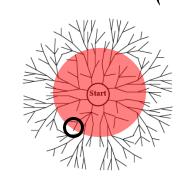
Infinite tree: may not find goal (incomplete)

May not be optimal

Finite tree: may visit almost all nodes, time



c.f. BFS $O(b^d)$



Performance of search algorithms on trees

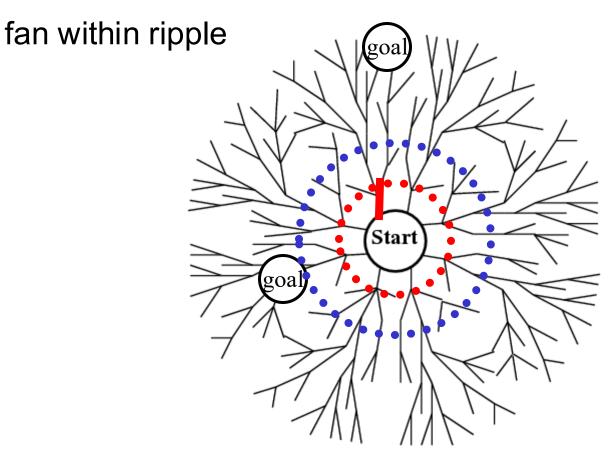
b: branching factor (assume finite) d: goal depth m: graph depth

	Complete	optimal	time	space
Breadth-first search	Υ	Y, if ¹	O(b ^d)	O(b ^d)
Uniform-cost search ²	Υ	Y	$O(b^{C^*/\epsilon})$	O(b ^{C*/ε})
Depth-first search	N	N	O(b ^m)	O(bm)

- 1. edge cost constant, or positive non-decreasing in depth
- 2. edge costs $\geq \varepsilon > 0$. C* is the best goal path cost.

How about this?

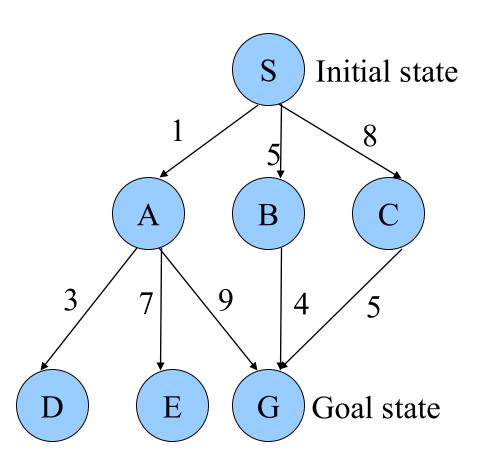
- 1. DFS, but stop if path length > 1.
- 2. If goal not found, repeat DFS, stop if path length > 2.
- 3. And so on...



Iterative deepening

- Search proceeds like BFS, but fringe is like DFS
 - Complete, optimal like BFS
 - Small space complexity like DFS
 - Time complexity like BFS
- Preferred uninformed search method

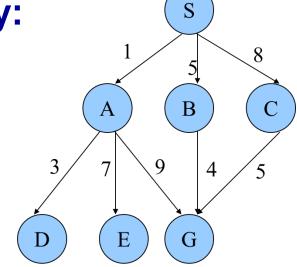
Example



(All edges are directed, pointing downwards)

Nodes expanded by:

Breadth-First Search: S A B C D E G
 Solution found: S A G



Uniform-Cost Search: S A D B C E G
 Solution found: S B G (This is the only uninformed search that worries about costs.)

Depth-First Search: S A D E G
 Solution found: S A G

Iterative-Deepening Search: S A B C S A D E G
 Solution found: S A G

Performance of search algorithms on trees

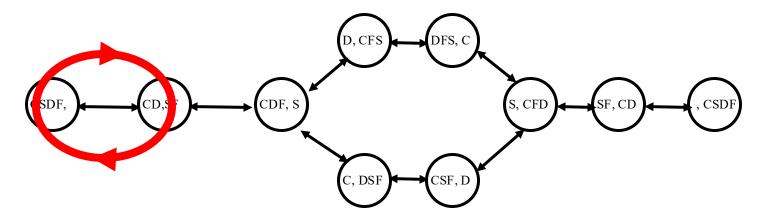
b: branching factor (assume finite) d: goal depth m: graph depth

	Complete	optimal	time	space
Breadth-first search	Υ	Y, if ¹	O(b ^d)	O(b ^d)
Uniform-cost search ²	~	Y	O(b ^{C*/ε})	O(b ^{C*/ε})
Depth-first search	Z	Z	O(b ^m)	O(bm)
Iterative deepening	Υ	Y, if ¹	O(b ^d)	O(bd)

- 1. edge cost constant, or positive non-decreasing in depth
- 2. edge costs $\geq \varepsilon > 0$. C* is the best goal path cost.

If state space graph is not a tree

• The problem: repeated states



- Ignore the danger of repeated states: wasteful (BFS) or impossible (DFS). Can you see why?
- How to prevent it?

If state space graph is not a tree

- We have to remember already-expanded states (CLOSED).
- When we take out a state from the fringe (OPEN),
 check whether it is in CLOSED (already expanded).
 - If yes, throw it away.
 - If no, expand it (add successors to OPEN), and move it to CLOSED.

What you should know

- Problem solving as search: state, successors, goal test
- Uninformed search
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Iterative deepening

- Can you unify them using the same algorithm, with different priority functions?
- Performance measures
 - Completeness, optimality, time complexity, space complexity