

CS 540 Introduction to Artificial Intelligence Reinforcement Learning I (continued)

University of Wisconsin-Madison Fall 2025 November 21, 2025

Announcements

- Wednesday, November 26
 - Class is cancelled
 - Professor Brown's office hours will be 11:30-12:30

Homework:

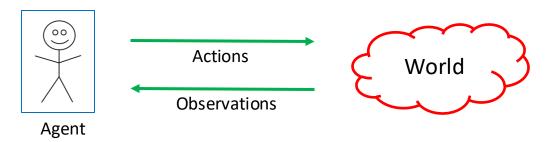
- HW8 due today at 11:59 PM
- HW9 released today, due Tuesday Dec 2 at 11:59 pm
- HW10 released Dec 2, due Tuesday Dec 9 at 11:59 pm

Outline

- Introduction to reinforcement learning
 - Basic concepts, mathematical formulation, MDPs, policies.
- Learning policies
 - Q-learning, action-values, exploration vs exploitation.

Back to Our General Model

We have an agent interacting with the world



- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning

Markov Decision Process (MDP)

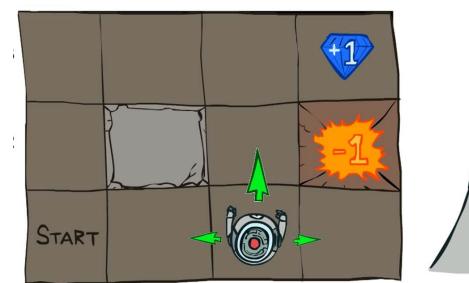
The formal mathematical model:

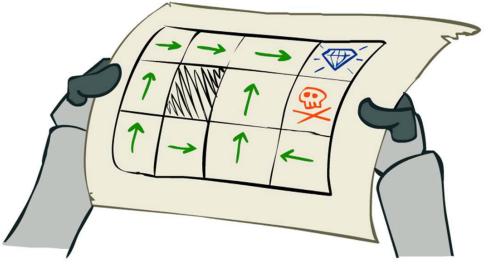
- State set S. Initial state s₀. Action set A
- Reward function: r(s_t)
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not earlier history (previous actions or states)
- More generally: $r(s_t, a_t)$, potentially random
- **Policy**: $\pi(s): S \to A$ action to take at a particular state

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Example of MDP: Grid World

Robot on a grid; goal: find the best policy





Markov Decision Process (MDP)

The formal mathematical model:

- State set S. Initial state s₀. Action set A
- Reward function: r(s_t)
- State transition model: $P(s_{t+1}|s_t, a_t)$

• **Policy**: $\pi(s): S \to A$ action to take at a particular state

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Reinforcement Learning Challenges

Credit-assignment:

- May take many actions before reward is received. Which ones were most important?
- <u>Example</u>: You study 15 minutes a day all semester. The morning of the final exam, you eat a bowl of yogurt. You receive an A on the final. Was it the studying or the yogurt that led to the A?

Exploration vs. Exploitation:

- Transition probabilities and reward may be unknown to the learner.
- Should you keep trying actions that led to reward in the past or try new actions that might lead to even more reward?

Defining the Optimal Policy

For policy π , **expected utility** over all possible state sequences from s_0 produced by following that policy:

Utility of sequence

$$V^{\pi}(s_0) = \sum_{\substack{\text{sequences} \\ \text{starting from } s_0}}$$

P(sequence)U(sequence)

Probability of sequence when following π

Called the **value function** (for π , s_0)

Discounting Rewards

Utility can add up the rewards over a sequence of states, but how should we treat the future?

• Solution: discount future rewards.

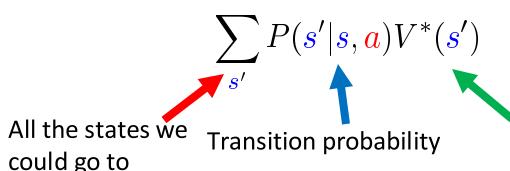
$$U(s_0, s_1 \dots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \dots = \sum_{t>0} \gamma^t r(s_t)$$

- Discount factor γ between 0 and 1
 - Set according to how important present is versus future
 - Note: has to be less than 1 for convergence

From Value to Policy

Now that $V^{\pi}(s_0)$ is defined, what α should we take?

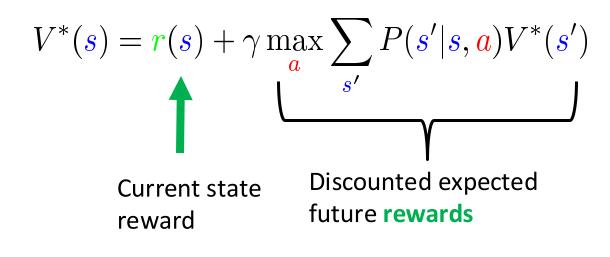
- First, let π^* be the **optimal** policy for $V^{\pi}(s_0)$, and $V^*(s_0)$ its expected utility.
- What's the expected utility following an action?
 - Specifically, action a in state s?



Expected rewards

Bellman Equation

Let's walk over one step for the value function:



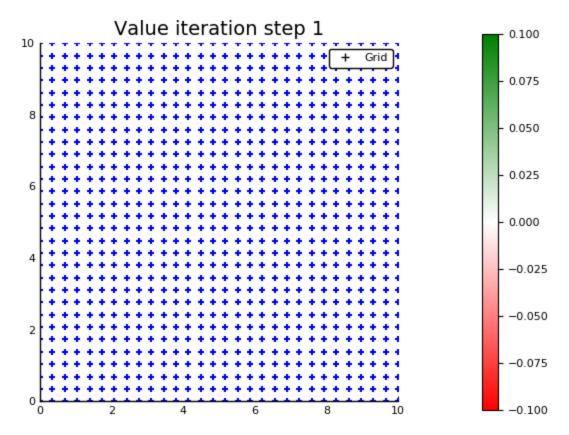
Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward r(s), transition probability P(s'|s,a)
 - Knowing r and P is the "planning" problem. In reality r and P must be estimated from interactions: "reinforcement learning"
- Also know $V^*(s)$ satisfies Bellman equation (recursion above)
- **A**: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{\mathbf{a}} \sum_{\mathbf{s}'} P(s'|s, \mathbf{a}) V_i(s')$$

Value Iteration: Demo



Source: POMDPBGallery Julia Package

Q-Learning

- Our **next** reinforcement learning algorithm.
- Does not require knowing r or P. Learn from data of the form: $\{(s_t, a_t, r_t, s_{t+1})\}$.
- Learns an action-value function $Q^*(s,a)$ that tells us the expected value of taking a in state s.
 - Note: $V^*(s) = \max_{a} Q^*(s, a)$.
- Optimal policy is formed as $\pi^*(s) = \underset{a}{\operatorname{arg}} \max_{a} Q^*(s,a)$

The Q*(s,a) function

 Starting from state s, perform (perhaps suboptimal) action a. THEN follow the optimal policy

$$Q^{*}(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a) V^{*}(s')$$

Equivalent to

$$Q^{*}(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^{*}(s',a')$$

Q-Learning Iteration

How do we get Q(s,a)?

• Iterative procedure

$$Q(s_t, \mathbf{a}_t) \leftarrow Q(s_t, \mathbf{a}_t) + \alpha[r(s_t) + \gamma \max_{\mathbf{a}} Q(s_{t+1}, \mathbf{a}) - Q(s_t, \mathbf{a}_t)]$$
 Learning rate

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the estimated Q!

Q-Learning

Estimate $Q^*(s,a)$ from data $\{(s_t,a_t,r_t,s_{t+1})\}$:

Q-Learning

Estimate $Q^*(s,a)$ from data $\{(s_t,a_t,r_t,s_{t+1})\}$:

- 1. Initialize Q(.,.) arbitrarily (eg all zeros)
 - Except terminal states Q(s_{terminal},)=0
- 2. Iterate over data until Q(.,.) converges:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$$

Idea: update is an empirical version of our Q table recursion:

$$Q^{*}(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^{*}(s',a')$$

Exploration Vs. Exploitation

General question!

- Exploration: take an action with unknown consequences
 - Pros:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far

– Cons:

- When exploring, not maximizing your utility
- Something bad might happen
- Exploitation: go with the best strategy found so far
 - Pros:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - Cons:
 - Might prevent you from discovering the true optimal strategy

Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation

• With probability ε , take a random action; else the action with the highest (current) Q(s,a) value.

$$a = \begin{cases} \operatorname{argmax}_{\mathbf{a} \in A} Q(\mathbf{s}, \mathbf{a}) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} \mathbf{a} \in A & \text{otherwise} \end{cases}$$

Q-learning Algorithm

Input: step size α , exploration probability ϵ

- 1. set Q(s,a) = 0 for all s, a.
- 2. For each episode:
- Get initial state s.
- While (s not a terminal state):
- 5. Perform $a = \epsilon$ -greedy(Q, s), receive r, s'

6.
$$Q(s,a) = (1 - \alpha)Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a'))$$

- $s \leftarrow s'$
- **End While**
- 9. Fnd For

Explore: take action

to see what happens.

Update action-value based on result.

Summary

- Reinforcement learning setup
- Mathematical formulation: MDP
- Bellman Equation
- Value Iteration Algorithm
- The Q-learning Algorithm