

CS 540 Introduction to Artificial Intelligence **Games I**

University of Wisconsin–Madison Fall 2025, Section 3 November 10, 2025

Announcements

- · Homework:
 - HW7 due on Friday, Nov 14th at 11:59 PM

Class roadmap:

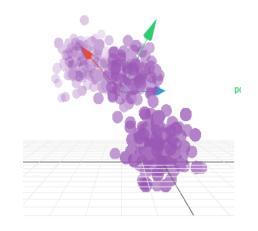
Outline

- Introduction to game theory
 - Properties of games, mathematical formulation
- Simultaneous-Move Games
 - Normal form, strategies, dominance, Nash equilibrium

So Far in The Course

We looked at techniques:

- Unsupervised: See data, do something with it. Unstructured.
- Supervised: Train a model to make predictions. More structure (labels).
- Planning and Games: Much more structure.



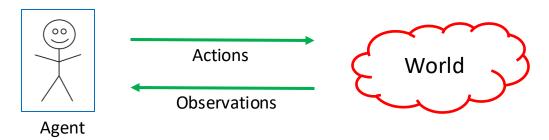
Victor Powell

indoor

outdoor

More General Model

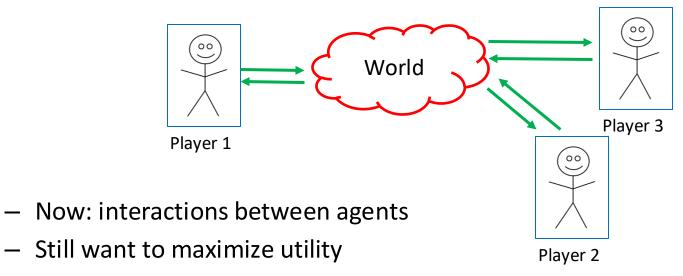
Suppose we have an agent interacting with the world



- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: now data consists of actions, observations, and rewards
 - Setup for decision theory, reinforcement learning, planning

Games: Multiple Agents

Games setup: multiple agents



Requires strategic decision making.

Modeling Games: Properties

Let's work through **properties** of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
- Sequential or simultaneous moves

Property 1: Number of players

1 or more players

- Usually interested in ≥ 2 players
- Typically a finite number of players

Property 2: Action Space

Action space: set of possible actions an agent can choose from.

Can be finite or infinite.

Examples:

- Rock-paper-scissors
- Tennis

Property 3: **Deterministic** or **Random**

- Is there chance in the game?
 - Poker
 - Chess
 - Scrabble

• Called **stochastic** games

Property 4: Sum of payoffs

Two basic types: zero sum vs. general sum.

- Zero sum: one player's win is the other's loss
 - Pure competition.
 - Example: rock-paper-scissors

- General sum
 - Example: driving to work, prisoner's dilemma

Property 5: Sequential or Simultaneous Moves

Simultaneous: all players take action at the same time

- Sequential: take turns
 - But payoff is often only revealed at end of game

Quiz break:

Give the properties of the game shown on the right:

- Number of players?
- Deterministic or stochastic?
- Sum of pay-offs?
- Finite or infinite action-space?
- Sequential or simultaneous?

Normal Form Game

Mathematical description of simultaneous games.

- *n* players {1,2,...,*n*}
- Player i chooses strategy/action a_i from action space A_i .
- Strategy profile: $a = (a_1, a_2, ..., a_n)$
- Player i gets rewards u_i (a)
 - Note: reward depends on other players!

 We consider the simple case where all reward functions are common knowledge.

Utility in Games

- Players want to maximize utility
 - Payoff, reward, etc
- Each player has utility function $u_i(a_1, ..., a_n)$
 - Maps all actions to player i's reward
 - Could be positive or negative
- Can write it in several equivalent ways:
 - $u_i(a_1, a_2, ..., a_n)$
 - $-u_i(a)$
 - $-u_i(a_i,a_{-i})$

Example of Normal Form Game

Ex: Prisoner's Dilemma

Player 2	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

- 2 players, 2 actions: yields 2x2 payoff matrix
- Strategy set: {Stay silent, betray}

Strictly Dominant Strategies

Let's analyze such games. Some strategies are better than others!

- Strictly dominant strategy: if a_i^* strictly better than b regardless of what other players do, a_i^* is strictly dominant
- I.e., for all a_1^* , $b \neq a_1^*$, and a_2 , a_3 , ..., a_n

$$u_1(a_1^*, a_2, ..., a_n) > u_1(b, a_2, ..., a_n)$$

- Write $\forall a_i^*, b \neq a_i^*, a_{-i}: u_i(a_i^*, a_{-i}) > u_i(b, a_{-i})$
- Dominant strategies do not always exist!

Strictly Dominant Strategies Example

Back to Prisoner's Dilemma

- Examine all the entries: betray strictly dominates
- Check:

Player 2 Player 1	Stay silent	Betray
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

Dominant Strategy Equilibrium

 a^* is a (strictly) dominant strategy equilibrium (DSE), if every player i has a strictly dominant strategy a_i^*

Rational players will play at DSE, if one exists.

Player 2		
	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

Dominant Strategy: Absolute Best Responses

Player i's best response to strategy to a_{-i} $BR(a_{-i}) \stackrel{\text{def}}{=} \operatorname{argmax}_b u_i(b, a_{-i})$

BR(player2=silent) = betray BR(player2=betray) = betray

Player 2	Stay silent	Betray
Player 1		
Stay silent	-1, -1	-3, 0
Betray	0, -3	-2, -2

 a_i^* is the dominant strategy for player i, if

$$a_i^* = BR(a_{-i}), \forall a_{-i}$$

Dominant Strategy Equilibrium

Dominant Strategy Equilibrium does not always exist.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

Nash Equilibrium

a* is a Nash equilibrium if no player has an incentive to unilaterally deviate

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$

Player 2 Player 1	L	R
T	2, 1	0, 0
В	0, 0	1, 2

Nash Equilibrium: Best Response to Each Other

a* is a Nash equilibrium:

$$\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

(no player has an incentive to unilaterally deviate)

• Equivalently, for each player i:

$$a_i^* \in BR(a_{-i}^*) = argmax_b \ u_i(b, a_{-i}^*)$$

 Compared to DSE (a DSE is a NE, the other direction is generally not true):

$$a_i^* = BR(a_{-i}), \forall a_{-i}$$

Nash Equilibrium: Best Response to Each Other

a* is a Nash equilibrium:

$$\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

(no player has an incentive to unilaterally deviate)

- Pure Nash equilibrium:
 - A **pure strategy** is a deterministic choice (no randomness).
 - Later: we will consider mixed strategies
 - In pure Nash equilibrium, players can only play pure strategies.

Finding (pure) Nash Equilibria by hand

• As player 1: For each column, find the best response, underscore it.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

Finding (pure) Nash Equilibria by hand

• As player 2: For each row, find the best response, upper-score it.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

Finding (pure) Nash Equilibria by hand

 Entries with both lower and upper bars are pure NEs.

Player 2 Player 1	L	R
Т	2, 1	0, 0
В	0, 0	1, 2

Pure Nash Equilibrium may not exist

So far, pure strategy: each player picks a deterministic strategy. But:

Player 2	rock	paper	scissors
Player 1			
rock	0, 0	-1, 1	<u>1, -1</u>
paper	1, -1	0, 0	-1, 1
scissors	-1, 1	1, -1	0, 0

Mixed Strategies

Can also randomize actions: "mixed"

Player i assigns probabilities x_i to each action

$$x_i(a_i)$$
, where $\sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \ge 0$

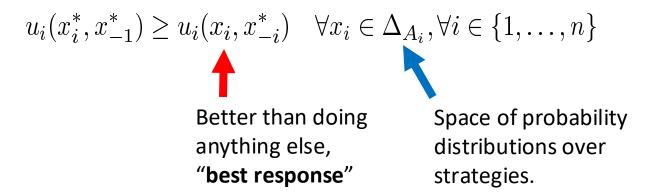
Now consider expected rewards

$$u_i(x_i, x_{-i}) = E_{a_i \sim x_i, a_{-i} \sim x_{-i}} u_i(a_i, a_{-i}) = \sum_{a_i} \sum_{a_{-i}} x_i(a_i) x_{-i}(a_{-i}) u_i(a_i, a_{-i})$$

Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^* = (x_1^*, ..., x_n^*)$

This is a Nash equilibrium if



 Intuition: nobody can increase expected reward by changing only their own strategy.

Mixed Strategy Nash Equilibrium

Example:
$$x_1^*(\cdot) = x_2^*(\cdot) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

Player 2	rock	paper	scissors
Player 1			
rock	0, 0	-1, 1	1, -1
paper	1, -1	0, 0	-1, 1
scissors	-1, 1	1, -1	0, 0

Example: Two Finger Morra. Show 1 or 2 fingers. The "even player" wins if the sum is even, and vice versa.

odd even	f1	f2
f1	2, -2	-3, 3
f2	-3, 3	4, -4

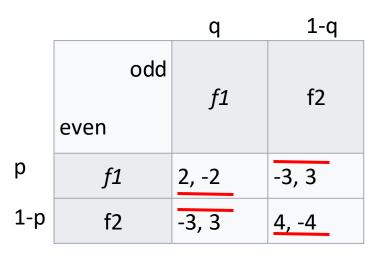
Two Finger Morra. Two-player zero-sum game. No pure NE:

odd	f1	f2
even		
f1	2, -2	-3, 3
f2	-3, 3	4, -4

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p) By definition, p is best response to q: $u_1(p,q) \ge u_1(p',q) \forall p'$.

Note
$$u_1(p,q) = pu_1(f_1,q) + (1-p)u_1(f_2,q)$$

Average is no greater than components $\rightarrow u_1(p,q) = u_1(f_1,q) = u_1(f_2,q)$



$$u_1(f_1, q) = u_1(f_2, q)$$

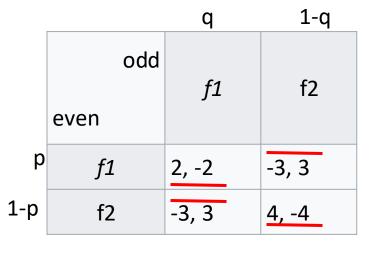
$$2q + (-3)(1 - q) = (-3)q + 4(1 - q)$$

$$q = \frac{7}{12}$$

Similarly,
$$u_2(p, f_1) = u_2(p, f_2)$$

$$p = \frac{7}{12}$$

At this NE, even gets -1/12, odd gets 1/12.

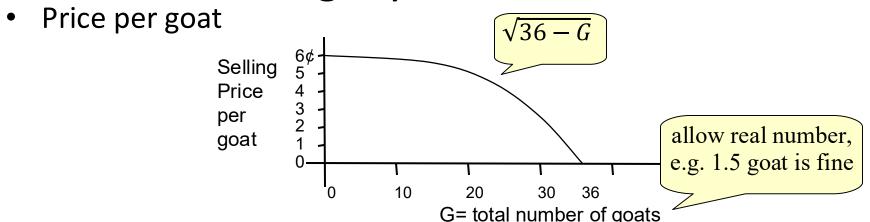


Properties of Nash Equilibrium

Major result: (John Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium
 - But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally hard.
 - Exception: two-player zero-sum games (can be found with linear programming).

Pure NE in an Infinite game: The tragedy of the Commons



- How many goats should one (out of n) rational farmer graze?
- How much would the farmer earn?

Continuous Action Game

- Each farmer has infinite number of strategies g_i∈[0,36]
- The value for farmer i, when the n farmers play at $(g_1, g_2, ..., g_n)$ is

$$u_i(g_1, g_2, ..., g_n) = g_i \sqrt{36 - \sum_{j \in [n]} g_j}$$

- Assume a pure Nash equilibrium exists.
- Assume (by apparent symmetry) the NE is (g*, g*, ..., g*).

Finding g*

•
$$u_i(g_1, g_2, ..., g_n) = g_i \sqrt{36 - \sum_j g_j}$$

g* is the best response to others (g*,..., g*)

$$g^* = argmax_{h \in [0,36]} u_i(g^*, \dots, h, \dots, g^*)$$
 i-th argument
$$= argmax_h h \sqrt{36 - (n-1)g^* - h}$$

Finding g*

$$g^* = argmax_h h \sqrt{36 - (n-1)g^* - h}$$

Taking derivative w.r.t. h of the RHS, setting to 0:

$$g^* = \frac{72 - 2(n-1)g^*}{3}$$

$$g^* = \frac{72}{2n+1}$$
 So what?

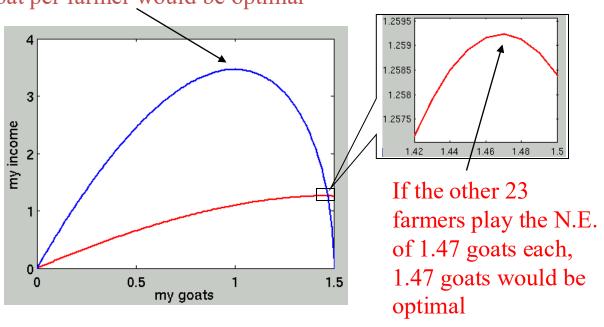
The tragedy of the Commons

- Say there are n=24 farmers. Each would rationally graze $g_i^* = 72/(2*24+1) = 1.47$ goats
- Each would get 1.25¢

- But if they cooperate and each grazes only 1 goat
- Each would get 3.46¢

The tragedy of the Commons

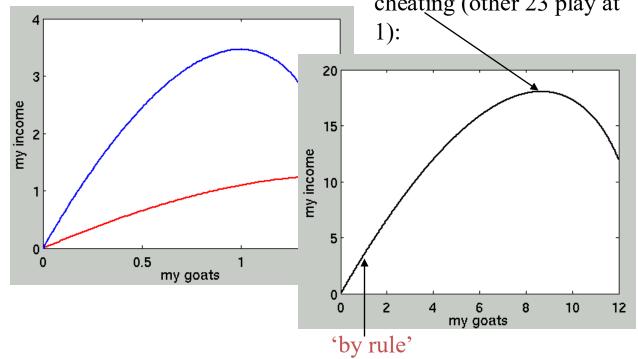
If all 24 farmers agree on the same number of goats to raise, 1 goat per farmer would be optimal



The tragedy of the Commons

If all 24 farmers agree on the same number of goats to raise, 1 goat per farmer would be optimal

But this is not a N.E.! A farmer can benefit from cheating (other 23 play at 1):



The tragedy

- Rational behaviors lead to sub-optimal solutions!
- Maximizing individual welfare not necessarily maximizes social welfare
- What went wrong?

Shouldn't have allowed free grazing?

Mechanism design: designing the rules of a game

Summary

- Intro to game theory
 - Characterize games by various properties
- Mathematical formulation for simultaneous games
 - Normal form, dominance, Nash equilibria, mixed vs pure