
CS 540 Introduction to Artificial Intelligence
Neural Networks (III)

University of Wisconsin-Madison
Spring 2025



Announcements
• Homeworks: 

– HW6 online, deadline on Monday March. 17th at 11:59 PM 

• Midterm March 13th . More on next slide.
• Class roadmap: Machine Learning: 

Neural Networks III

Midterm Review

M
achine 

Learning



Midterm Information
• Time: March 13th 7:30-9 PM
• Location:

– Section 001 : Ingraham Hall B10
– Section 002 : Psychology 105
– Section 003: split in two locations according to the last name:

• Chamberlin Hall 2103 ( last name starting with A-L)
• Sterling Hall 1310 ( last name starting with M-Z)

• McBurney students and students requesting alternate: reach out to your instructor if 
you have not received any email!

• Format: multiple choice
• Cheat sheet: single piece of paper, front and back
• Calculator: fine if it doesn’t have an Internet connection
• Detailed topic list + practice on Piazza and Canvas



Output 

Hidden layer 
Input 

100 neurons

How to train a neural network?
Update the weights W to minimize the loss function

𝐿𝐿 =
1

|𝐷𝐷|
∑

(𝐱𝐱,𝑦𝑦)∈𝐷𝐷
ℓ(𝐱𝐱,𝑦𝑦)

Use gradient descent! 



Gradient Descent
• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1,2,…

• Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
𝜕𝜕𝐿𝐿

𝜕𝜕𝐰𝐰𝑡𝑡−1

= 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐷𝐷|
∑

(𝐱𝐱,𝑦𝑦)∈𝐷𝐷

𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat until converges

D can be very 
large. Expensive 

per iteration

𝐰𝐰0

𝐰𝐰1
𝐰𝐰2

The gradient w.r.t. all parameters is 
obtained by concatenating the 
partial derivatives w.r.t. each 

parameter



Minibatch Stochastic Gradient Descent
• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1,2,…

• Randomly sample a subset (mini-batch) 𝐵𝐵
⊂ 𝐷𝐷Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐵𝐵|
∑

(𝐱𝐱,𝑦𝑦)∈𝐵𝐵

𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat until converges

𝐰𝐰0

𝐰𝐰1
𝐰𝐰2



Non-convex
Optimization

[Gao and Li et al., 2018]



Quiz Break

• What is the partial derivative 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

of: 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,𝑤𝑤1,𝑤𝑤2,𝑦𝑦) = 𝑦𝑦log𝜎𝜎(𝑤𝑤1𝑥𝑥1

+ 𝑤𝑤2𝑥𝑥2) + (1 − 𝑦𝑦)log(1 − 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2)) when 𝑦𝑦 = 1 and 𝜎𝜎(𝑧𝑧)

= 1
1+𝑒𝑒−𝑧𝑧

 .Hint: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎 𝑧𝑧 ).



Quiz Break

• What is the partial derivative 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

 of: 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,𝑤𝑤1,𝑤𝑤2,𝑦𝑦) = 𝑦𝑦log𝜎𝜎(𝑤𝑤1𝑥𝑥1

+ 𝑤𝑤2𝑥𝑥2) + (1 − 𝑦𝑦)log(1 − 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2)) when 𝑦𝑦 = 1 and 𝜎𝜎(𝑧𝑧)

= 1
1+𝑒𝑒−𝑧𝑧

. Hint: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧)).

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤1

=
𝑦𝑦
𝑎𝑎
𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))𝑥𝑥1 = (1 − 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2))𝑥𝑥1

Let 𝑎𝑎 = 𝜎𝜎(𝑧𝑧) Let 𝑧𝑧 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2
𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤1

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑎𝑎

𝜕𝜕𝑎𝑎
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝑤𝑤1



Calculate Gradient (on one data point)

• Want to compute 
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕𝑤𝑤11

• Data point: ((𝑥𝑥1, 𝑥𝑥2),𝑦𝑦)



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)

Use chain rule!



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧)
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦 =

1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦

• By chain rule:



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧)
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦 =

1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦

• By chain rule: 𝑥𝑥1



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule: �𝑦𝑦(1 − �𝑦𝑦)𝑥𝑥1



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule: (
1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦) �𝑦𝑦(1 − �𝑦𝑦)𝑥𝑥1



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule: ( �𝑦𝑦 − 𝑦𝑦)𝑥𝑥1



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule:



Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule:

Make it deeper



Calculate Gradient (on one data point)

• By chain rule: (1)



Calculate Gradient (on one data point)

• By chain rule: (1)



Calculate Gradient (on one data point)

• By chain rule:











Neural Networks as a 
Computational Graph





Neural networks as variables + operations
𝐚𝐚 = sigmoid(𝐖𝐖𝐱𝐱 + 𝐛𝐛)

• Decompose functions into atomic operations

• Separate data (variables) and computing (operations)

• Can describe with a computational graph



Neural networks as a computational graph
• A two-layer neural network



Neural networks as a computational graph
• A two-layer neural network
• Forward propagation vs. backward propagation



Neural networks: forward propagation
• A two-layer neural network
• Intermediate variables Z

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5



• A two-layer neural network
• Assuming forward propagation is done

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5

Neural networks: backward propagation

• Minimize a loss function L



• A two-layer neural network
• Assuming forward propagation is done

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5

Neural networks: backward propagation

• Minimize a loss function L



• A two-layer neural network
• Assuming forward propagation is done

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5

Neural networks: backward propagation

• Minimize a loss function L



• A two-layer neural network
• Assuming forward propagation is done

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5

Neural networks: backward propagation



• First, define a neural network as a computational graph
• Nodes are variables and operations.

• Must be a directed graph
• All operations must be differentiable.
• Backpropagation computes partial derivatives starting 

from the loss and then working backwards through the 
graph.

Backward propagation: A modern treatment



Backward propagation: PyTorch

Forward propagation

Backward propagation

Gradient Descent



Hidden layer 

Input 
m=3 neurons

𝑥𝑥1

𝑥𝑥2

Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss 

ℓ(𝐲𝐲, �𝐲𝐲) = − ∑
𝑗𝑗=1

𝑘𝑘
𝑦𝑦𝑗𝑗log�𝐲𝐲𝑗𝑗 , where the ground truth and predicted probabilities 𝐲𝐲, �𝐲𝐲 ∈ ℝ𝑘𝑘 . Recall that the 

softmax function turns output into probabilities: �y𝑗𝑗 = exp𝜕𝜕𝑗𝑗(𝑥𝑥)
∑𝑖𝑖
𝑘𝑘exp𝜕𝜕𝑖𝑖(𝑥𝑥)

. What is the partial derivative 𝜕𝜕𝜕𝜕𝑗𝑗ℓ(𝐲𝐲, �𝐲𝐲)?

𝐱𝐱 ∈ ℝ𝑑𝑑

Output 

𝑓𝑓𝑘𝑘

…
𝑓𝑓1

A.�y𝑗𝑗 − 𝑦𝑦𝑗𝑗

B. exp(𝑦𝑦𝑗𝑗) − 𝑦𝑦𝑗𝑗

C. 𝑦𝑦𝑗𝑗−�y𝑗𝑗



Hidden layer 

Input 
m=3 neurons

𝑥𝑥1

𝑥𝑥2

Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss 

ℓ(𝐲𝐲, �𝐲𝐲) = − ∑
𝑗𝑗=1

𝑘𝑘
𝑦𝑦𝑗𝑗log�𝐲𝐲𝑗𝑗 , where the ground truth and predicted probabilities 𝐲𝐲, �𝐲𝐲 ∈ ℝ𝑘𝑘 . Recall that the 

softmax function turns output into probabilities: �y𝑗𝑗 = exp𝜕𝜕𝑗𝑗(𝑥𝑥)
∑𝑖𝑖
𝑘𝑘exp𝜕𝜕𝑖𝑖(𝑥𝑥)

. What is the partial derivative 𝜕𝜕𝜕𝜕𝑗𝑗ℓ(𝐲𝐲, �𝐲𝐲)?

𝐱𝐱 ∈ ℝ𝑑𝑑

Output 

𝑓𝑓𝑘𝑘

…
𝑓𝑓1

A.�y𝑗𝑗 − 𝑦𝑦𝑗𝑗

B. exp(𝑦𝑦𝑗𝑗) − 𝑦𝑦𝑗𝑗

C. 𝑦𝑦𝑗𝑗−�y𝑗𝑗



Numerical Stability



Gradients for Neural Networks

• Compute the gradient of the loss    w.r.t. 

𝜕𝜕ℓ
𝜕𝜕𝐖𝐖𝑡𝑡 =

𝜕𝜕ℓ
𝜕𝜕𝐡𝐡𝑑𝑑

𝜕𝜕𝐡𝐡𝑑𝑑

𝜕𝜕𝐡𝐡𝑑𝑑−1
…
𝜕𝜕𝐡𝐡𝑡𝑡+1

𝜕𝜕𝐡𝐡𝑡𝑡
𝜕𝜕𝐡𝐡𝑡𝑡

𝜕𝜕𝐖𝐖𝑡𝑡

ℓ 𝐖𝐖𝑡𝑡

Multiplication of many matrices

Wikipedia



Two Issues for Deep Neural Networks
�
𝑖𝑖=𝑡𝑡

𝑑𝑑−1
𝜕𝜕𝐡𝐡𝑖𝑖+1

𝜕𝜕𝐡𝐡𝑖𝑖

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10



Issues with Gradient Exploding

• Value out of range: infinity value (NaN)
• Sensitive to learning rate (LR)

• Not small enough LR  larger gradients
• Too small LR  No progress 
• May need to change LR dramatically during training



Gradient Vanishing 

• Use sigmoid as the activation function  

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥 𝜎𝜎′(𝑥𝑥) = 𝜎𝜎(𝑥𝑥)(1 − 𝜎𝜎(𝑥𝑥))

Small 
gradients

Small 
gradients



Issues with Gradient Vanishing

• Gradients with value 0
• No progress in training

• No matter how to choose learning rate
• Severe with bottom layers (those near the input)

• Only top layers (near output) are well trained
• No benefit to make networks deeper



How to 
stabilize 
training?



Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range
• E.g. in [1e-6, 1e3]

•  Multiplication  plus
• Architecture change (e.g., ResNet)

• Normalize
• Batch Normalization, Gradient clipping 

• Proper activation functions 



Quiz. Which of the following are TRUE about the vanishing gradient problem in neural 
networks? Multiple answers are possible.

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the 

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if 

trained with the cross-entropy loss.



Quiz. Which of the following are TRUE about the vanishing gradient problem in neural 
networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the 

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if 

trained with the cross-entropy loss.



Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following 
statement is NOT true? 

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3 

D. The gradient of ReLU is constant for positive input



Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following 
statement is NOT true? 

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3 

D. The gradient of ReLU is constant for positive input



Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero 
gradient everywhere?? 

A.Yes

B. No



Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero 
gradient everywhere?? 

A.Yes

B. No



Generalization & Regularization



How good are 
the models?



Training Error and Generalization Error

• Training error: model error on the training data
• Generalization error: model error on new data
• Example: practice a future exam with past exams

• Doing well on past exams (training error) doesn’t 
guarantee a good score on the future exam 
(generalization error)



Underfitting 
Overfitting 

Image credit: hackernoon.com



Model Capacity 

• The ability to fit variety of functions
• Low capacity models struggles to 

fit training set
• Underfitting

• High capacity models can 
memorize the training set
• Overfitting



Influence of Model Complexity

Also known as 
“Test loss”

* Recent research has challenged this view for some types of models. 



Estimate Neural Network Capacity 

• It’s hard to compare complexity 
between different families of models.
• e.g. K-NN vs neural networks

• Given a model family, two main factors 
matter:
• The number of parameters 
• The values taken by each parameter

𝑑𝑑 + 1

(𝑑𝑑 + 1)𝑚𝑚 + (𝑚𝑚 + 1)𝑘𝑘



Data Complexity

• Multiple factors matters
• # of examples
• # of features in each example
• time/space structure
• # of labels 



Quiz Break: When training a neural network, 
which one below indicates that the network has 
overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.



Quiz Break: When training a neural network, 
which one below indicates that the network has 
overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.



Quiz Break: Adding more layers to a multi-layer 
perceptron may cause ______.

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.



Quiz Break: Adding more layers to a multi-layer 
perceptron may cause ______. (Multiple 
answers)

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.



How to regularize the model for 
better generalization?



Weight 
Decay



Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value 
range

• Often do not regularize bias b 
• Doing or not doing has little difference in 

practice
• A small     means more regularization

𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏)subject to ∥ 𝐰𝐰 ∥2≤ 𝐵𝐵

𝐵𝐵



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

• Hyper-parameter    controls regularization importance
•          :   no effect

𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

𝜆𝜆 = 0
𝜆𝜆 → ∞,𝐰𝐰∗ → 𝟎𝟎

𝜆𝜆



Illustrate the Effect on Optimal Solutions

𝐰𝐰
˜ ∗

𝐰𝐰∗

𝐰𝐰∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

𝐰𝐰
˜ ∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏)



Dropout
Hinton et al.



Apply Dropout
• Often apply dropout on the output of hidden fully-connected layers

courses.d2l.ai/berkeley-stat-157



Dropout



Dropout
Hinton et al.



Quiz Break, Q4.1: 

In standard dropout regularization, with dropout probability p, each

intermediate activation h is replaced by a random variable h’ as:

To make  E[h’] = h. What is “?” ?



Quiz Break, Q4.1: 

In standard dropout regularization, with dropout probability p, each

intermediate activation h is replaced by a random variable h’ as:

To make  E[h’] = h. What is “?” ?



What we’ve learned today…

• Deep neural networks

• Computational graph (forward and backward propagation)

• Numerical stability in training

• Gradient vanishing/exploding

• Generalization and regularization

• Overfitting, underfitting

• Weight decay and dropout
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