

CS 540 Introduction to Artificial Intelligence Neural Networks (III)

University of Wisconsin-Madison Spring 2025

Announcements

Homeworks:

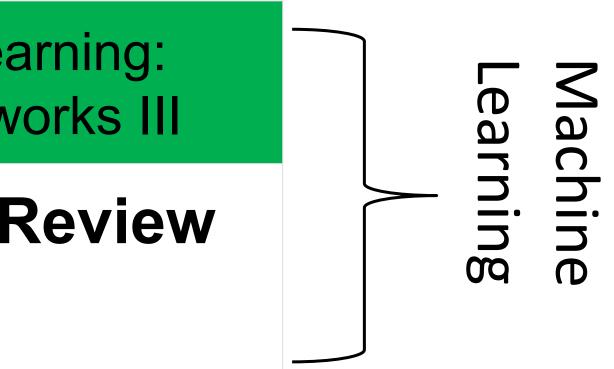
•

Midterm March 13th. More on next slide. Class roadmap: Machine Learning:

Neural Networks III

Midterm Review

HW6 online, deadline on Monday March. 17th at 11:59 PM



- **Time:** March 13th 7:30-9 PM Location:
 - Section 001 : Ingraham Hall B10
 - Section 002 : Psychology 105
 - Section 003: split in two locations according to the last name: Chamberlin Hall 2103 (last name starting with A-L) Sterling Hall 1310 (last name starting with M-Z)
- you have not received any email!
- Format: multiple choice

•

- Cheat sheet: single piece of paper, front and back
- Calculator: fine if it doesn't have an Internet connection
- Detailed topic list + practice on Piazza and Canvas

Midterm Information

McBurney students and students requesting alternate: reach out to your instructor if

How to train a neural network?

Update the weights W to minimize the loss function

$$L = \frac{1}{|D|} \sum_{(\mathbf{x}, y) \in D} \ell(\mathbf{x}, y)$$

Use gradient descent!

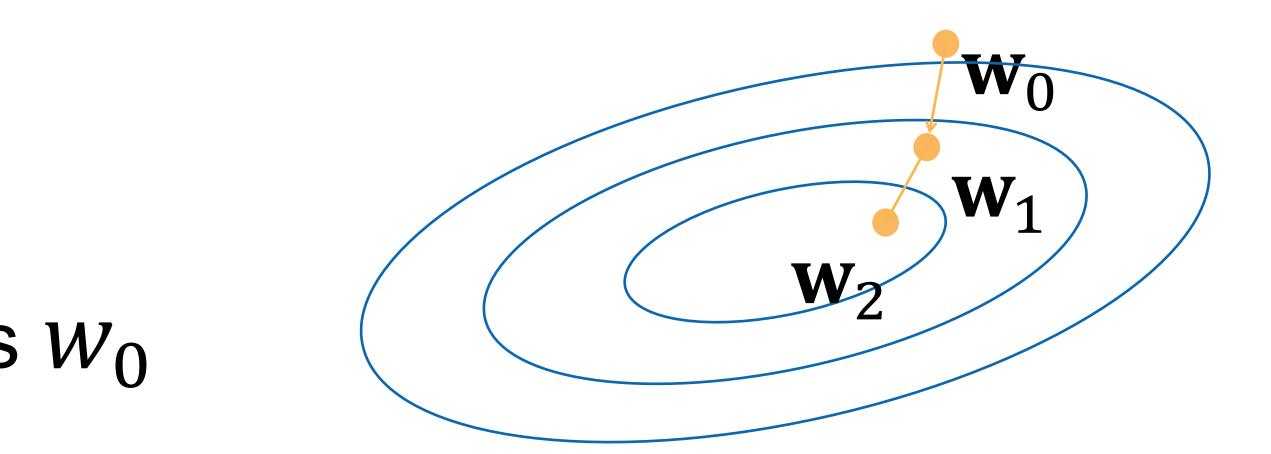
Input Hidden layer 100 neurons

Gradient Descent

- Choose a learning rate $\alpha > 0$
- Initialize the model parameters W_0
- For t =1,2,...
 - Update parameters:

$$\mathbf{w}_{t} = \mathbf{w}_{t-1} - \alpha \frac{\partial L}{\partial \mathbf{w}_{t-1}}$$
$$= \mathbf{w}_{t-1} - \alpha \frac{1}{|D|} \sum_{(\mathbf{x}, \mathbf{y}) \in L}$$

Repeat until converges



D can be very large. Expensive per iteration

 $\partial \ell(\mathbf{x}, y)$

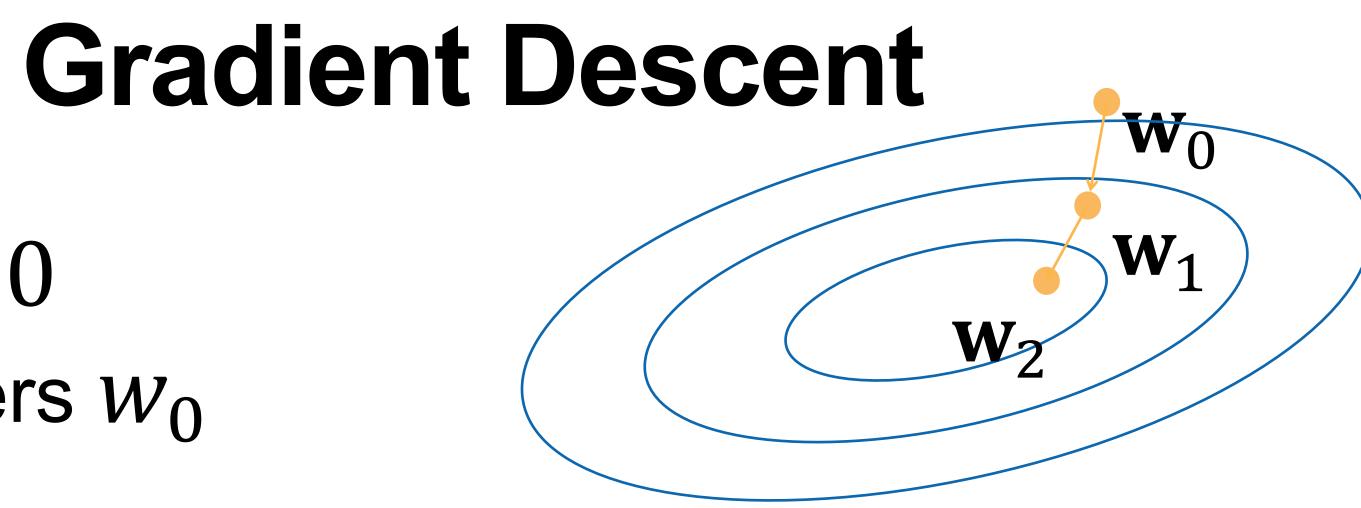
The gradient w.r.t. all parameters is obtained by concatenating the partial derivatives w.r.t. each parameter

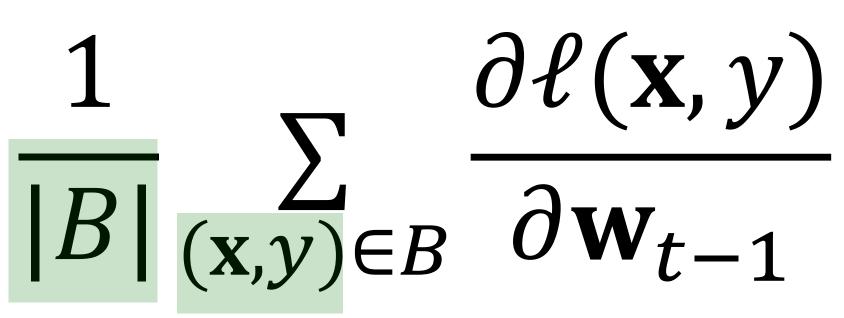
Minibatch Stochastic Gradient Descent

- Choose a learning rate $\alpha > 0$
- Initialize the model parameters W_0
- For t =1,2,...
 - Randomly sample a subset (mini-batch) B \subset *D*Update parameters:

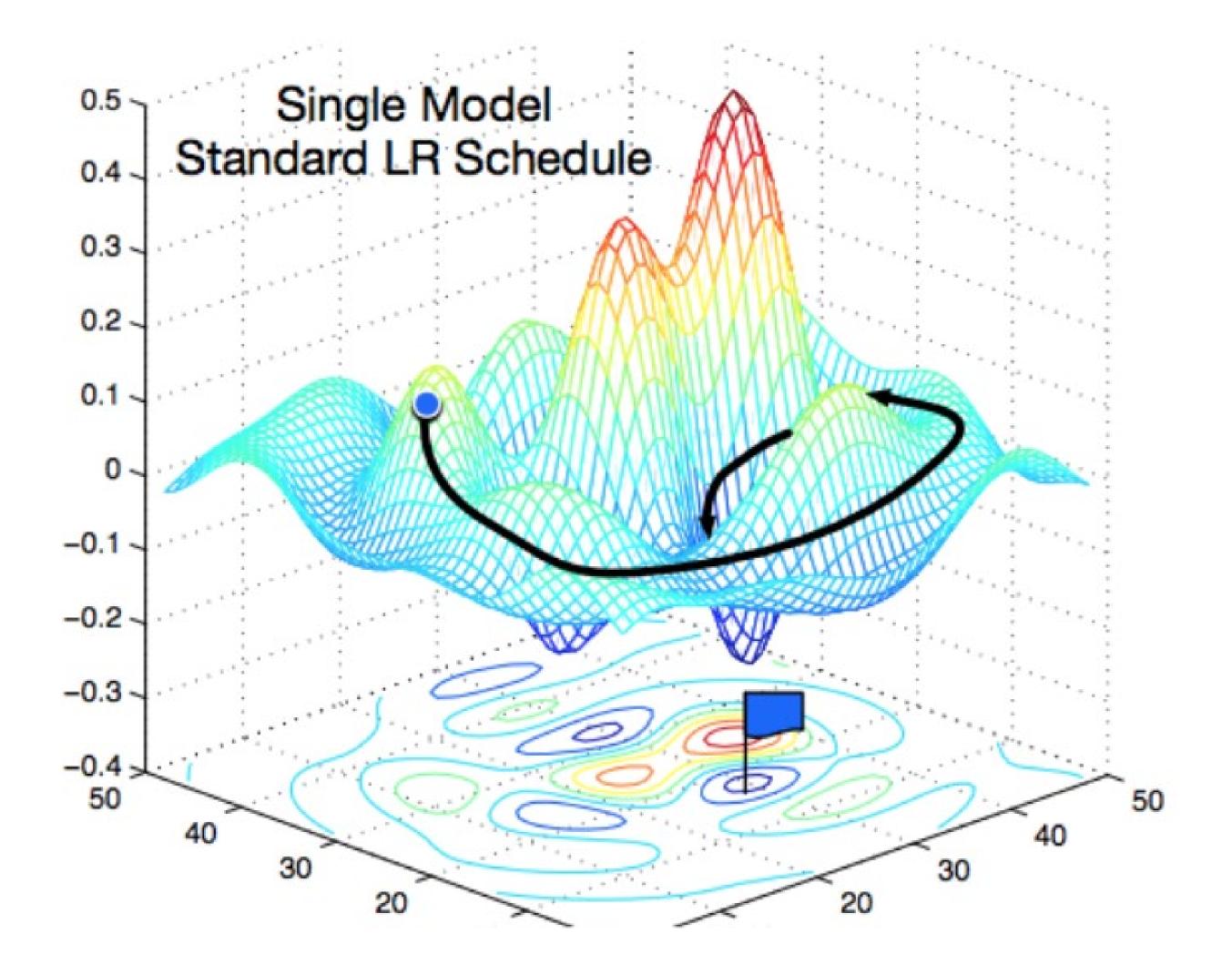
$$\mathbf{w}_t = \mathbf{w}_{t-1} - \alpha$$

Repeat until converges





Non-convex Optimization

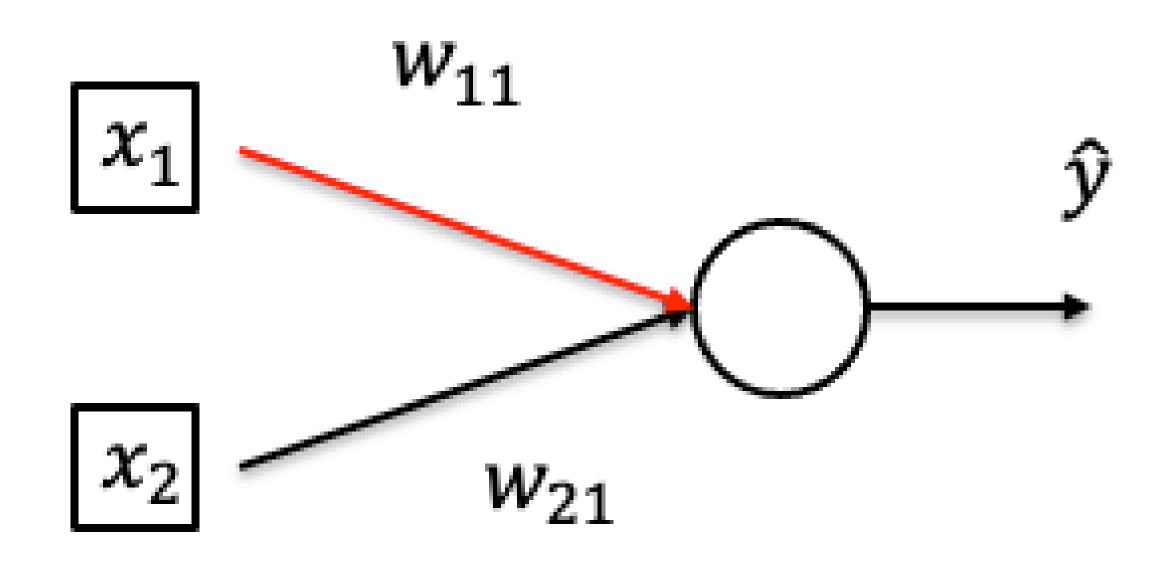


[Gao and Li et al., 2018]

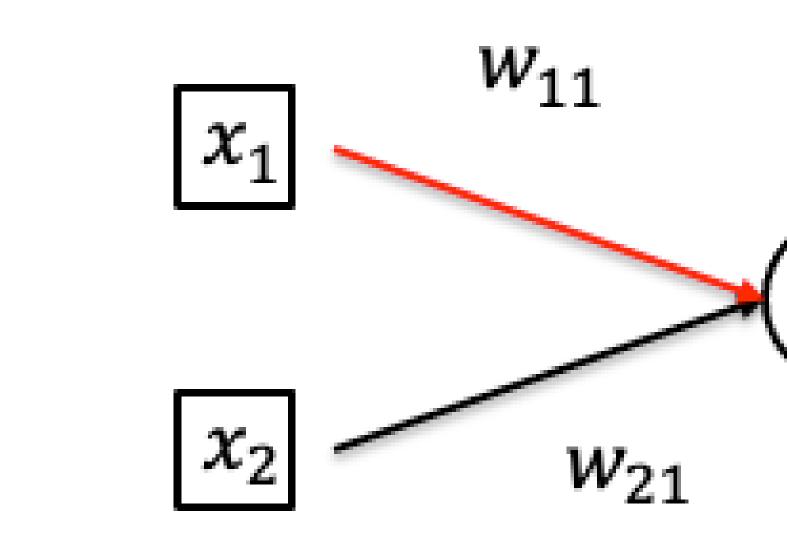
• What is the partial derivative $\frac{\partial f}{\partial w_1}$ of: $f(x_1, x_2, w_1, w_2, y) = y \log \sigma(w_1 x_1)$ $= \frac{1}{1+e^{-z}} . \text{Hint:} \frac{\sigma\sigma}{\partial z} = \sigma(z)(1-\sigma(z)).$

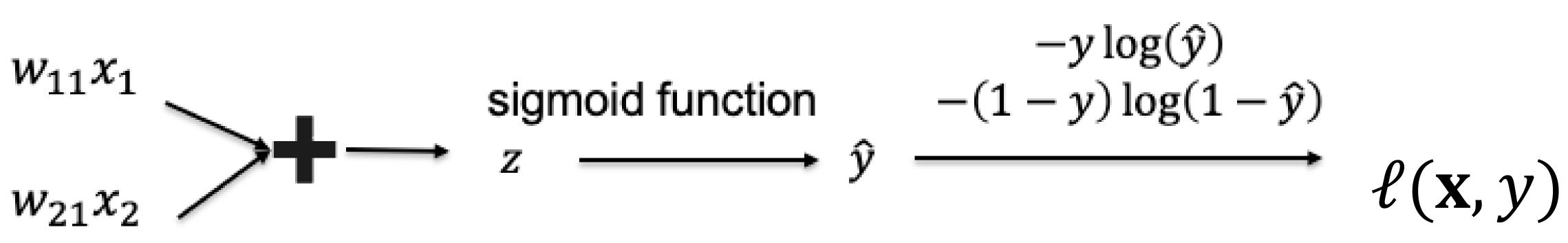
$(+ w_2 x_2) + (1 - y) \log(1 - \sigma(w_1 x_1 + w_2 x_2))$ when y = 1 and $\sigma(z)$

• What is the partial derivative $\frac{\partial f}{\partial w_1}$ of: $f(x_1, x_2, w_1, w_2, y) = y \log \sigma(w_1 x_1)$ $(+ w_2 x_2) + (1 - y)\log(1 - \sigma(w_1 x_1 + w_2 x_2))$ when y = 1 and $\sigma(z)$ $= \frac{1}{1+e^{-z}}$. Hint: $\frac{\partial \sigma}{\partial z} = \sigma(z)(1-\sigma(z)).$ Let $a = \sigma(z)$ Let $z = w_1 x_1 + w_2 x_2$ $\frac{\partial f}{\partial w_1} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial z} \frac{\partial z}{w_1}$ $\frac{\partial f}{\partial w_1} = \frac{y}{a}\sigma(z)(1-\sigma(z))x_1 = (1-\sigma(w_1x_1+w_2x_2))x_1$

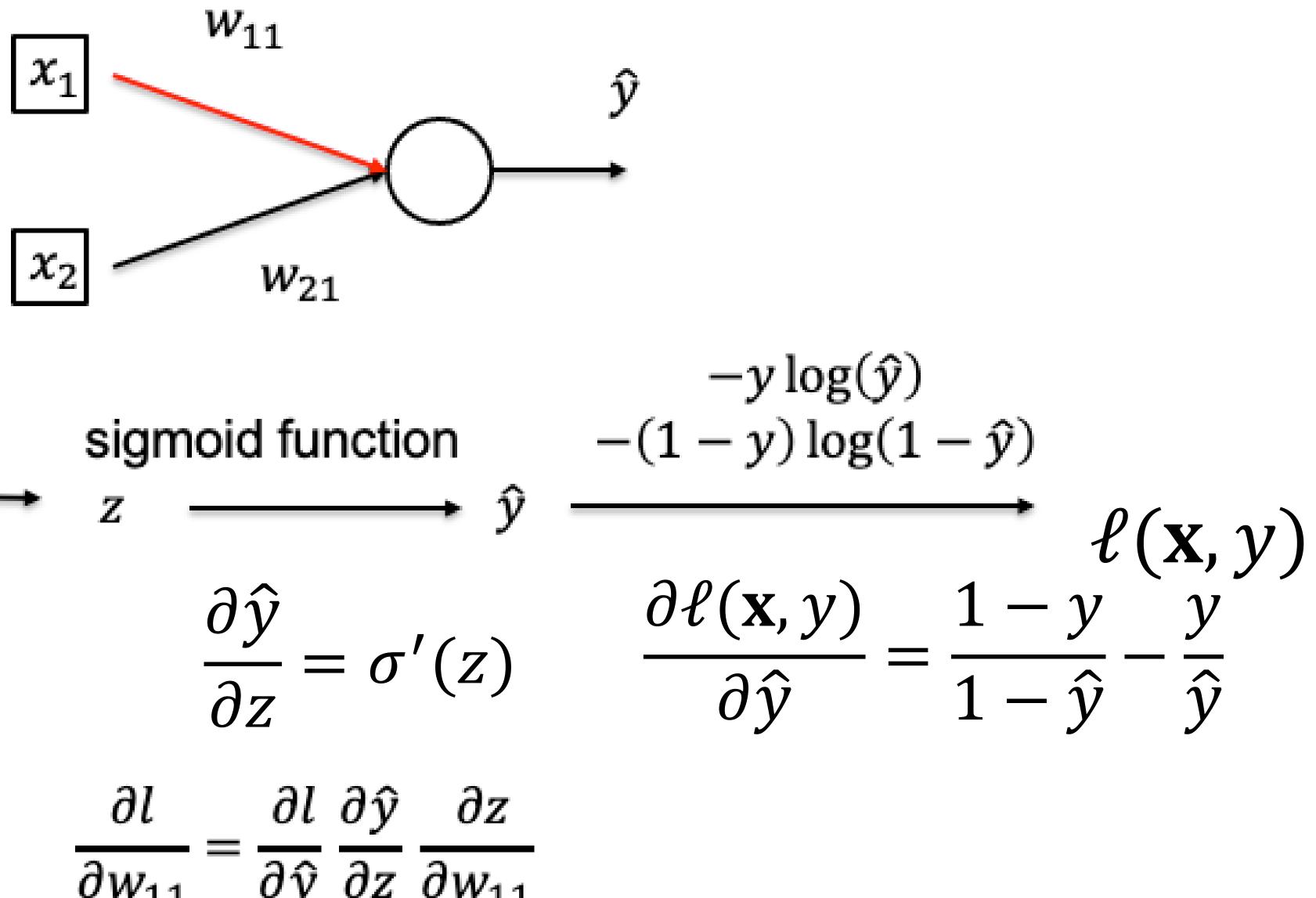


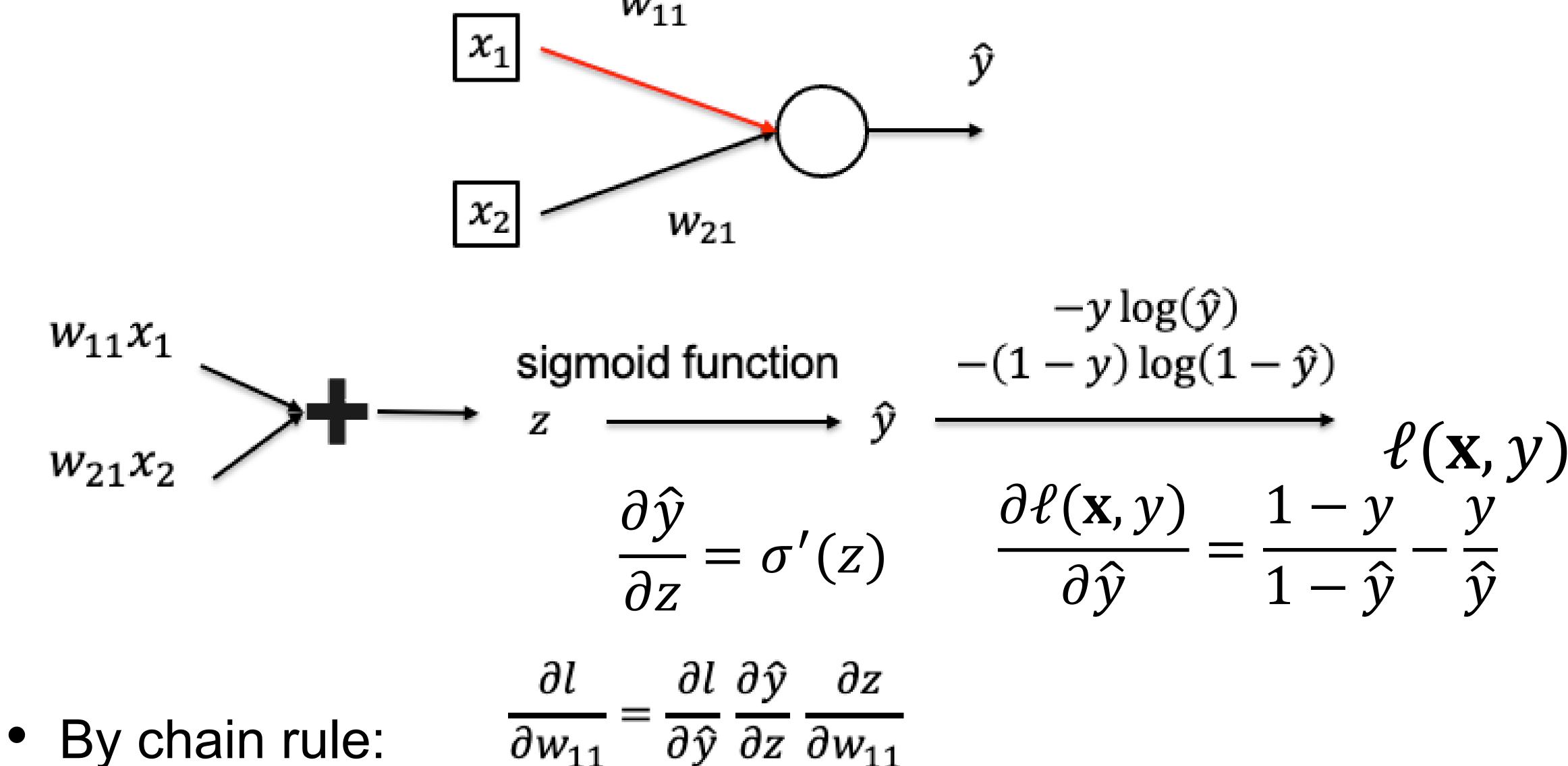
• Want to compute $\frac{\partial \ell(\mathbf{x}, y)}{\partial w_{11}}$ • Data point: $((x_1, x_2), y)$

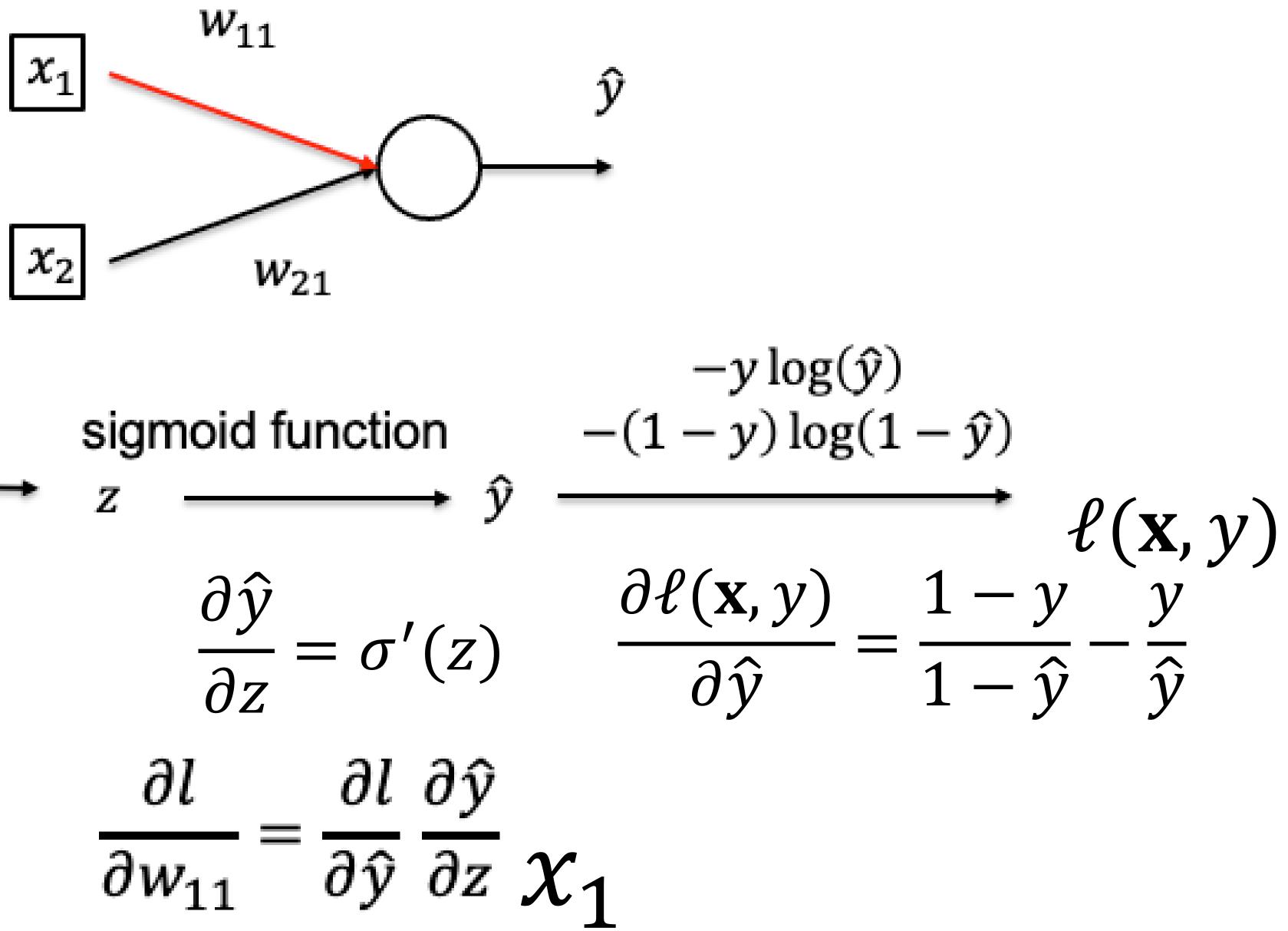


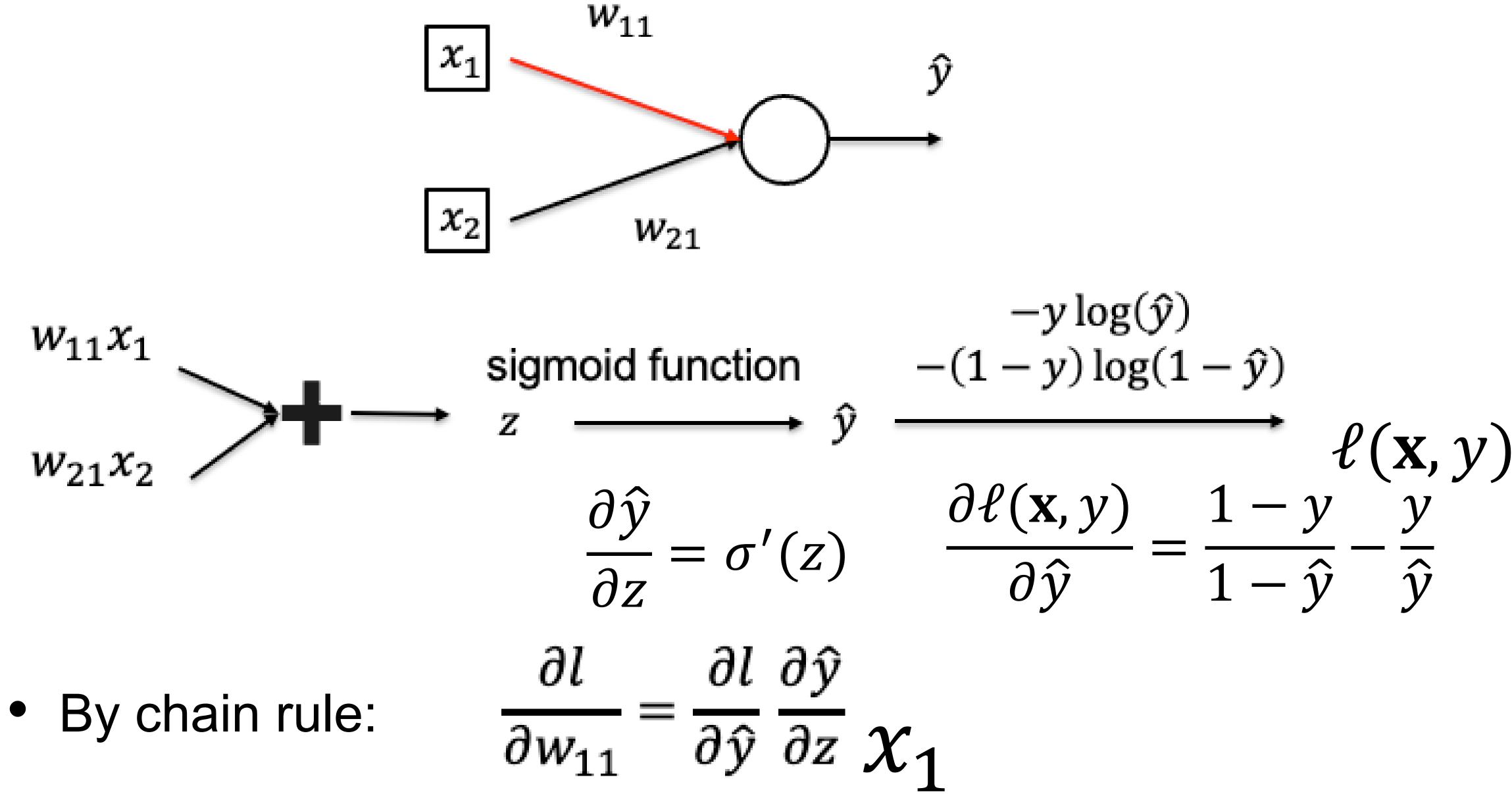


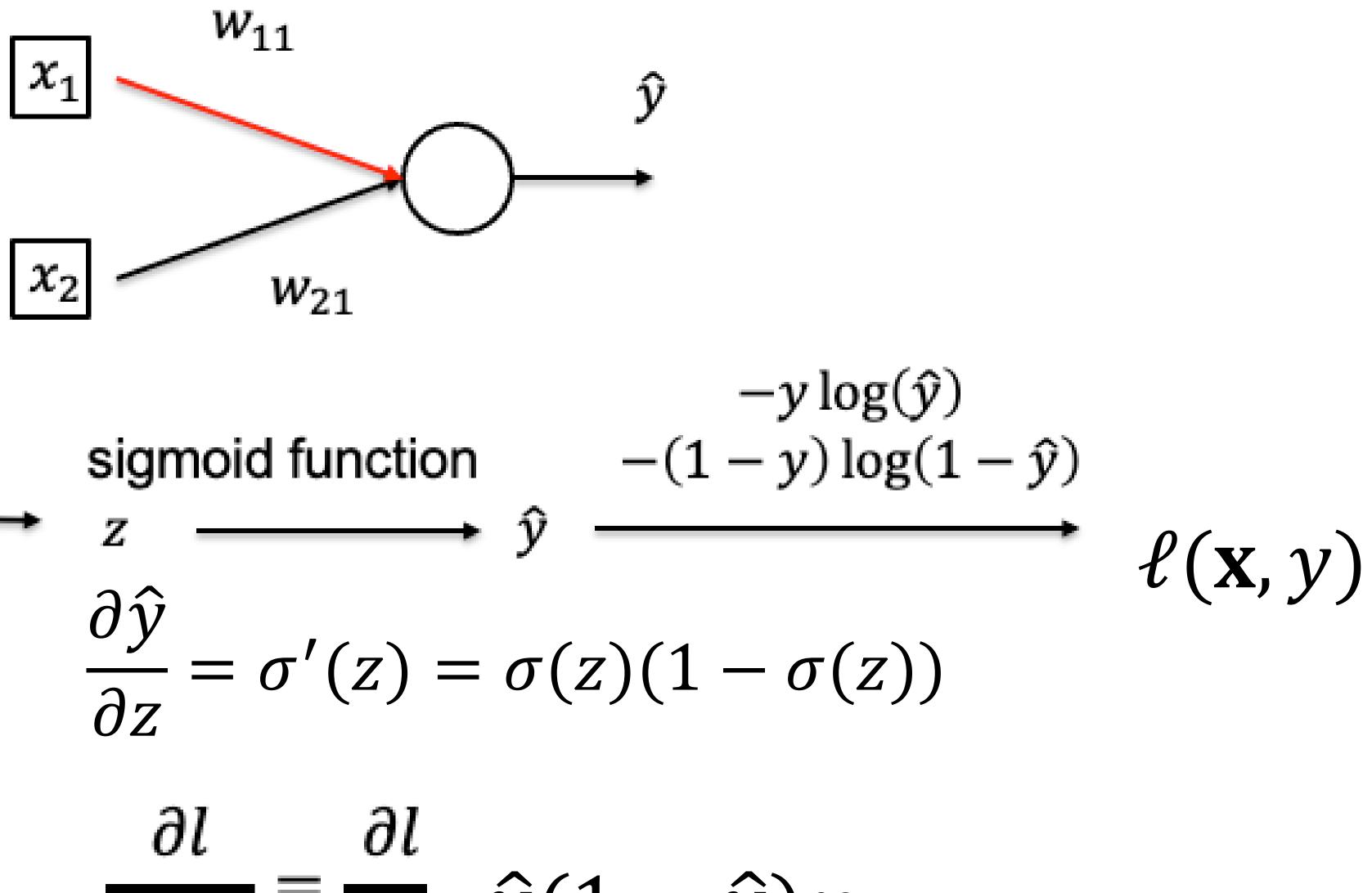
Use chain rule!

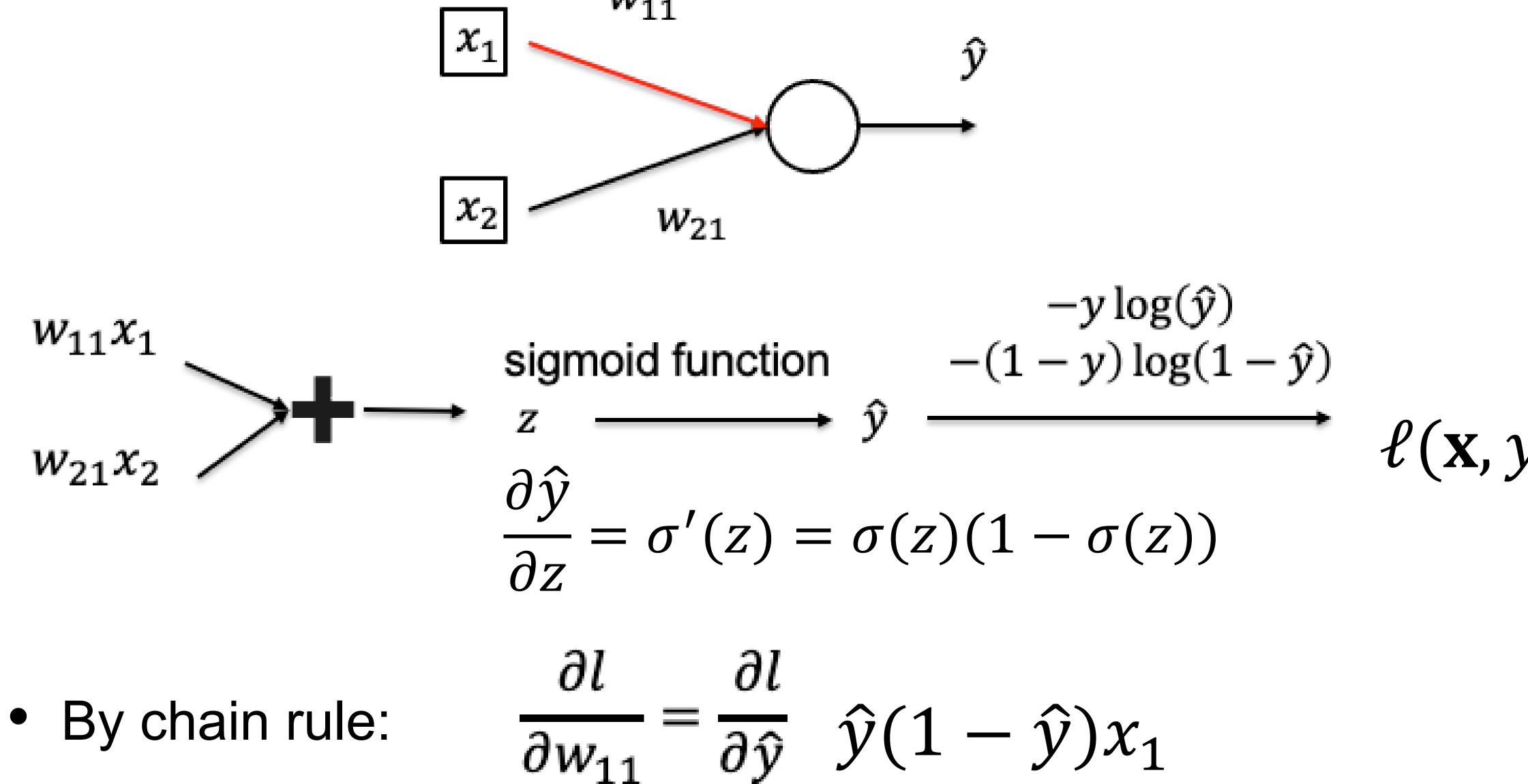


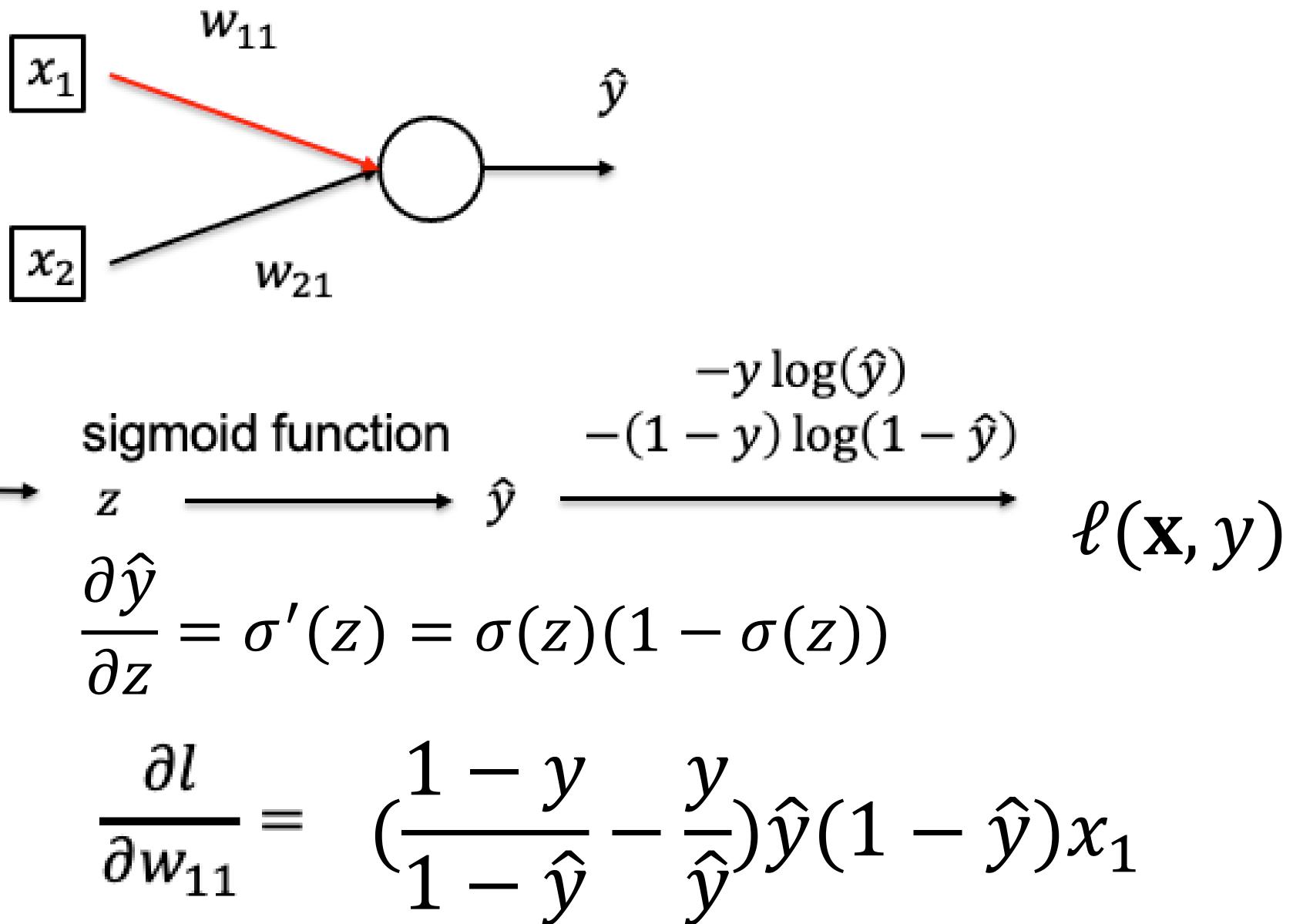


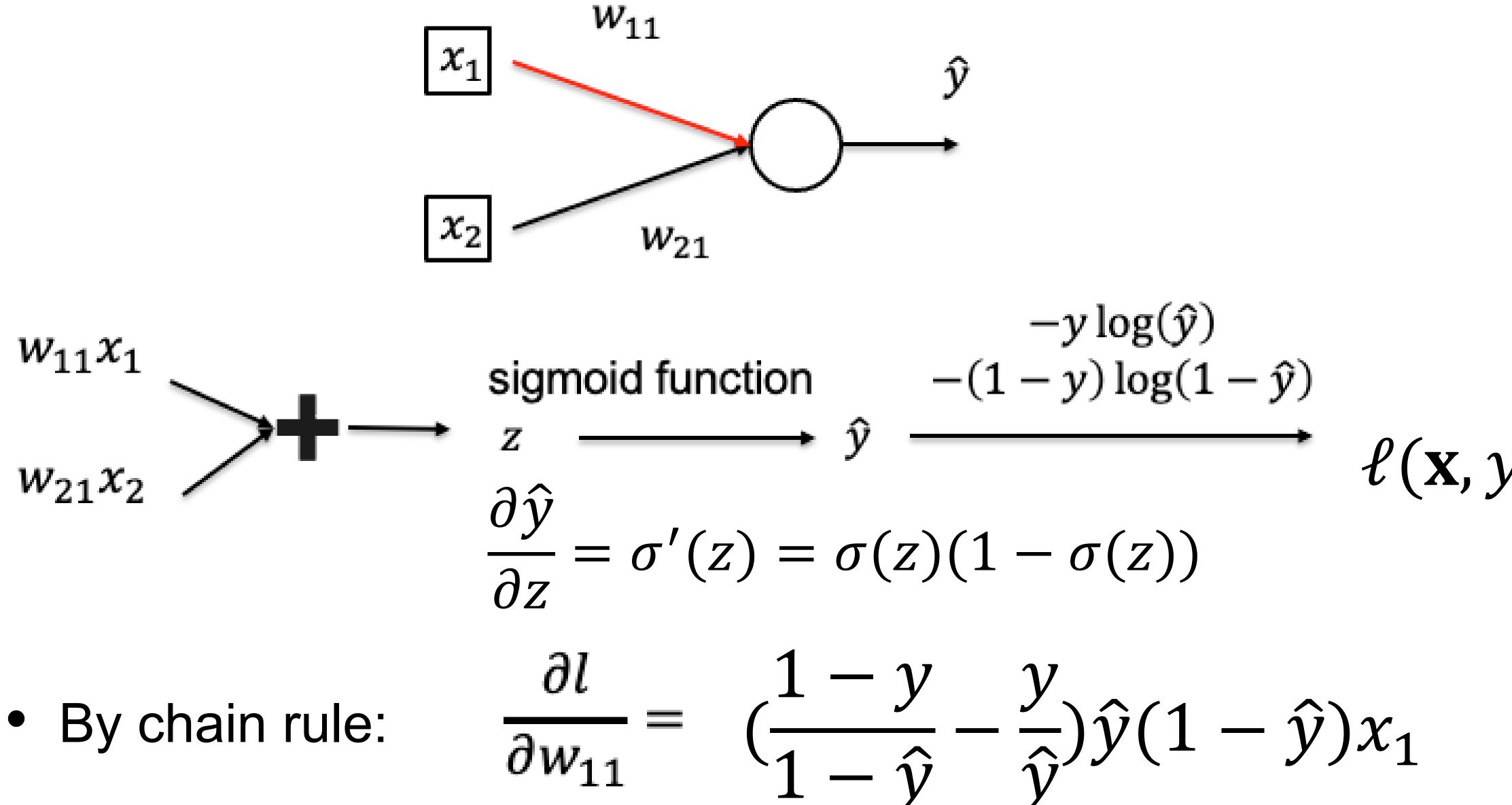


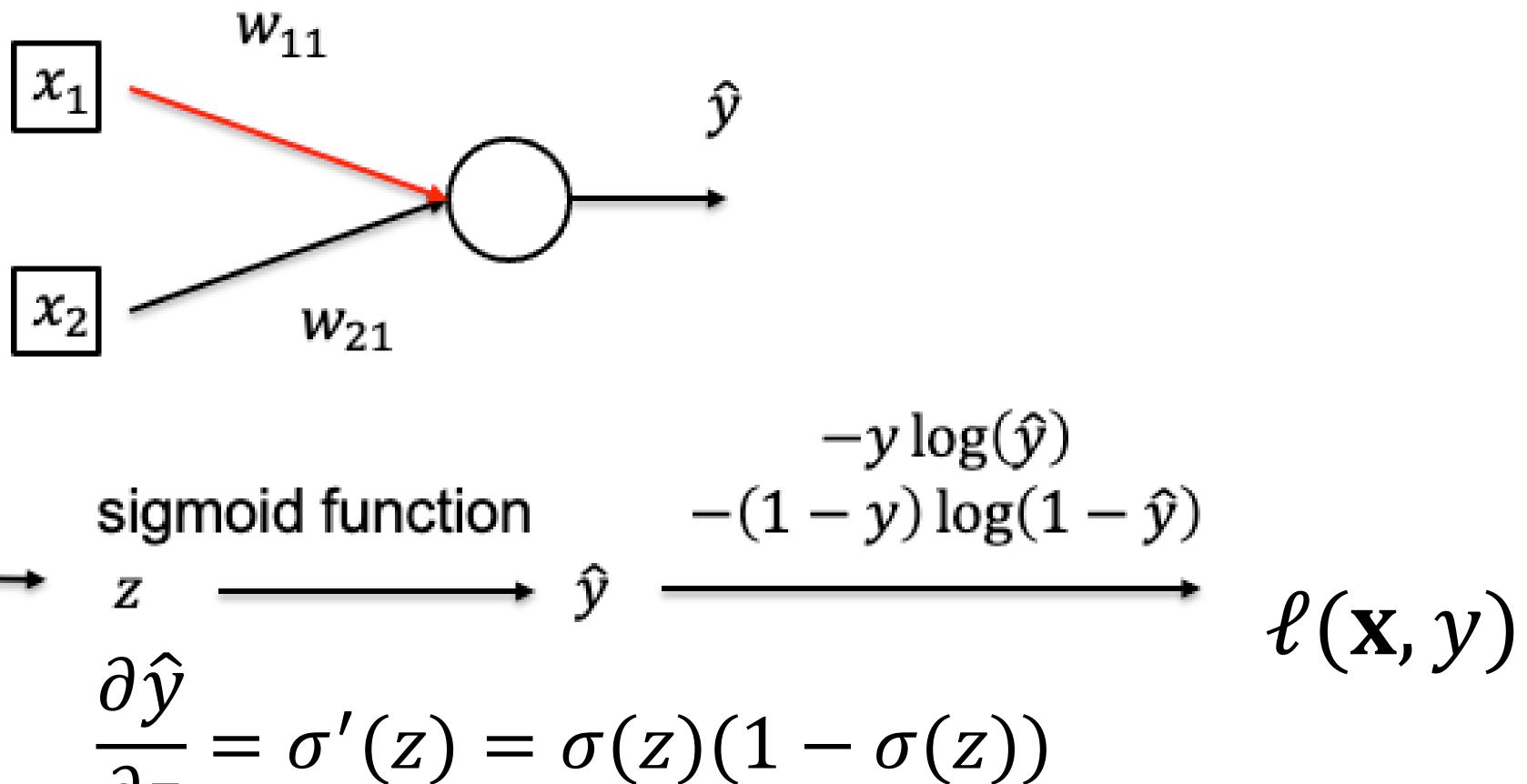


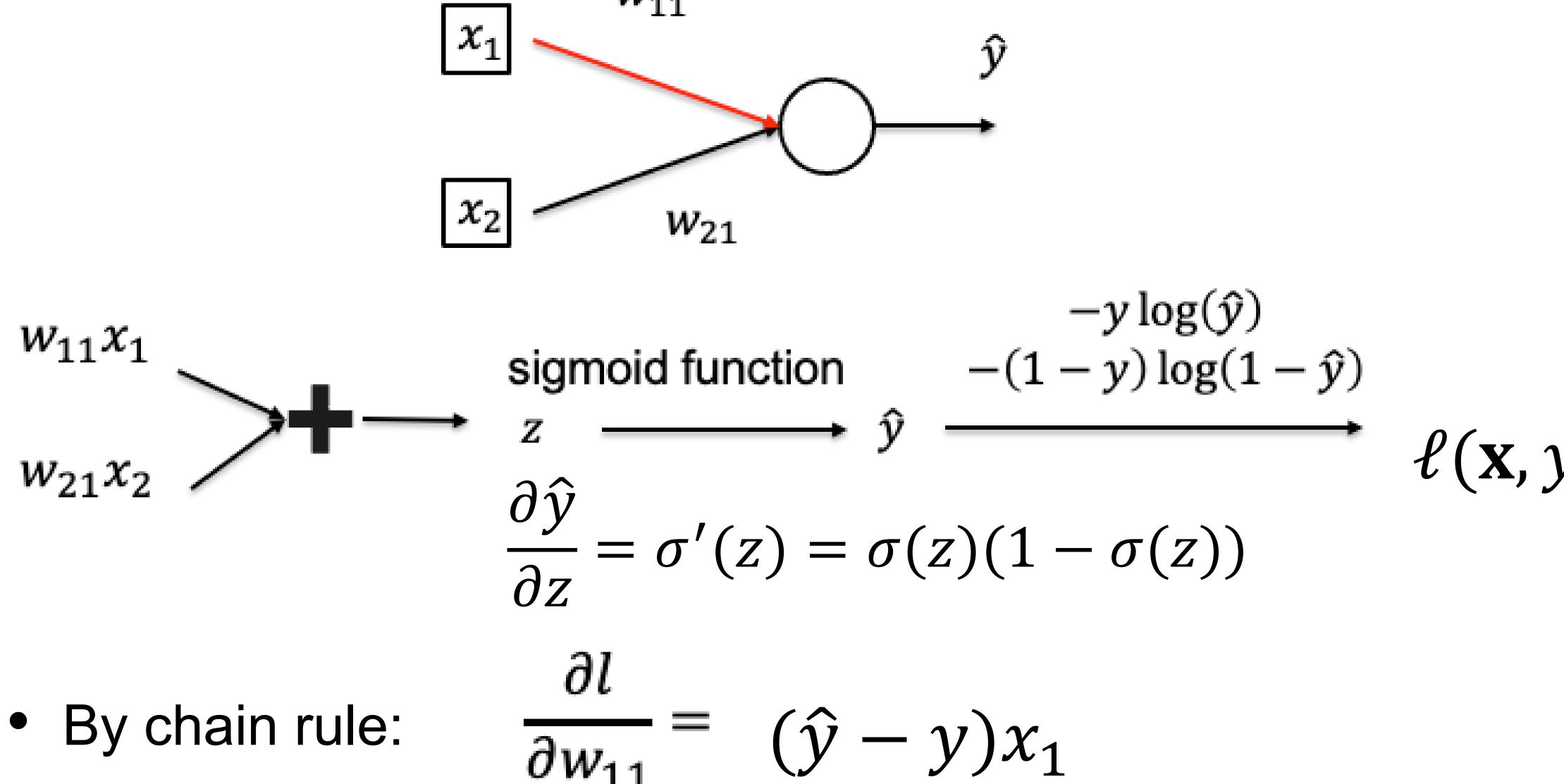


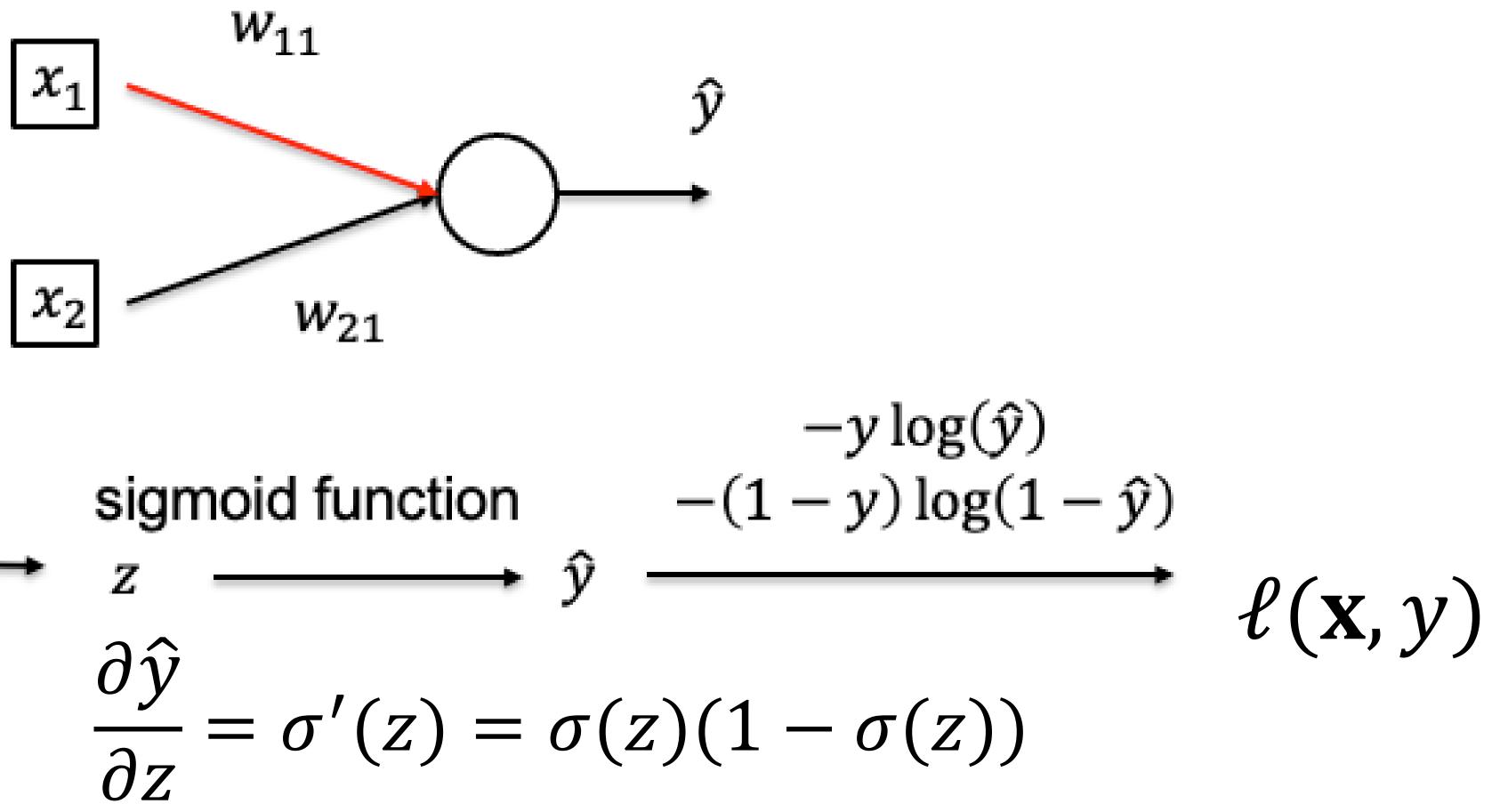


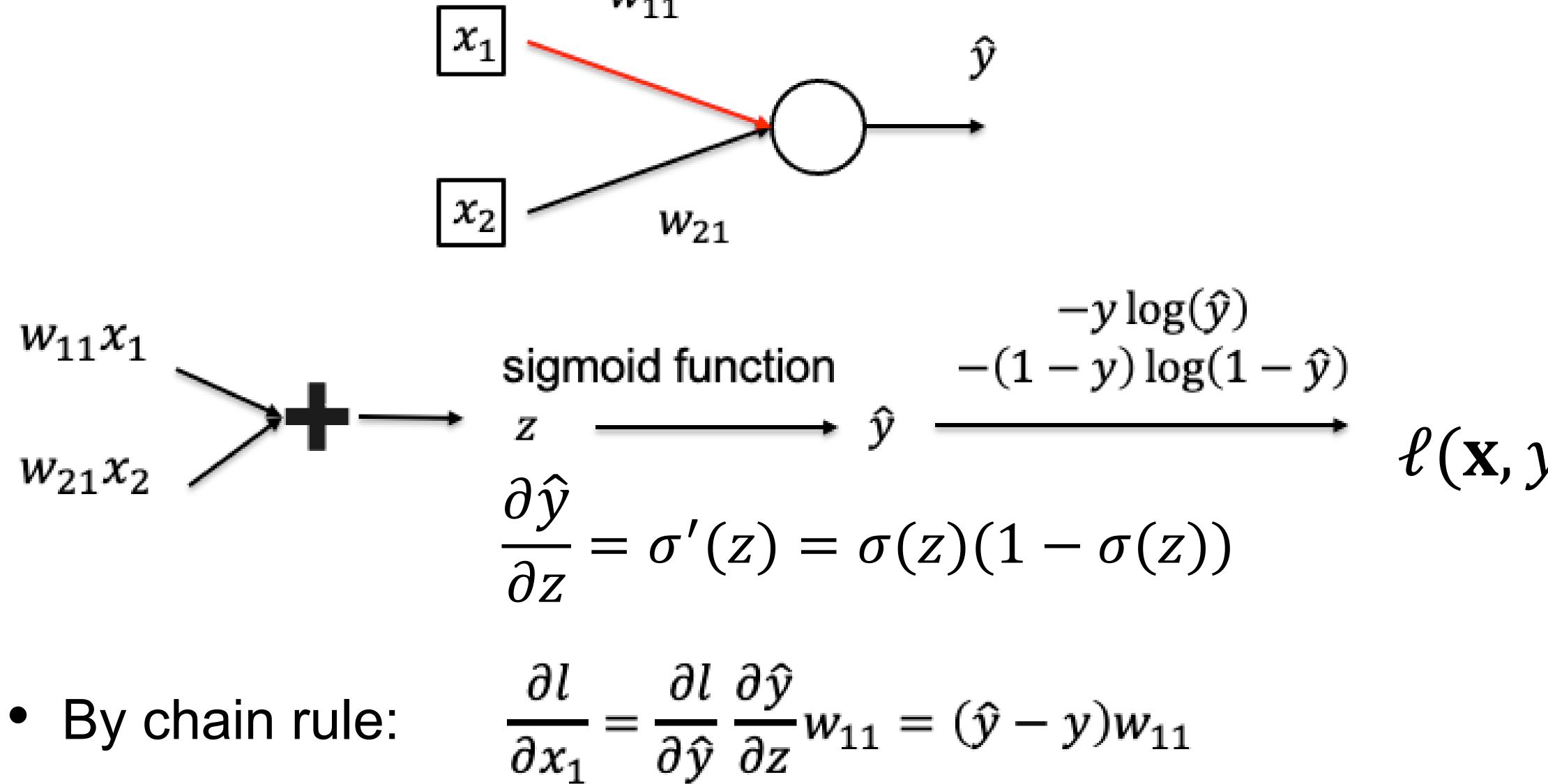


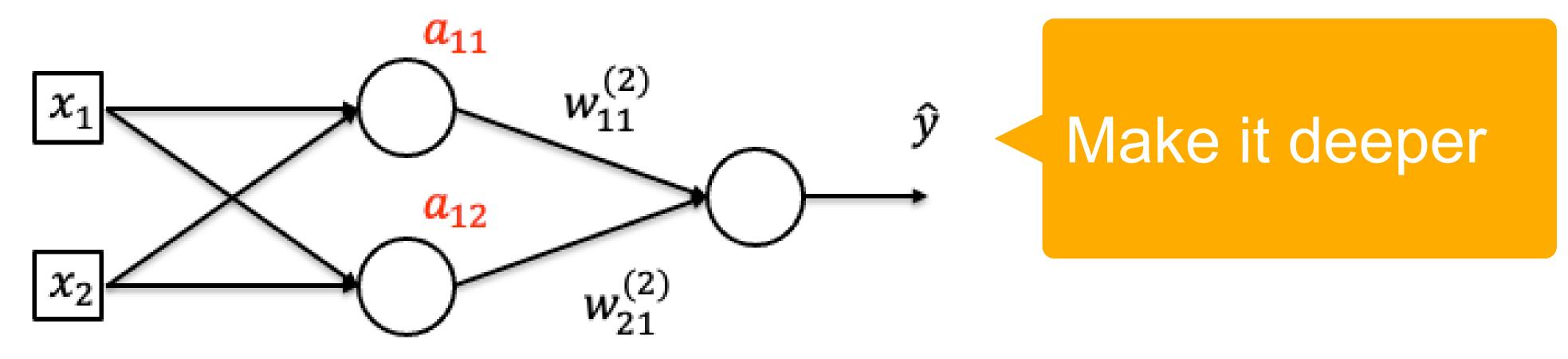


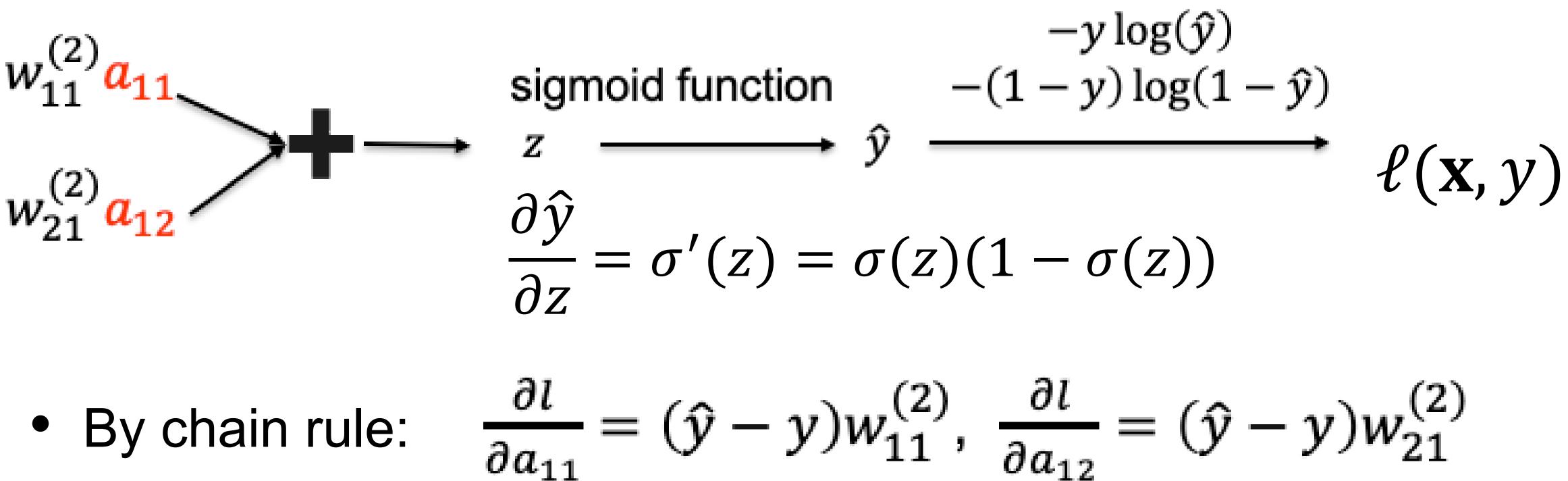


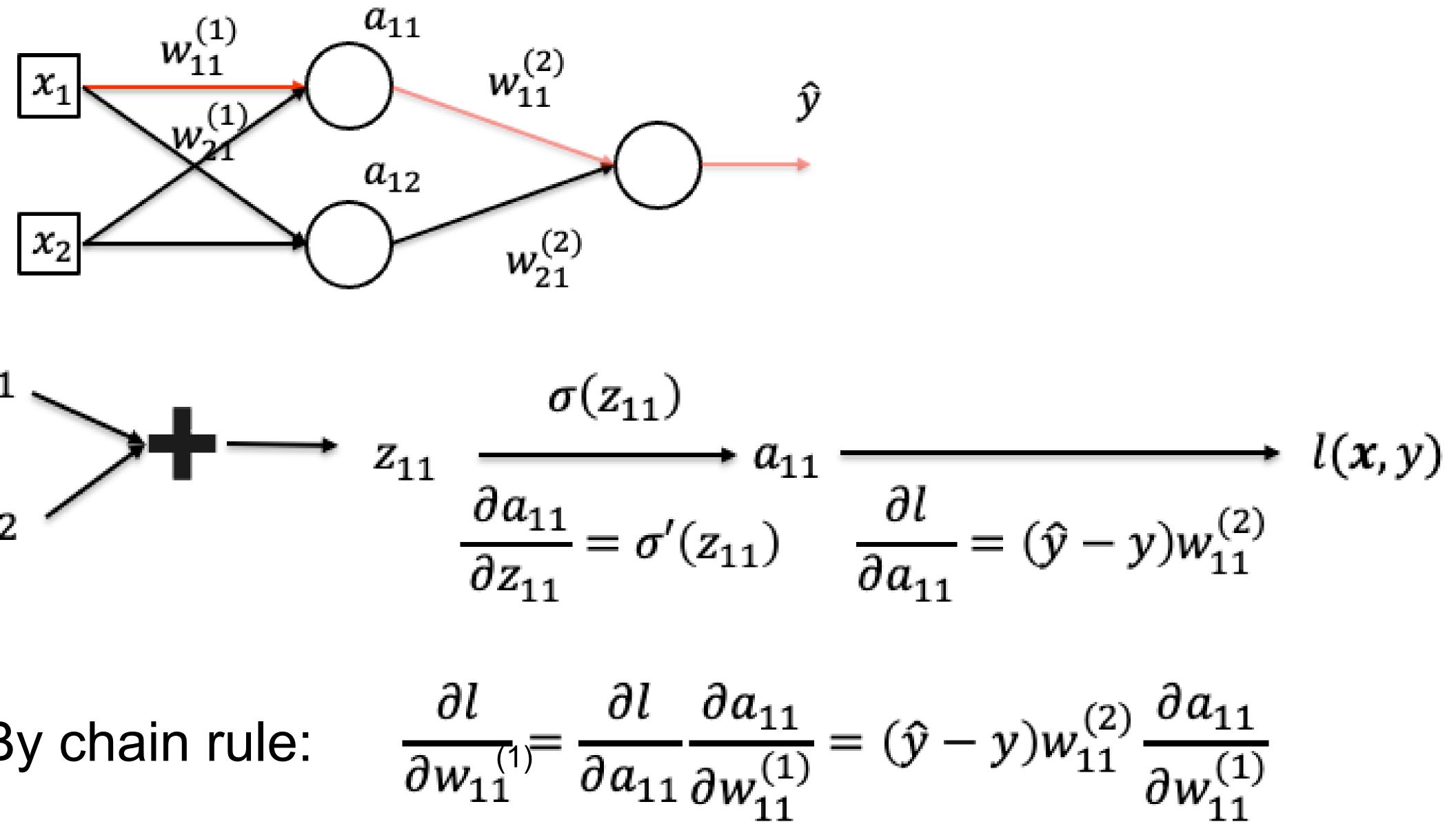


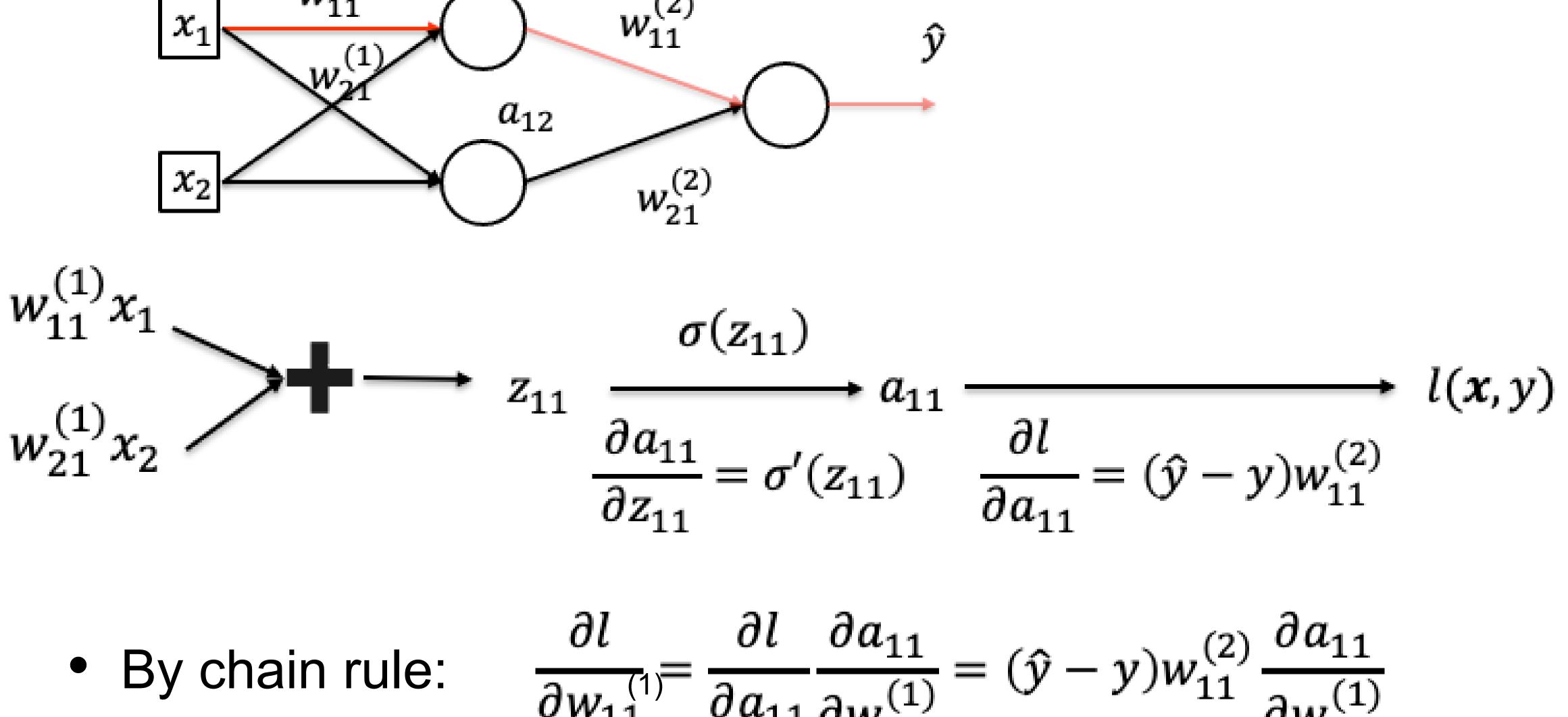


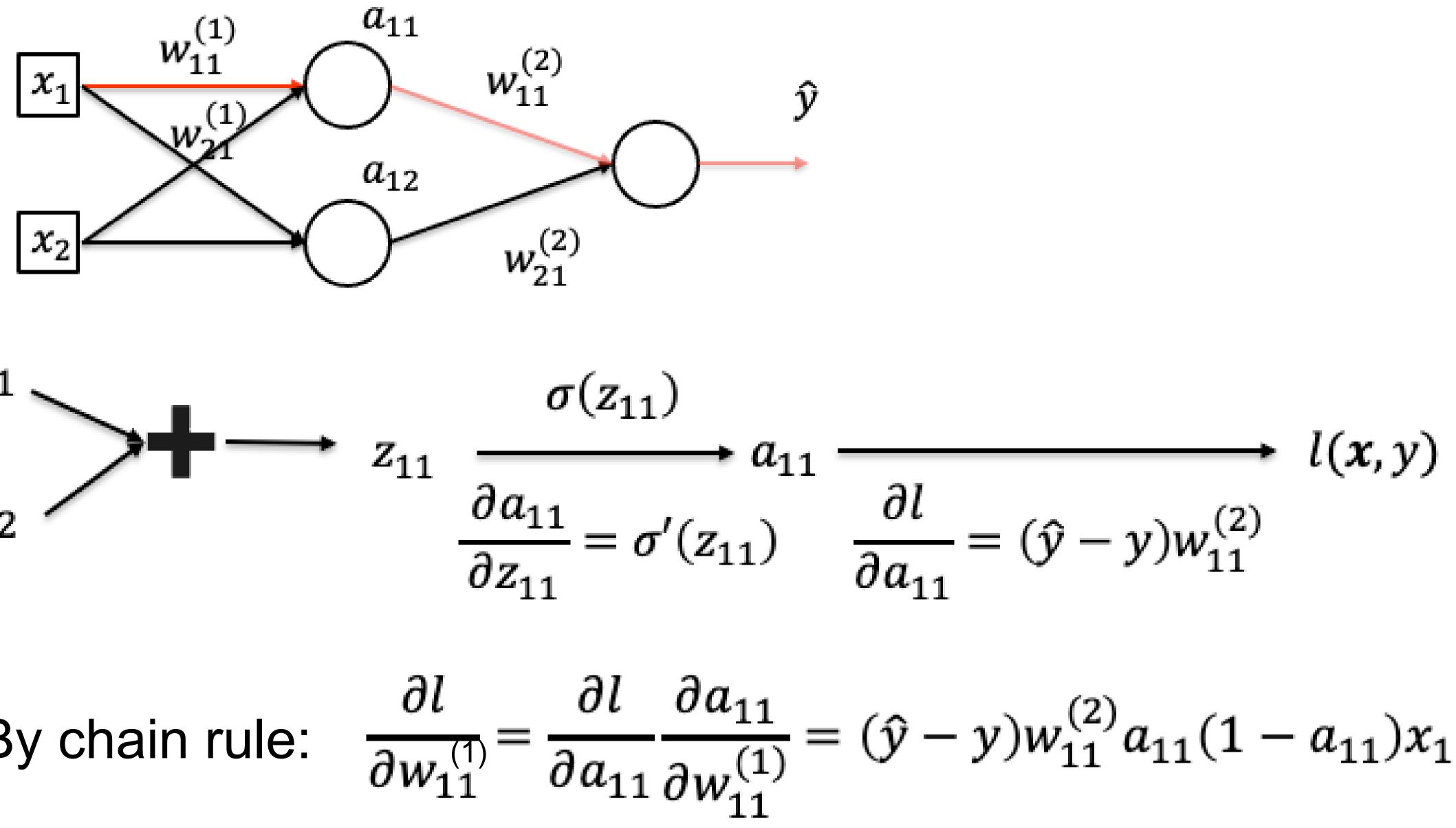


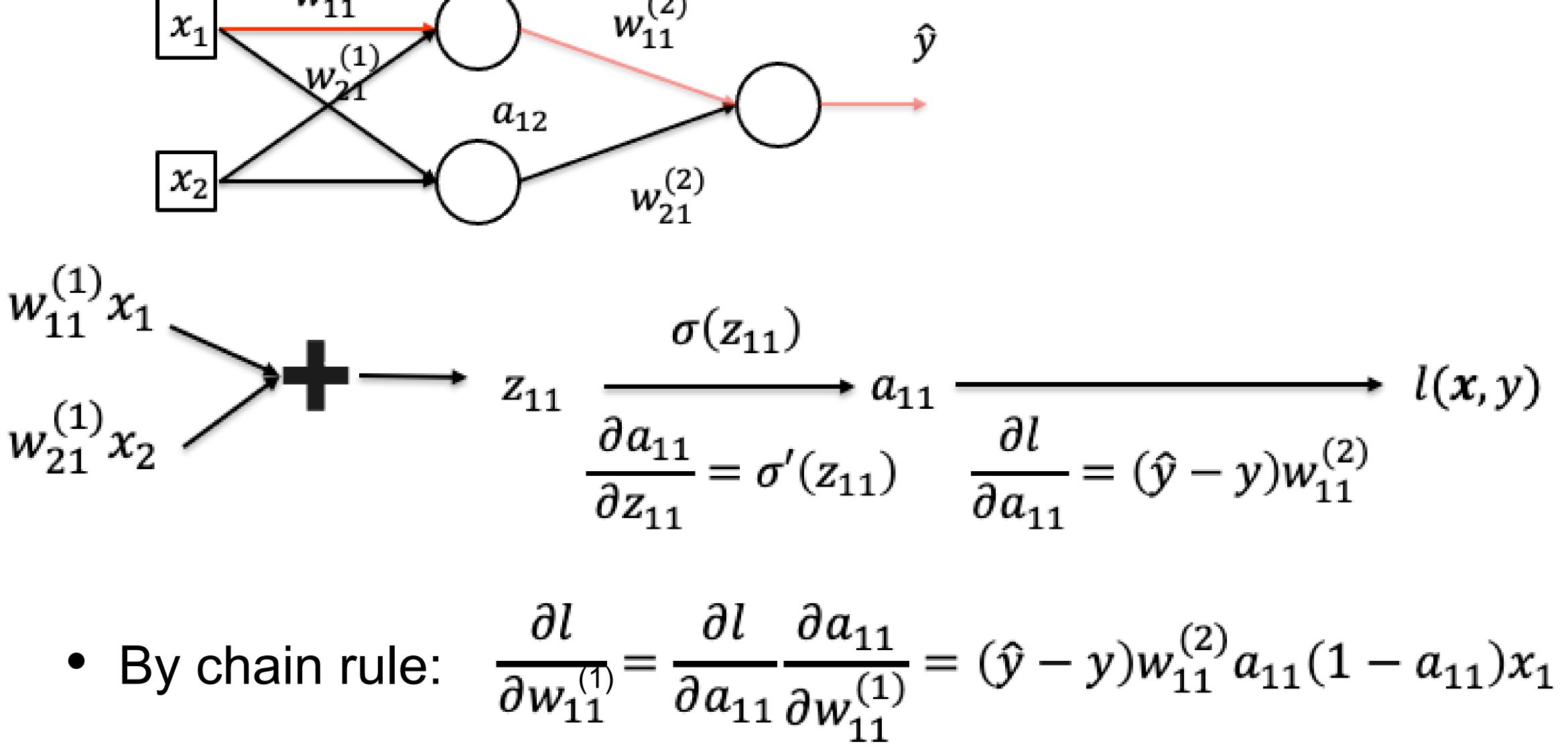


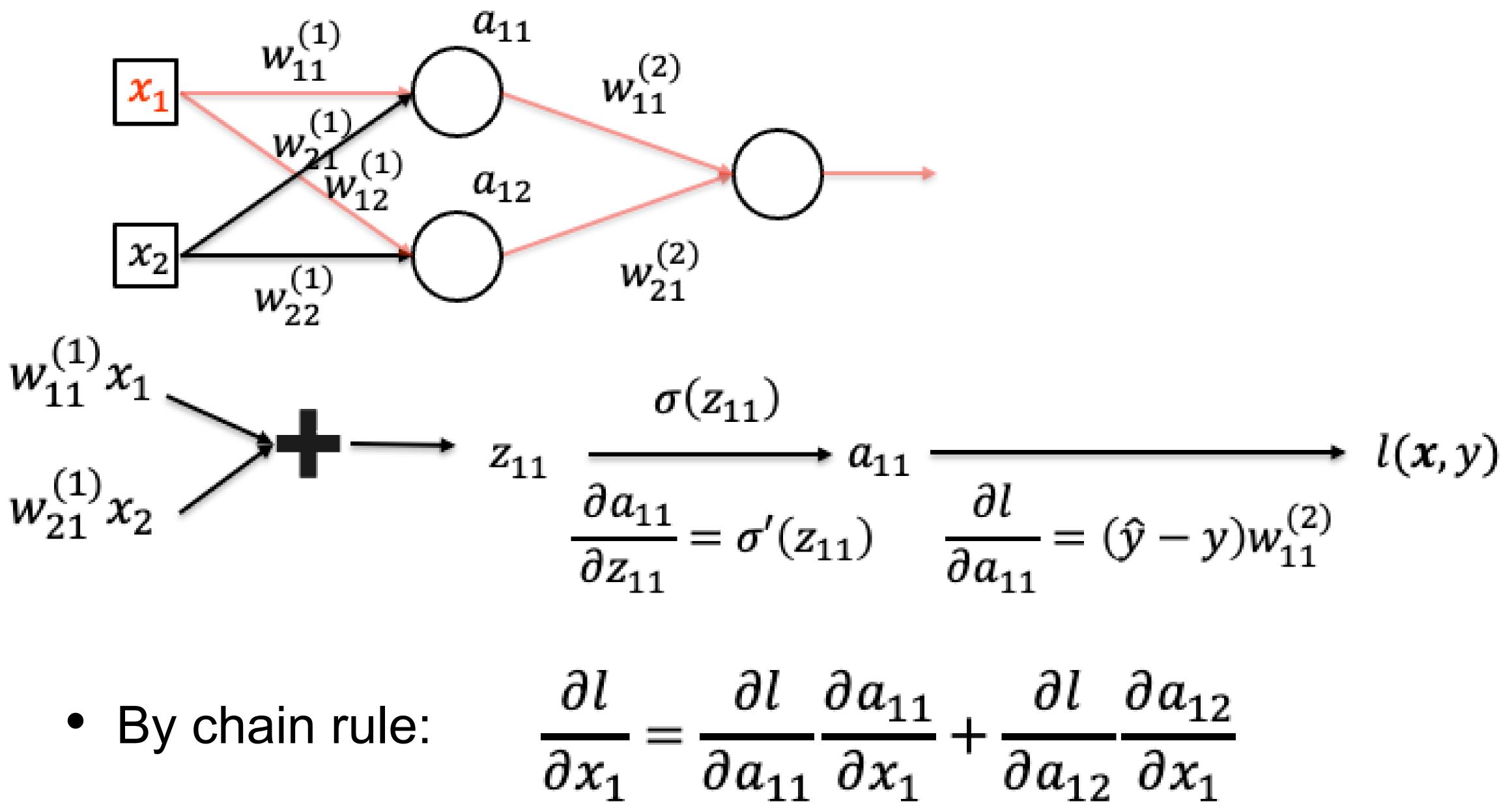












- A gradients, parameters
- B parameters, gradients
- C loss, parameters
- D parameters, loss

Gradient Descent in neural network training computes the loss function with respect to the model until convergence.

A gradients, parameters

- B parameters, gradients
- C loss, parameters
- D parameters, loss

Gradient Descent in neural network training computes the loss function with respect to the model _____ until convergence.

Suppose you are given a dataset with 1,000,000 images to train with. Which of the following methods is more desirable if training resources are limit but enough accuracy is needed?

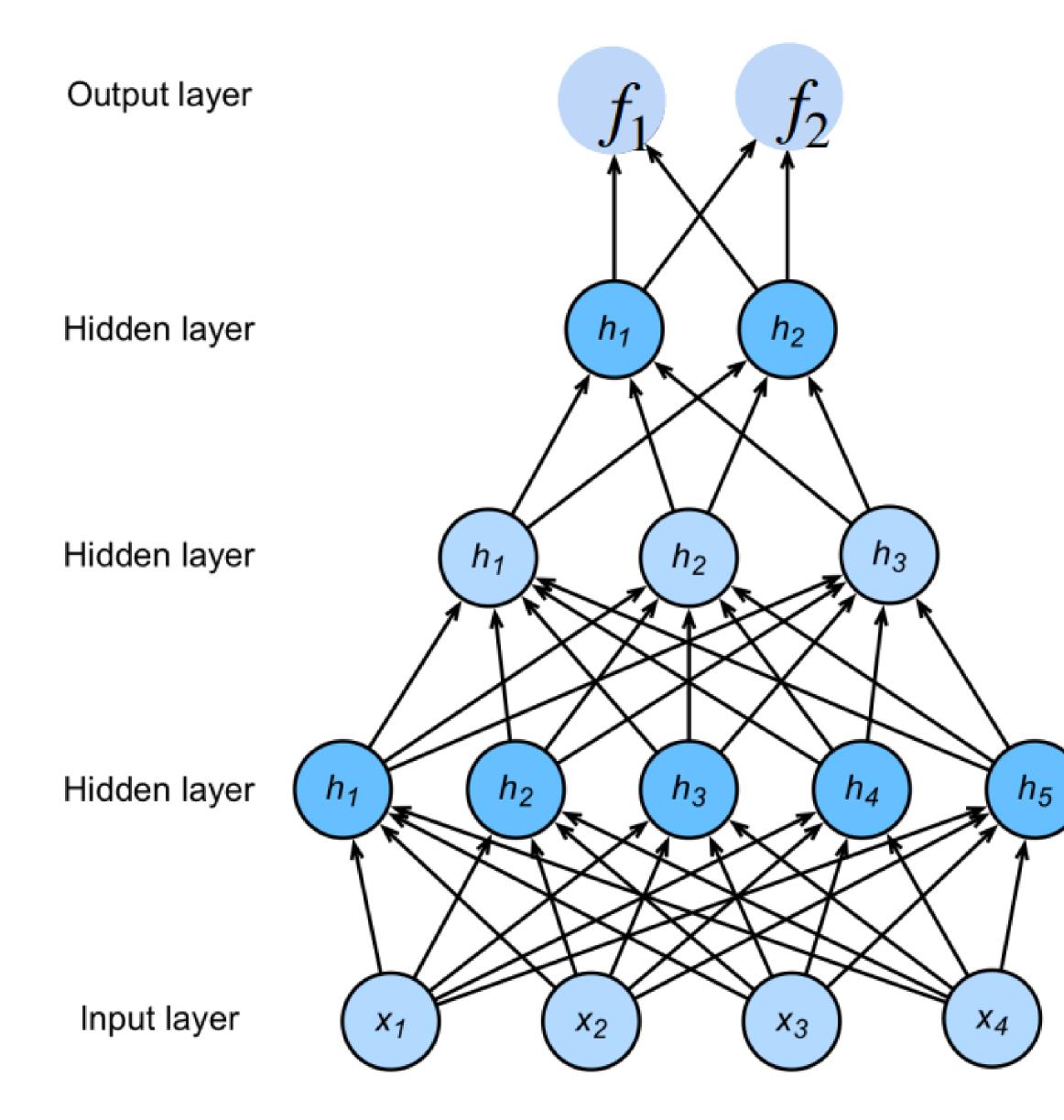
- A Gradient Descent
- **B** Stochastic Gradient Descent
- C Minibatch Stochastic Gradient Descent
- **D** Computation Graph

Suppose you are given a dataset with 1,000,000 images to train with. Which of the following methods is more desirable if training resources are limit but enough accuracy is needed?

- A Gradient Descent
- **B** Stochastic Gradient Descent
- C Minibatch Stochastic Gradient Descent
- **D** Computation Graph

Neural Networks as a Computational Graph

Deep neural networks (DNNs)

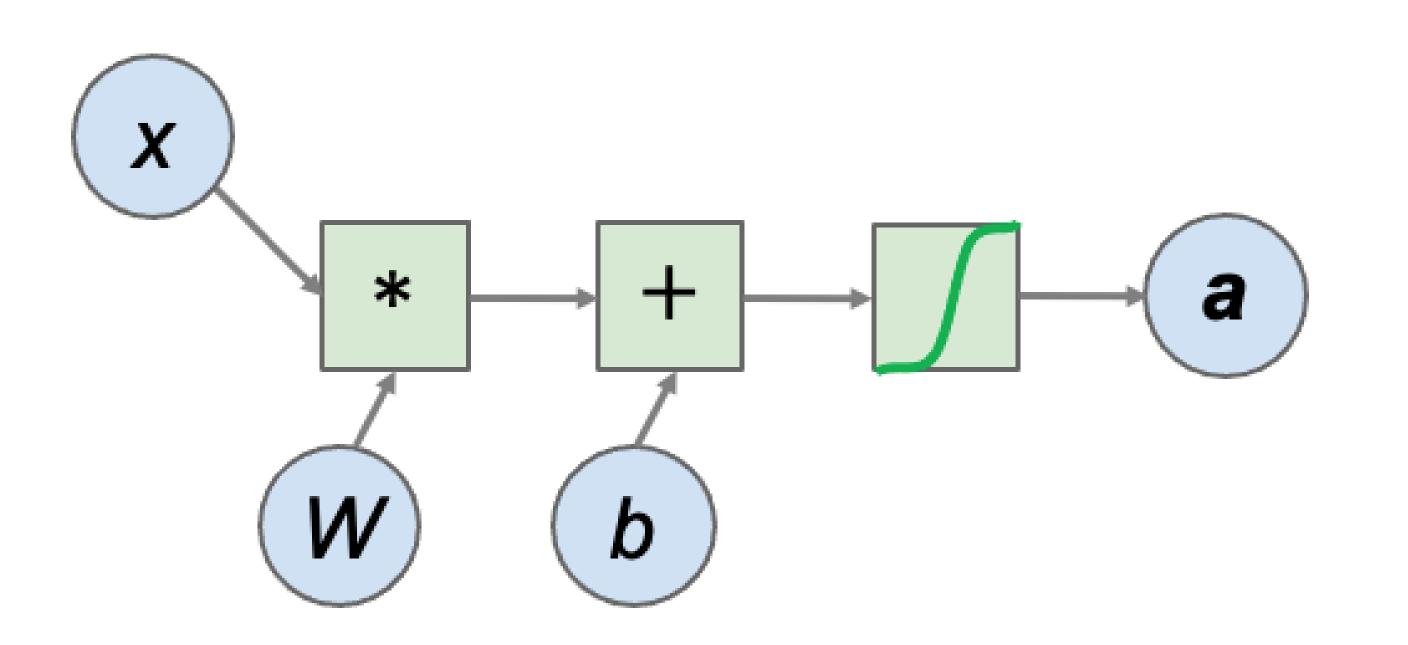


$h_1 = \sigma(W^{(1)}x + b^{(1)})$ $\mathbf{h}_2 = \sigma(\mathbf{W}^{(2)}\mathbf{h}_1 + \mathbf{b}^{(2)})$ $h_3 = \sigma(W^{(3)}h_2 + b^{(3)})$ $f = W^{(4)}h_3 + b^{(4)}$ $\mathbf{p} = \operatorname{softmax}(\mathbf{f})$

NNs are composition of nonlinear functions

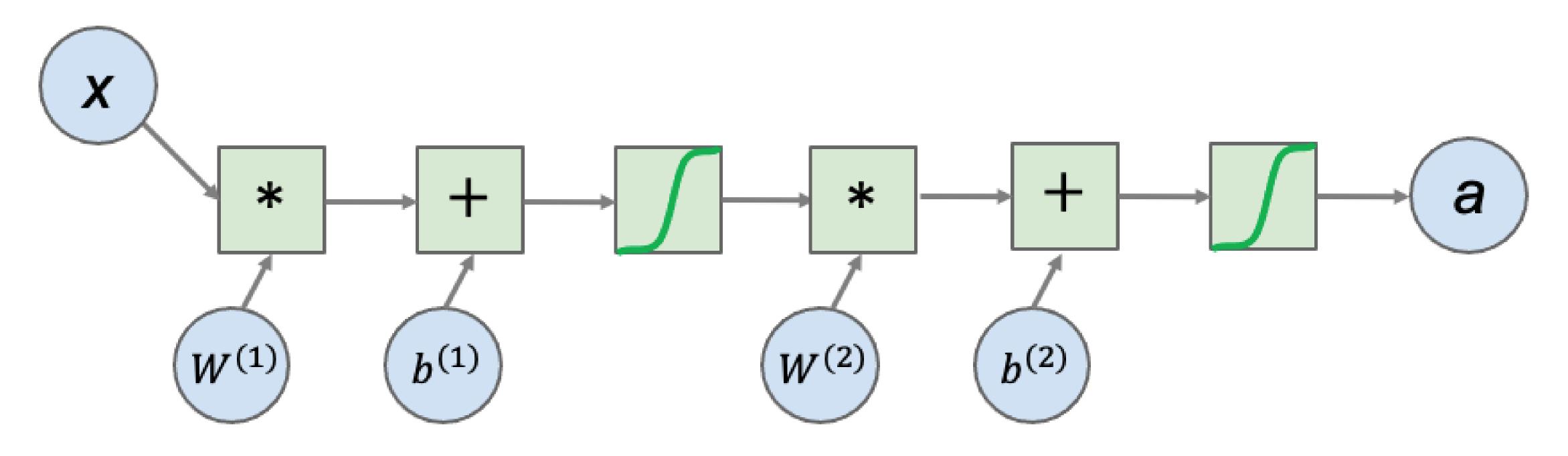
Neural networks as variables + operations

- $\mathbf{a} = sigmoid(\mathbf{W}\mathbf{x} + \mathbf{b})$
- Can describe with a computational graph
- Decompose functions into atomic operations
- Separate data (variables) and computing (operations)



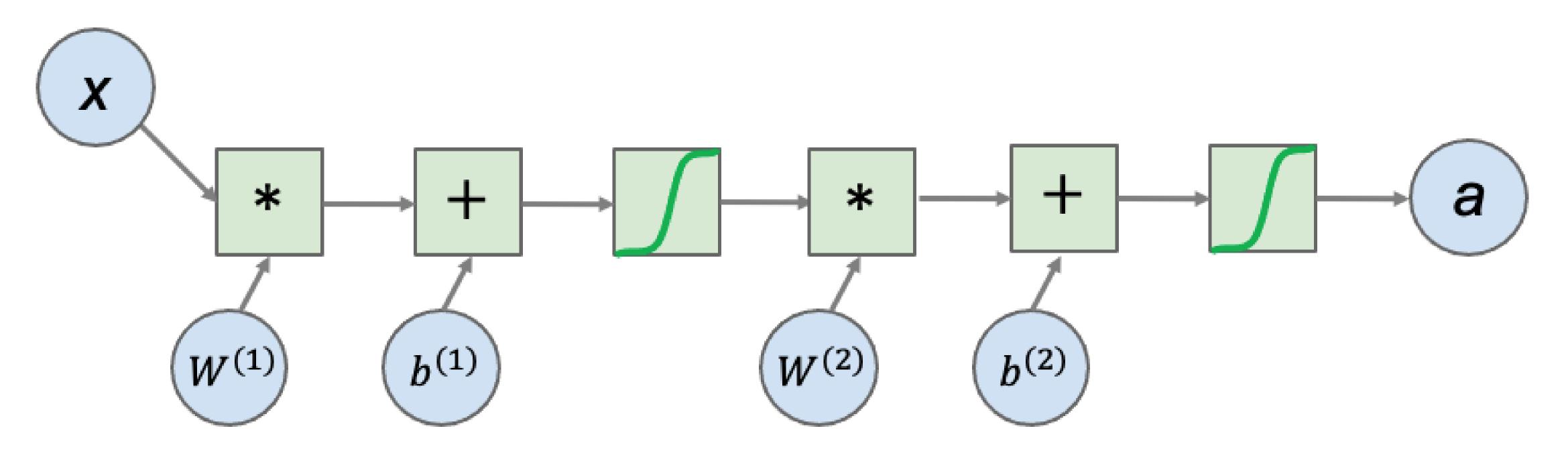
Neural networks as a computational graph

• A two-layer neural network

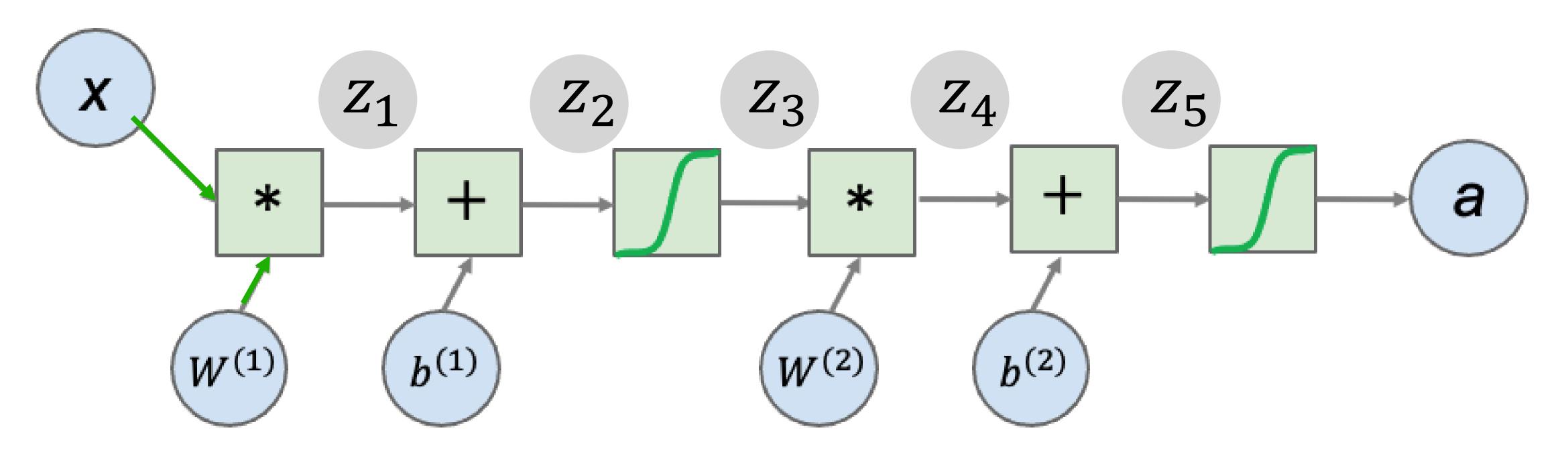


Neural networks as a computational graph

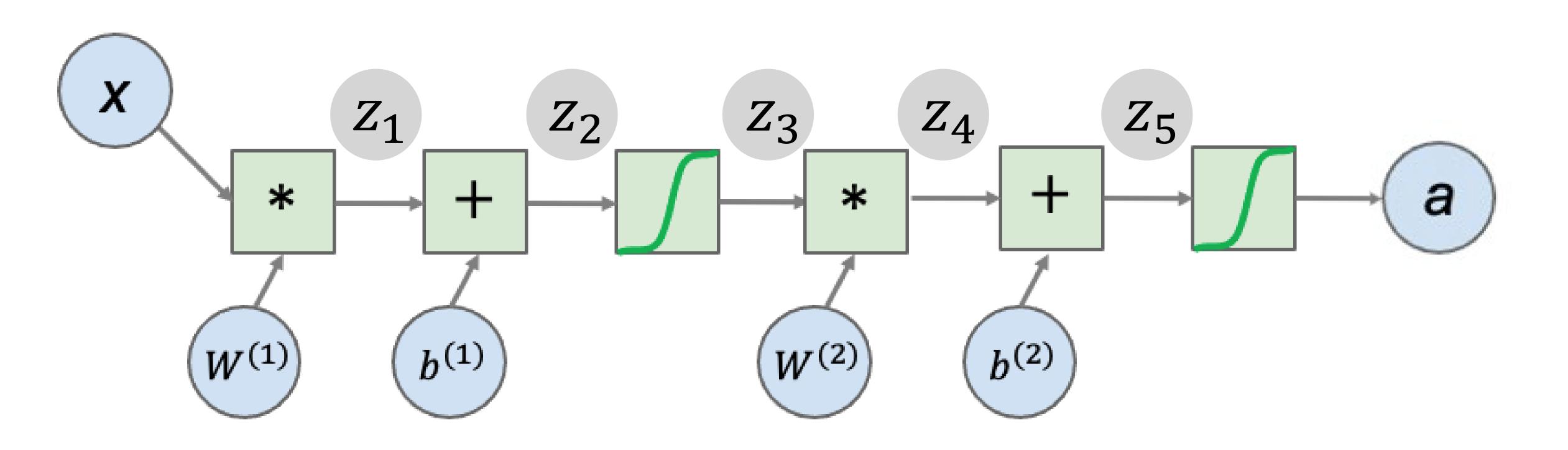
- A two-layer neural network
- Forward propagation vs. backward propagation



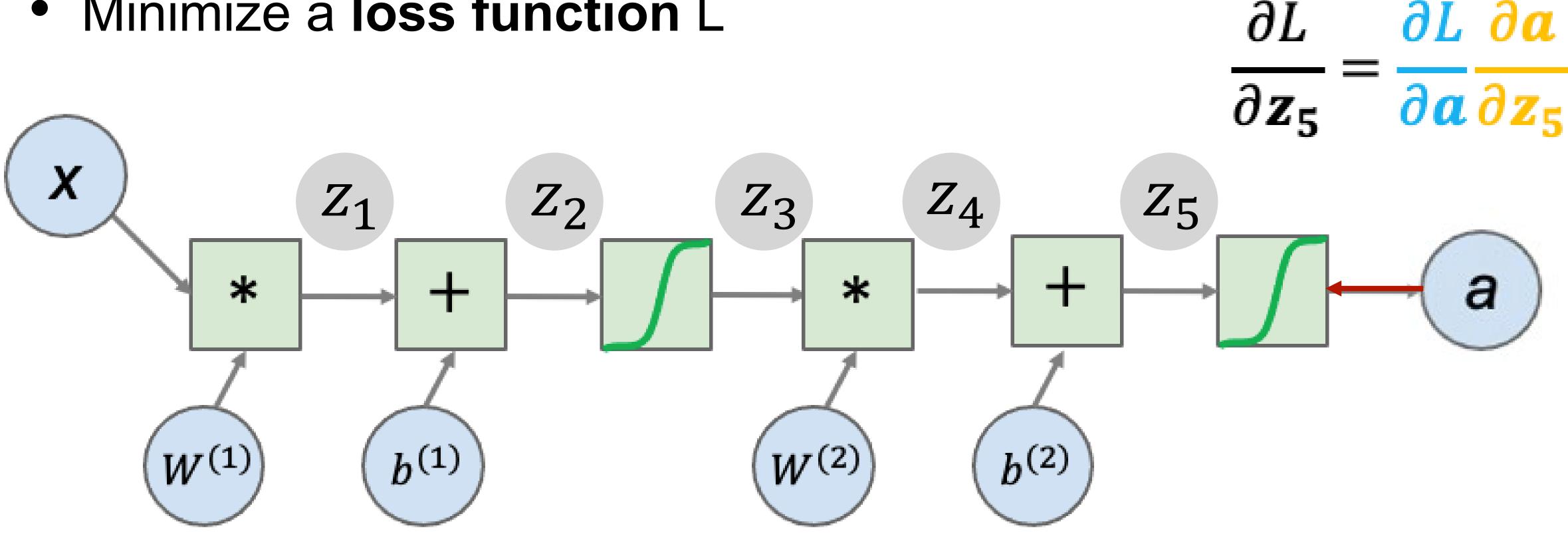
- A two-layer neural network
- Intermediate variables Z



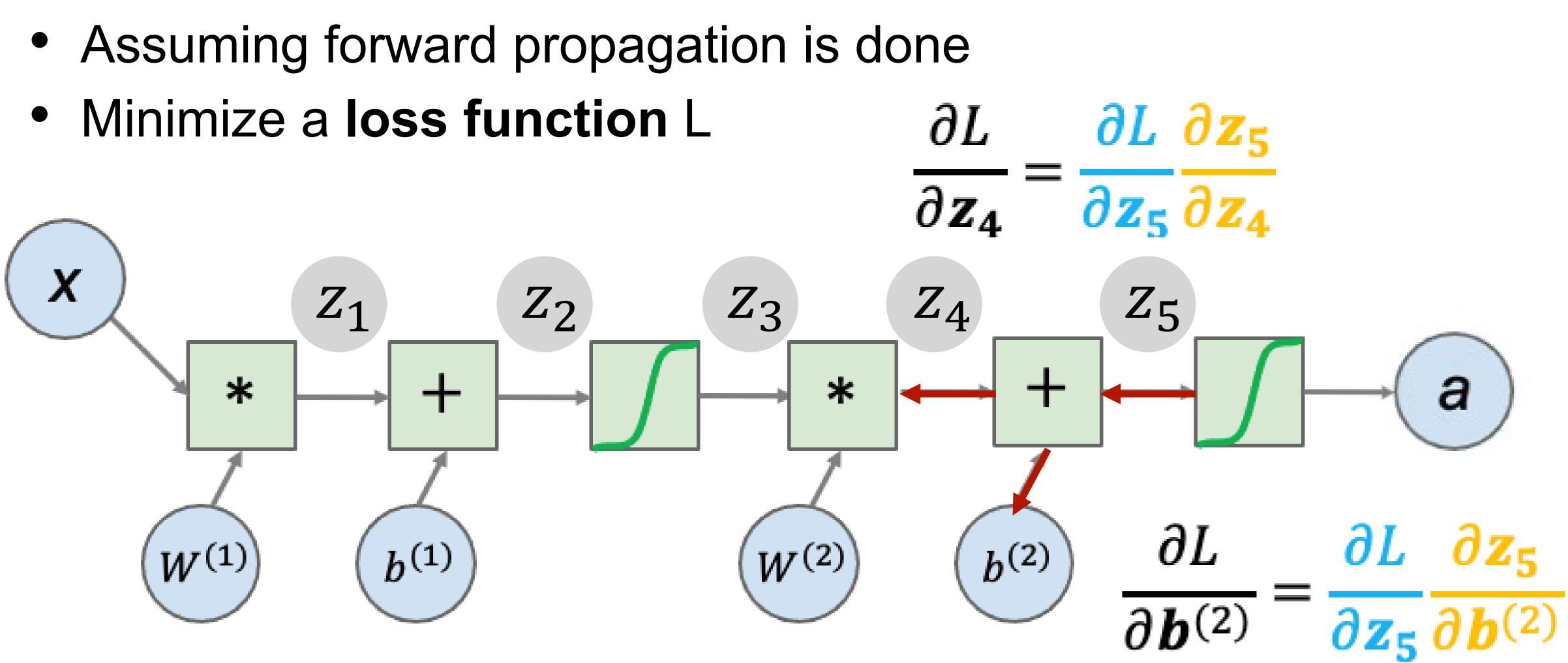
- A two-layer neural network
- Assuming forward propagation is done
- Minimize a loss function L



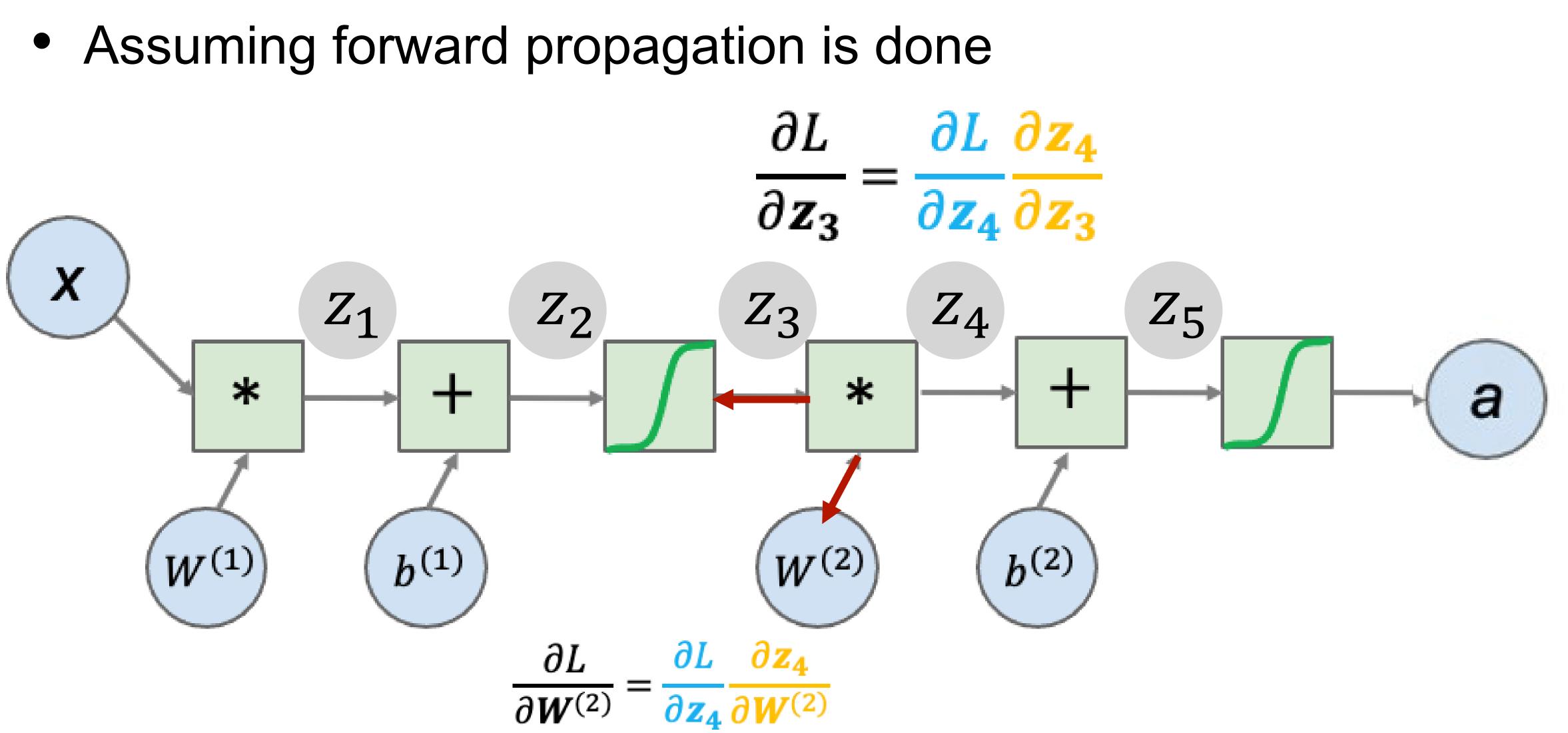
- A two-layer neural network
- Assuming forward propagation is done
- Minimize a loss function L



- A two-layer neural network



- A two-layer neural network



Backward propagation: A modern treatment

- First, define a neural network as a computational graph Nodes are variables and operations.
- Must be a directed graph
- All operations must be differentiable.
- Backpropagation computes partial derivatives starting from the loss and then working backwards through the graph.

Backward propagation: PyTorch

for t in range(2000):

Forward pass: compute predicted y by passing x to the # override the __call__ operator so you can call them] # doing so you pass a Tensor of input data to the Modul # a Tensor of output data.

y_pred = model(xx)

```
# Compute and print loss. We pass Tensors containing th
# values of y, and the loss function returns a Tensor (
# loss.
loss = loss_fn(y_pred, y)
```

```
if t % 100 == 99:
```

print(t, loss.item())

```
# Zero the gradients before running the backward pass.
model.zero_grad()
```

```
# Backward pass: compute gradient of the loss with resp
# parameters of the model. Internally, the parameters (
# in Tensors with requires_grad=True, so this call will
# all learnable parameters in the model.
```

loss.backward()

```
# Update the weights using gradient descent. Each para
# we can access its gradients like we did before.
with torch.no_grad():
    for param in model.parameters():
        param -= learning_rate * param.grad
```

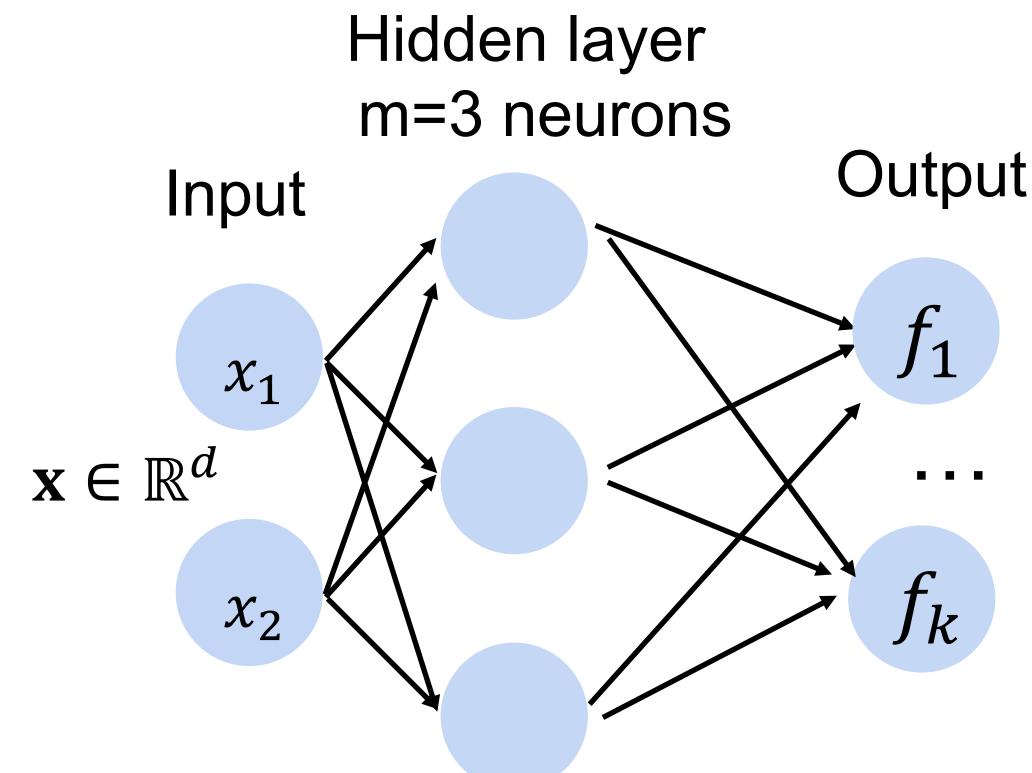

Forward propagation

Backward propagation

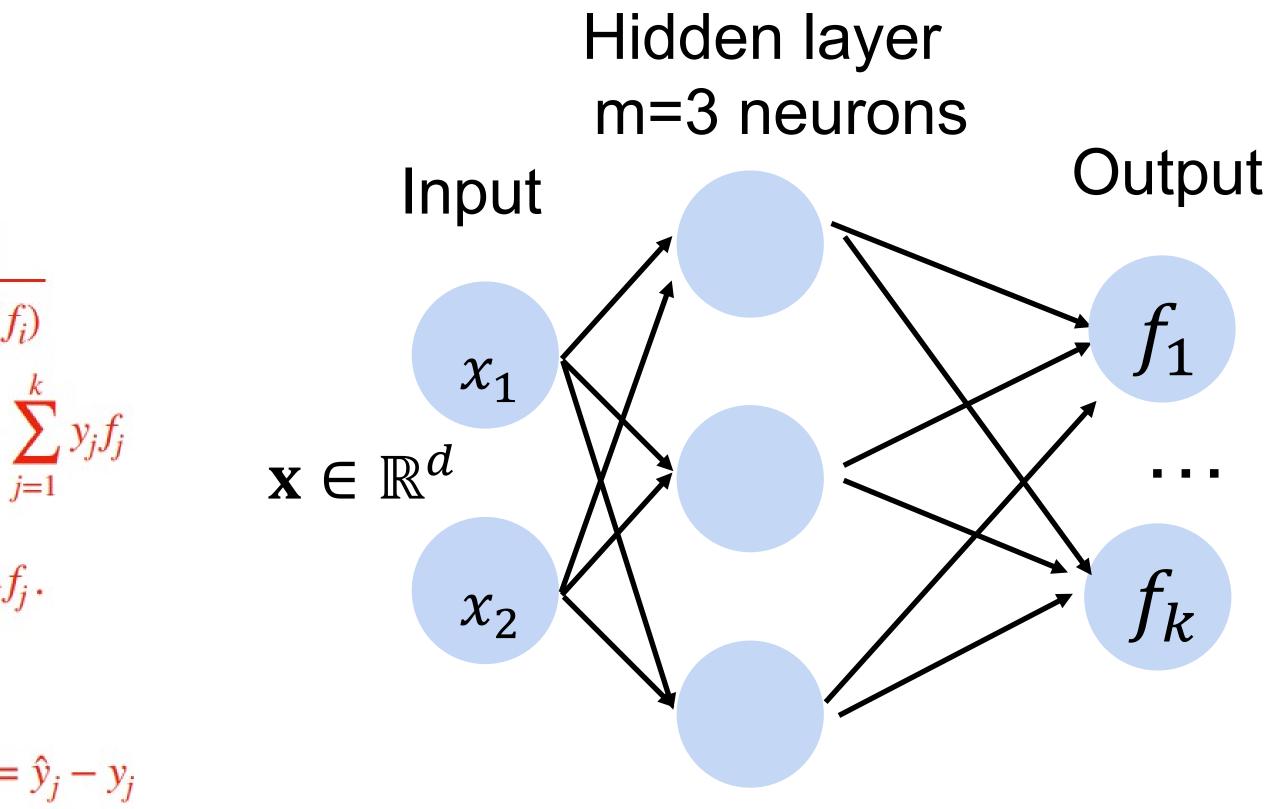
Gradient Descent

Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss $\ell(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{j=1}^{n} y_j \log \hat{\mathbf{y}}_j$, where the ground truth and predicted probabilities $\mathbf{y}, \hat{\mathbf{y}} \in \mathbb{R}^k$. Recall that the softmax function turns output into probabilities: $\hat{y}_j = \frac{\exp f_j(x)}{\sum_{i=1}^{k} \exp f_i(x)}$. What is the partial derivative $\partial_{f_j} \ell(\mathbf{y}, \hat{\mathbf{y}})$?

$$A.\hat{y}_j - y_j$$
$$B. \exp(y_j) - y_j$$
$$C. y_j - \hat{y}_j$$



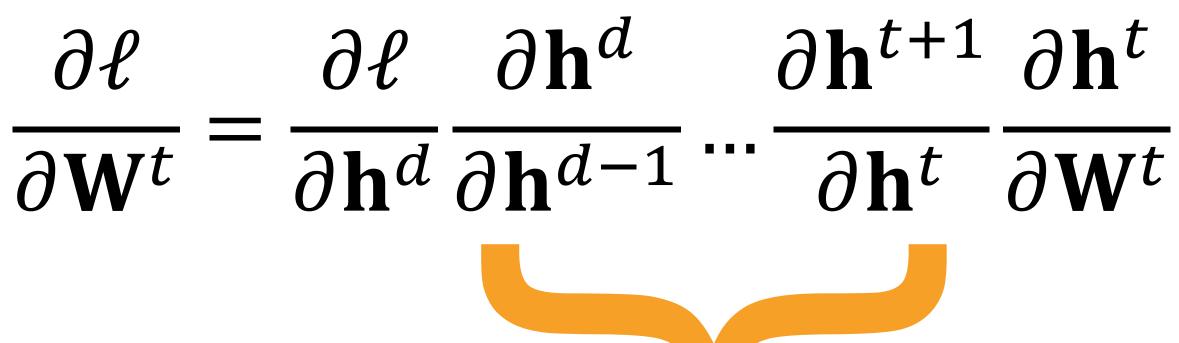
Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss $\ell(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{j=1}^{n} y_j \log \hat{\mathbf{y}}_j$, where the ground truth and predicted probabilities $\mathbf{y}, \hat{\mathbf{y}} \in \mathbb{R}^k$. Recall that the softmax function turns output into probabilities: $\hat{y}_j = \frac{\exp f_j(x)}{\sum_{i=1}^{k} \exp f_i(x)}$. What is the partial derivative $\partial_{f_j} \ell(\mathbf{y}, \hat{\mathbf{y}})$?



Numerical Stability

Gradients for Neural Networks

• Compute the gradient of the loss ℓ w.r.t. W_t



Multiplication of *many* matrices

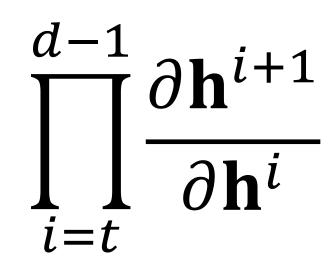
 $\partial \ell \quad \partial \mathbf{h}^d \quad \partial \mathbf{h}^{t+1} \ \partial \mathbf{h}^t$

Wikipedia

Two Issues for Deep Neural Networks

Gradient Exploding

$1.5^{100} \approx 4 \times 10^{17}$



Gradient Vanishing

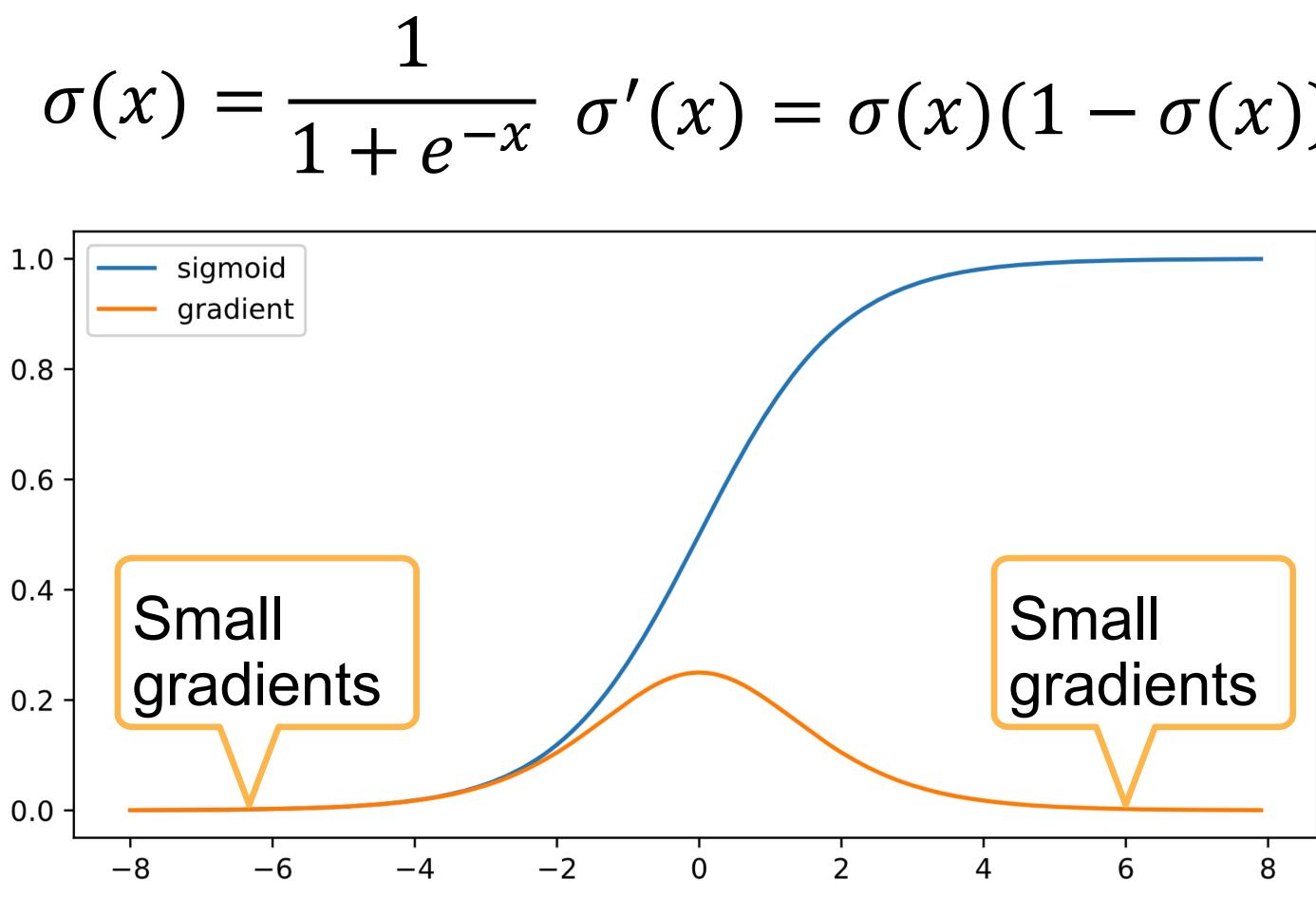
$0.8^{100} \approx 2 \times 10^{-10}$

Issues with Gradient Exploding

- Value out of range: infinity value (NaN)
- Sensitive to learning rate (LR)
 - Not small enough LR \rightarrow larger gradients
 - Too small LR \rightarrow No progress
 - May need to change LR dramatically during training

Gradient Vanishing

Use sigmoid as the activation function



$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Issues with Gradient Vanishing

- Gradients with value 0
- No progress in training
 - No matter how to choose learning rate
- Severe with bottom layers (those near the input)
 - Only top layers (near output) are well trained
 - No benefit to make networks deeper

learning rate (those near the input) out) are well trained orks deeper

How to stabilize training?

Stabilize Training: Practical Considerations

- Goal: make sure gradient values are in a proper range
 - E.g. in [1e-6, 1e3]
- Multiplication \rightarrow plus
 - Architecture change (e.g., ResNet)
- Normalize
 - Batch Normalization, Gradient clipping
- Proper activation functions

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural networks? Multiple answers are possible.

- A.Deeper neural networks tend to be more susceptible to vanishing gradients.
- B.Using the ReLU function can reduce this problem.
- C. If a network has the vanishing gradient problem for one training point due to the
- sigmoid function, it will also have a vanishing gradient for every other training point.
- D. Networks with sigmoid functions don't suffer from the vanishing gradient problem if
- trained with the cross-entropy loss.

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural networks? Multiple answers are possible?

- A.Deeper neural networks tend to be more susceptible to vanishing gradients.
- B.Using the ReLU function can reduce this problem.
- C. If a network has the vanishing gradient problem for one training point due to the
- sigmoid function, it will also have a vanishing gradient for every other training point.
- D. Networks with sigmoid functions don't suffer from the vanishing gradient problem if
- trained with the cross-entropy loss.

Quiz. Let's compare sigmoid with rectified linear unit (ReLU). Which of the following statement is NOT true?

- A. Sigmoid function is more expensive to compute
- B. ReLU has non-zero gradient everywhere
- C. The gradient of Sigmoid is always less than 0.3
- D. The gradient of ReLU is constant for positive input

Quiz. Let's compare sigmoid with rectified linear unit (ReLU). Which of the following statement is NOT true?

- A. Sigmoid function is more expensive to compute
- B. ReLU has non-zero gradient everywhere
- C. The gradient of Sigmoid is always less than 0.3
- D. The gradient of ReLU is constant for positive input

Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f'(0)=1. Does it have non-zero gradient everywhere??

A.Yes

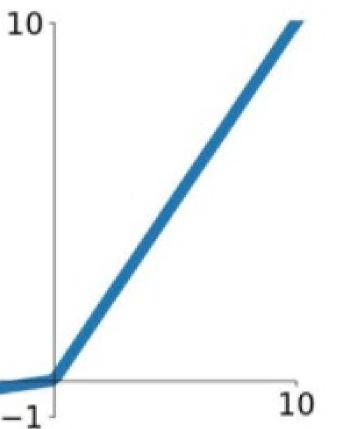
B. No

Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f'(0)=1. Does it have non-zero gradient everywhere??

A.Yes

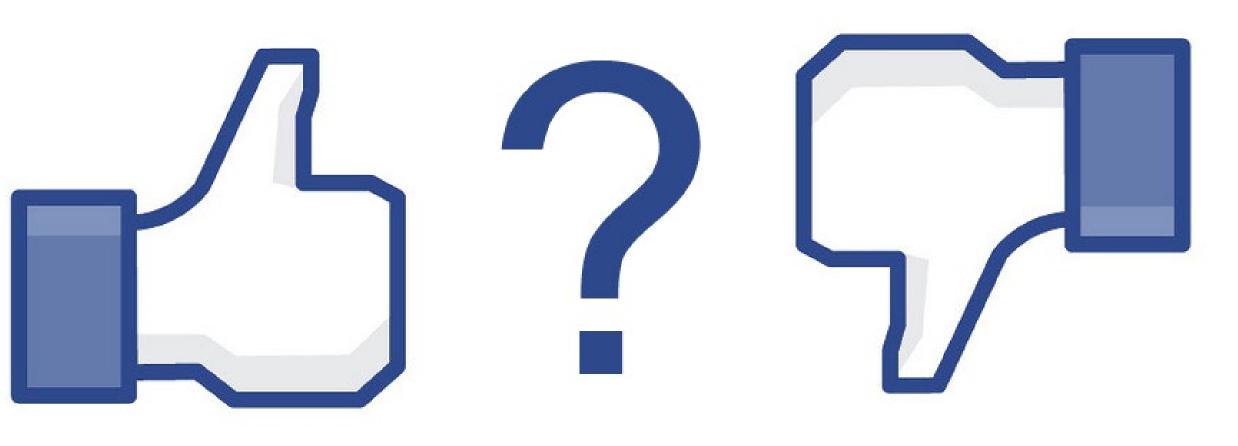
B. No

-10 -1



Generalization & Regularization

How good are the models?



Training Error and Generalization Error

- Training error: model error on the training data
- Generalization error: model error on new data
- Example: practice a future exam with past exams
 - Doing well on past exams (training error) doesn't guarantee a good score on the future exam (generalization error)

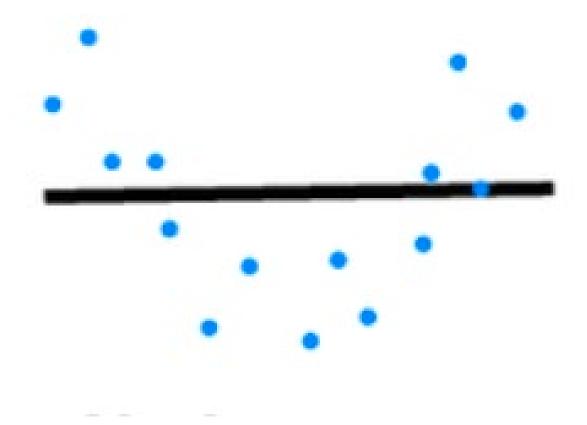
Underfitting Overfitting

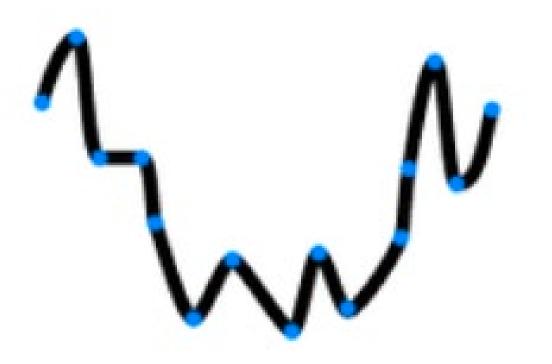
Image credit: hackernoon.com

Model Capacity

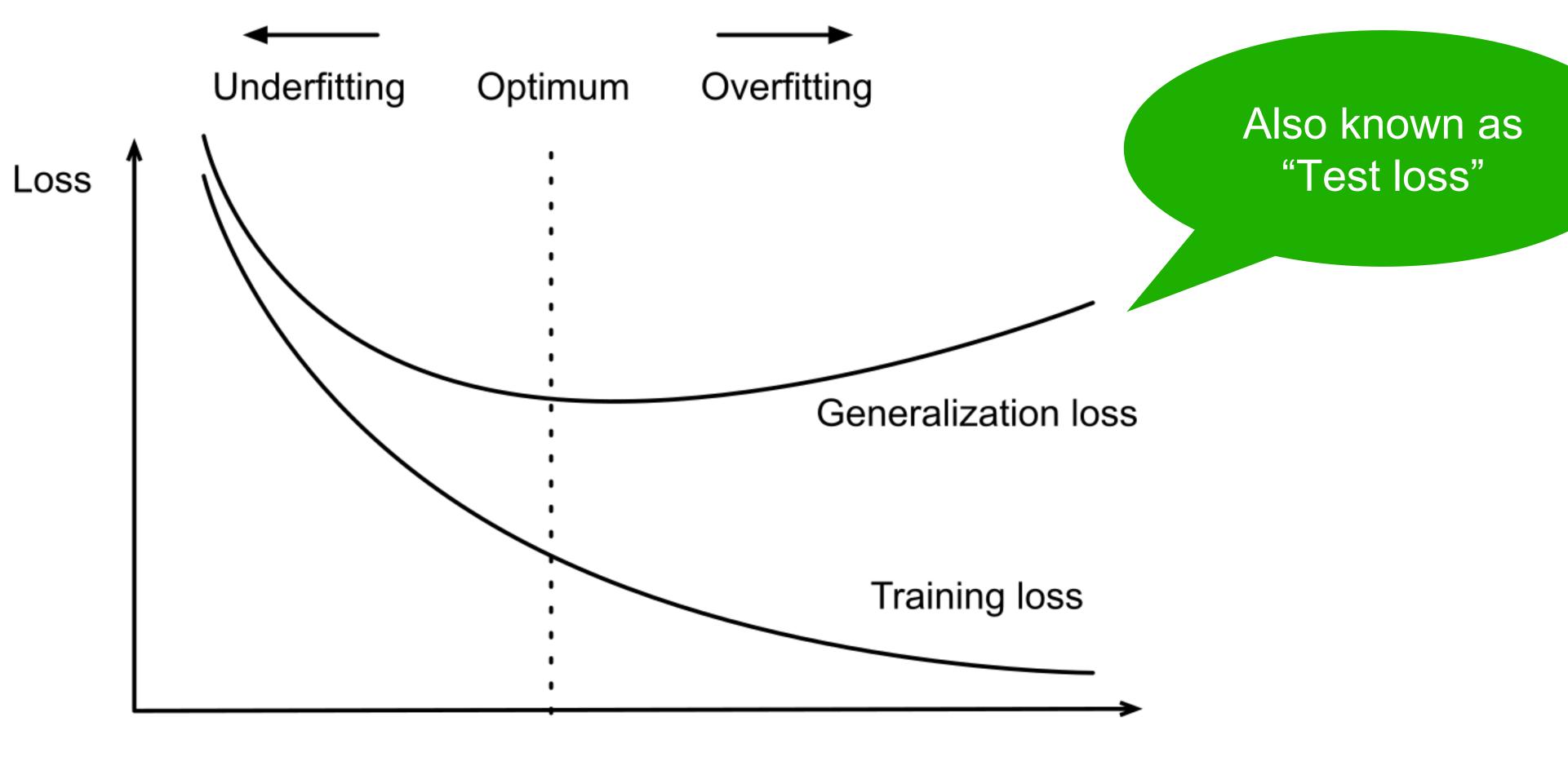
- The ability to fit variety of functions
- Low capacity models struggles to fit training set
 - Underfitting
- High capacity models can memorize the training set
 - Overfitting

inctions gles to





Influence of Model Complexity

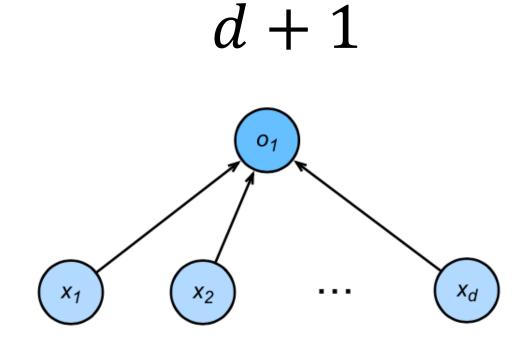


* Recent research has challenged this view for some types of models.

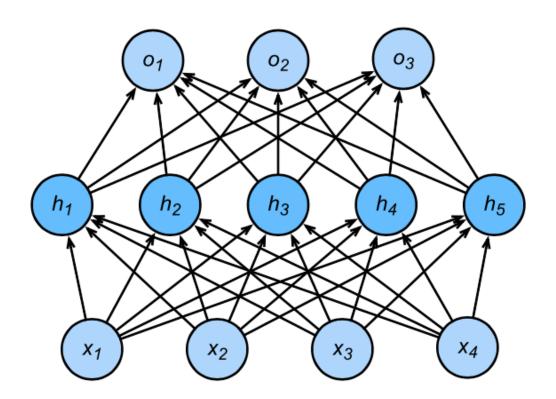
Model complexity

Estimate Neural Network Capacity

- It's hard to compare complexity between different families of models. • e.g. K-NN vs neural networks
- Given a model family, two main factors matter:
 - The number of parameters
 - The values taken by each parameter

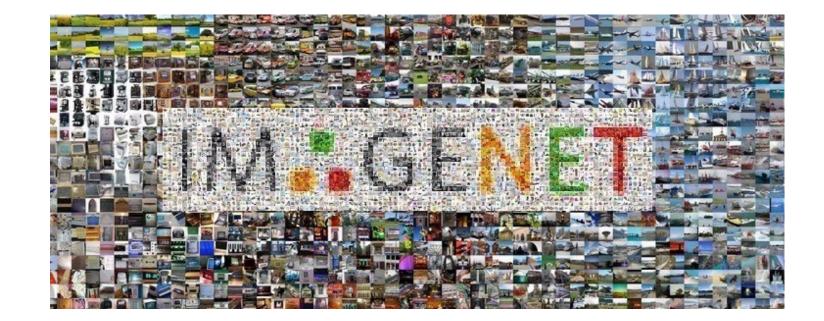


(d + 1)m + (m + 1)k



Data Complexity

- Multiple factors matters
 - # of examples
 - # of features in each example
 - time/space structure
 - # of labels



Quiz Break: When training a neural network, overfit the training data?

- A. Training loss is low and generalization loss is high.
- B. Training loss is low and generalization loss is low.
- C. Training loss is high and generalization loss is high.
- D. Training loss is high and generalization loss is low.
- E. None of these

which one below indicates that the network has

Quiz Break: When training a neural network, overfit the training data?

- A. Training loss is low and generalization loss is high.
- B. Training loss is low and generalization loss is low.
- C. Training loss is high and generalization loss is high.
- D. Training loss is high and generalization loss is low.
- E. None of these

which one below indicates that the network has

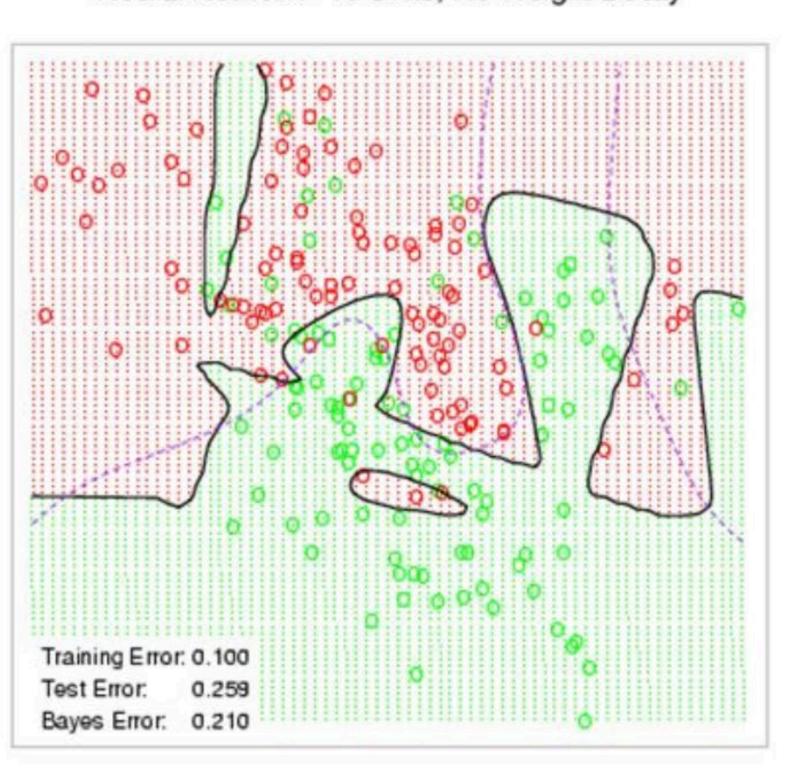
Quiz Break: Adding more layers to a multi-layer perceptron may cause

- A. Vanishing gradients during back propagation.
- B. A more complex decision boundary.
- C. Underfitting.
- D. Higher test loss.
- E. None of these

Quiz Break: Adding more layers to a multi-layer perceptron may cause _____. (Multiple answers)

- A. Vanishing gradients during back propagation.
- B. A more complex decision boundary.
- C. Underfitting.
- D. Higher test loss.
- E. None of these.

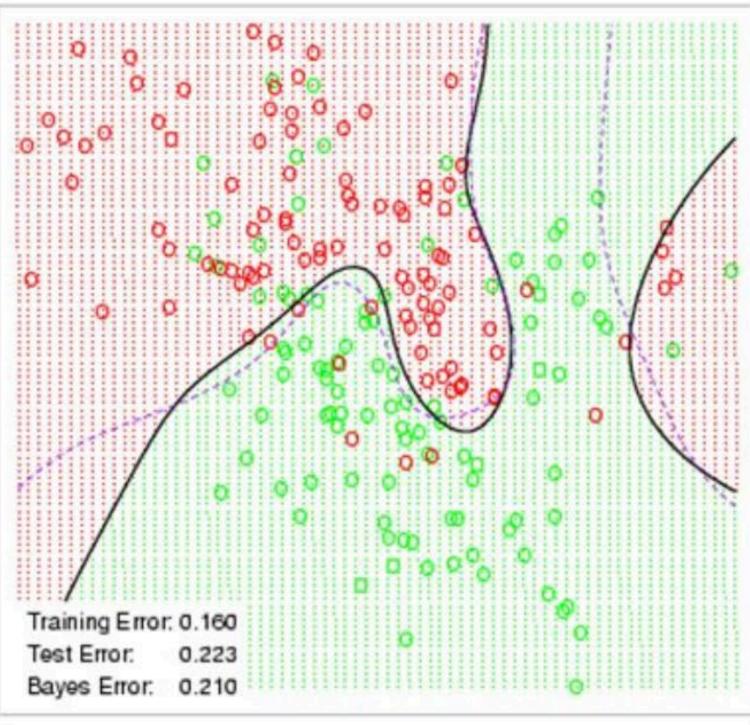
How to regularize the model for better generalization?



Neural Network - 10 Units, No Weight Decay

Weight Decay

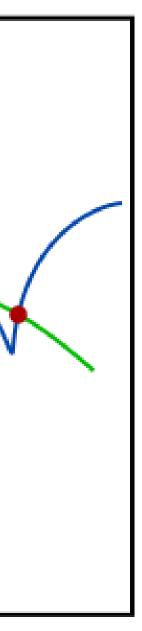
Neural Network - 10 Units, Weight Decay=0.02



Squared Norm Regularization as Hard Constraint

 Reduce model complexity by limiting value range $minL(\mathbf{w}, b)$ subject to $\|\mathbf{w}\|^2 \leq B$ • Often do not regularize bias b Doing or not doing has little difference in

- practice
- A small *B* means more regularization



Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

$minL(\mathbf{w}, b)$

$$) + \frac{\lambda}{2} \parallel \mathbf{w} \parallel^2$$

Squared Norm Regularization as Soft Constraint

We can rewrite the hard constraint version as

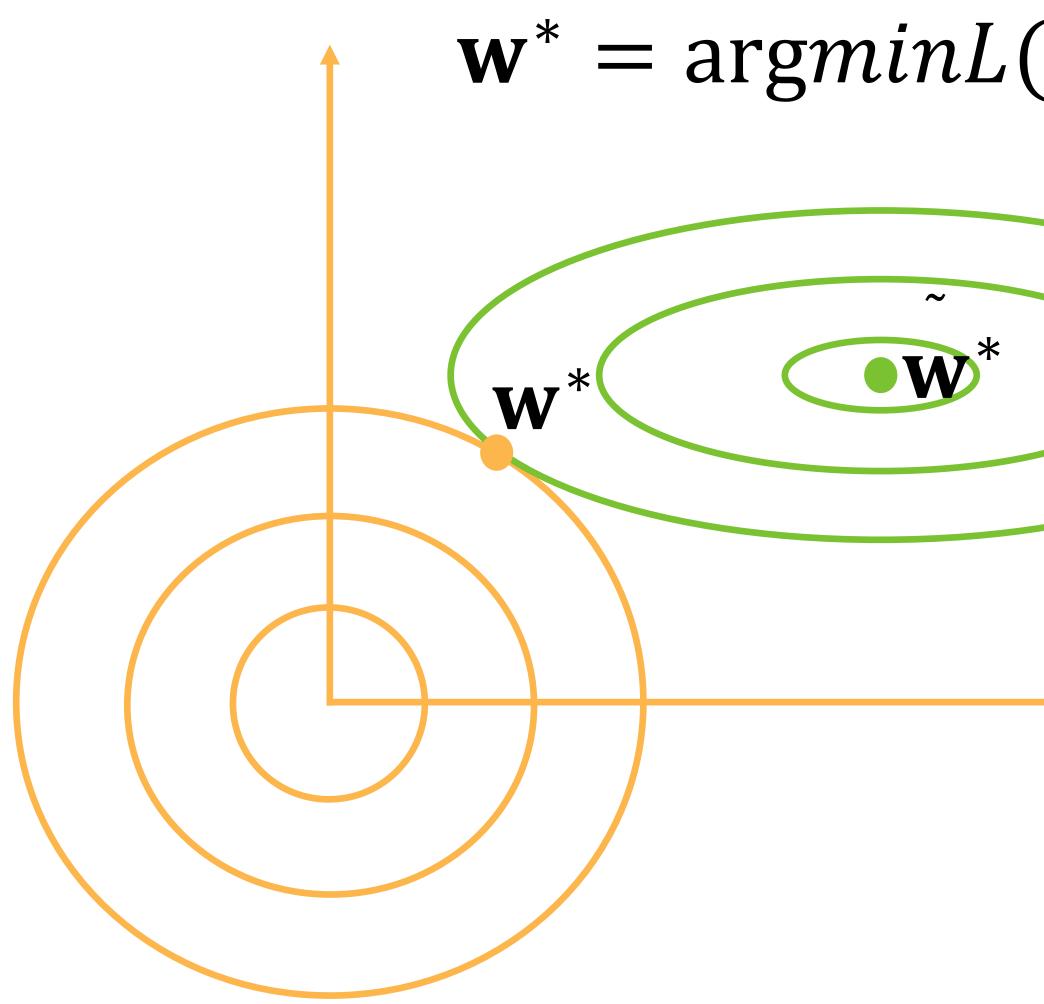
$minL(\mathbf{w}, b)$

• $\lambda = 0$: no effect $\lambda \to \infty, \mathbf{w}^* \to \mathbf{0}$

$$+\frac{\lambda}{2} \|\mathbf{w}\|^2$$

• Hyper-parameter λ controls regularization importance

Illustrate the Effect on Optimal Solutions



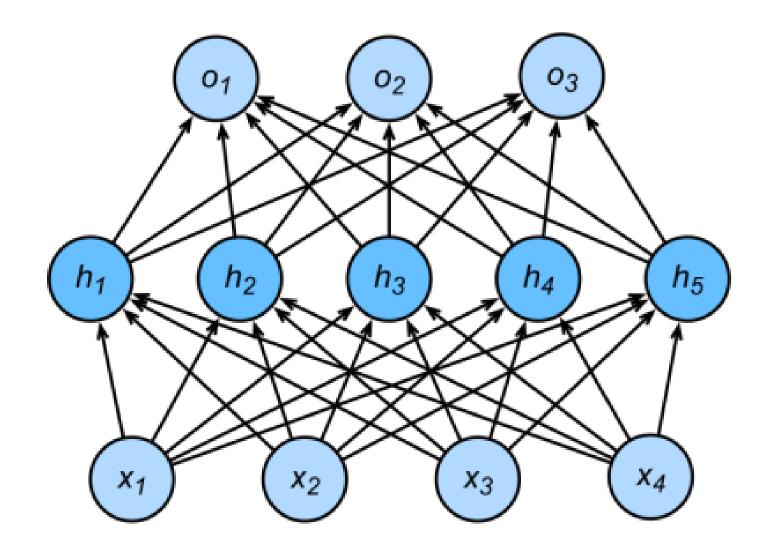
 $\mathbf{w}^* = \operatorname{argminL}(\mathbf{w}, b) + \frac{\lambda}{2} \| \mathbf{w} \|^2$ $\mathbf{w}^* = \operatorname{argminL}(\mathbf{w}, b)$

Dropout Hinton et al.

Apply Dropout

MLP with one hidden layer

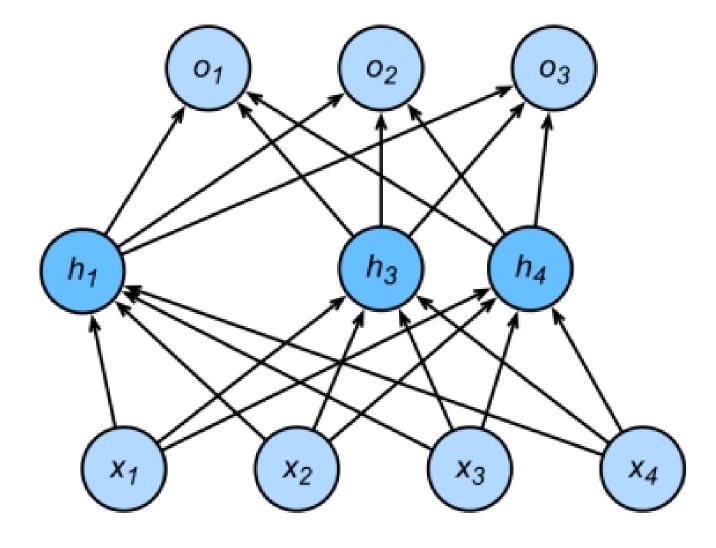
- $\mathbf{h} = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$
- $\mathbf{h}' = dropout(\mathbf{h})$
- $o = W^{(2)}h' + b^{(2)}$
- $\mathbf{p} = \operatorname{softmax}(\mathbf{0})$

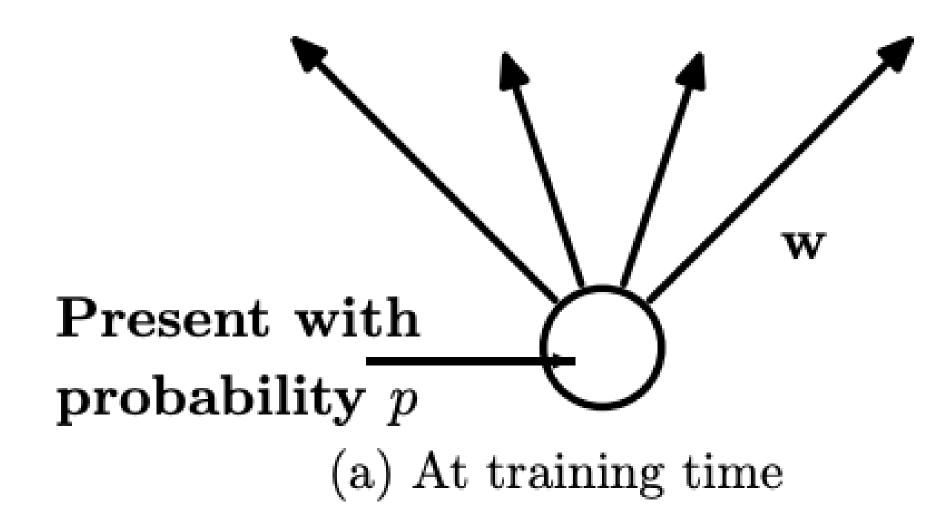


courses.d2l.ai/berkeley-stat-157

Often apply dropout on the output of hidden fully-connected layers

Hidden layer after dropout





at training time.

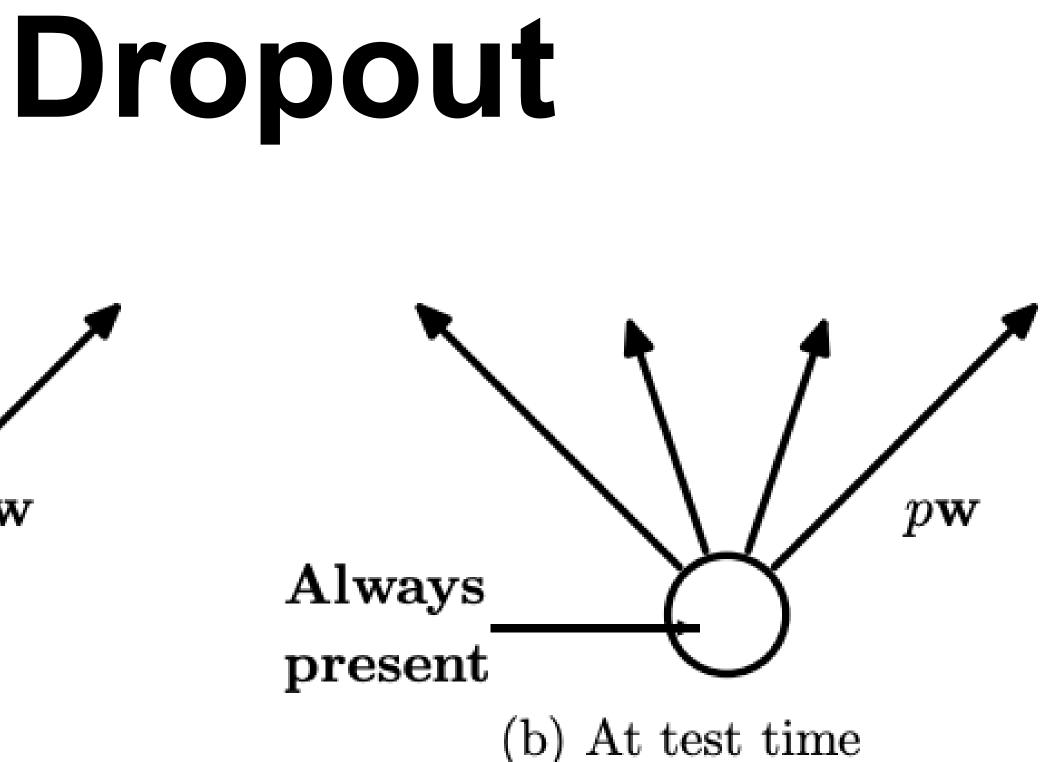


Figure 2: Left: A unit at training time that is present with probability p and is connected to units in the next layer with weights w. **Right**: At test time, the unit is always present and the weights are multiplied by p. The output at test time is same as the expected output

Dropout Hinton et al.

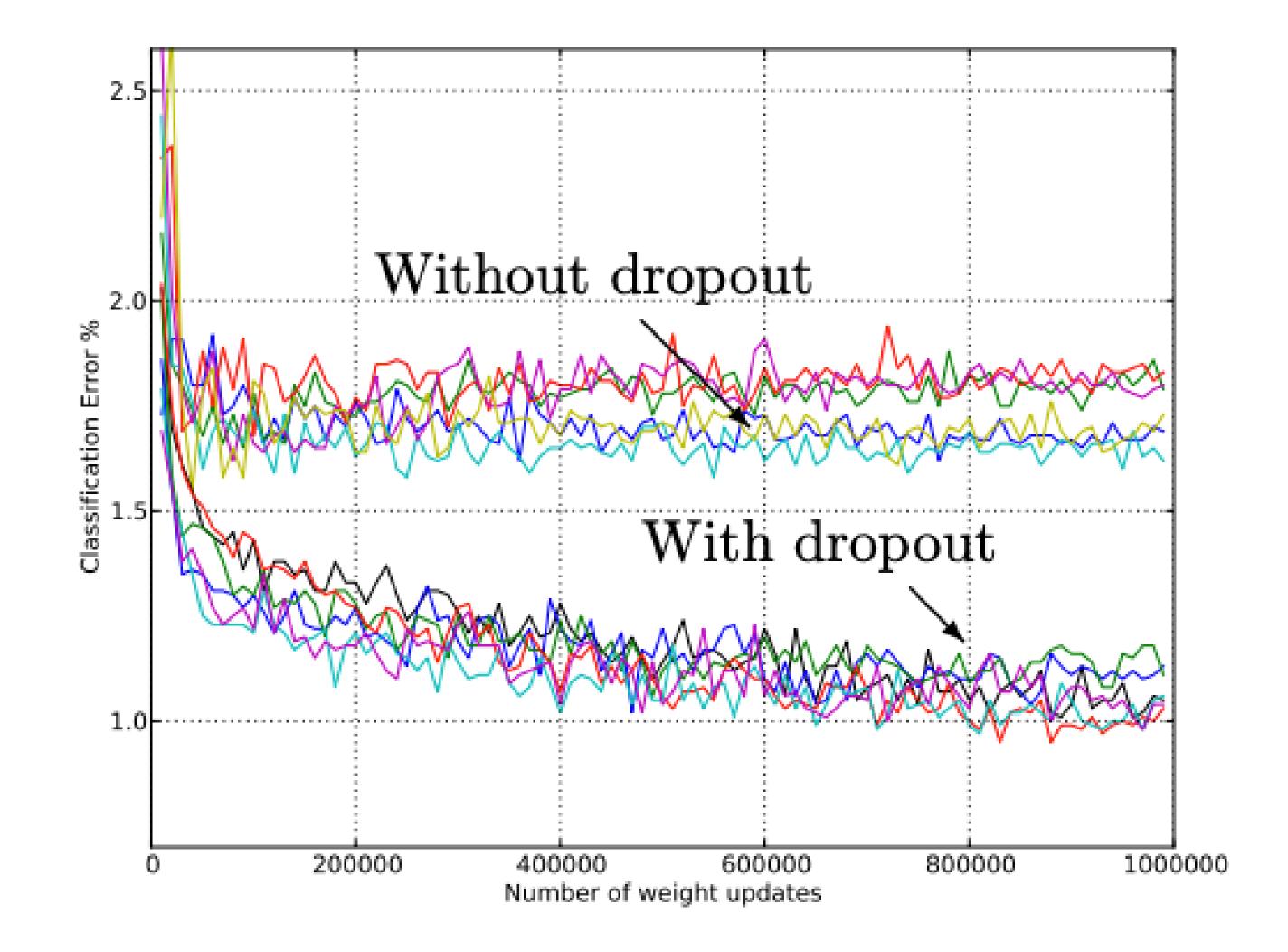


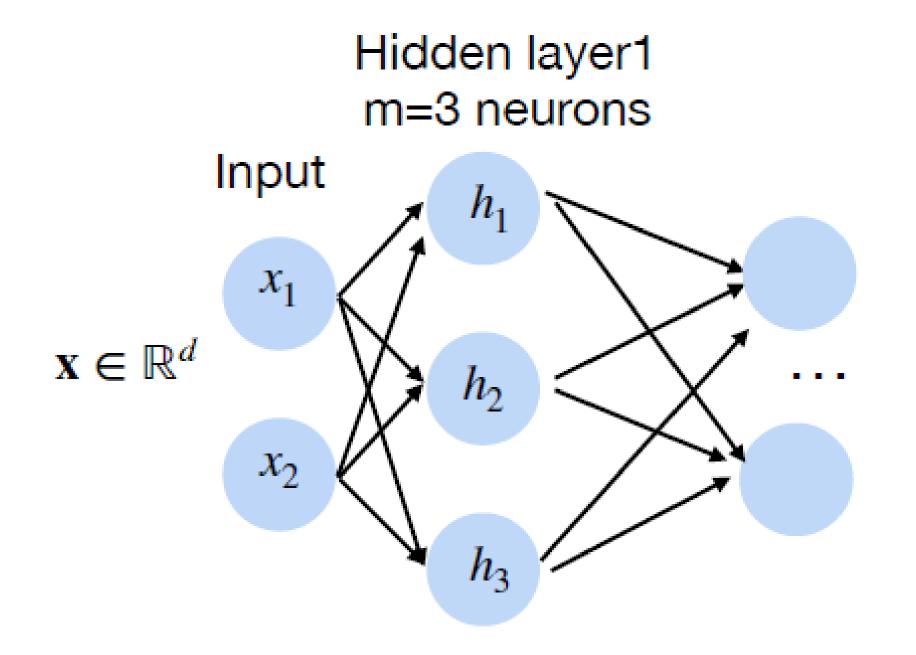
Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

Quiz Break, Q4.1:

In standard dropout regularization, with dropout probability p, each To make E[h'] = h. What is "?"?

> h Α. B. h/pC.h/(1-p)D. h(1-p)

0 with probability p? otherwise

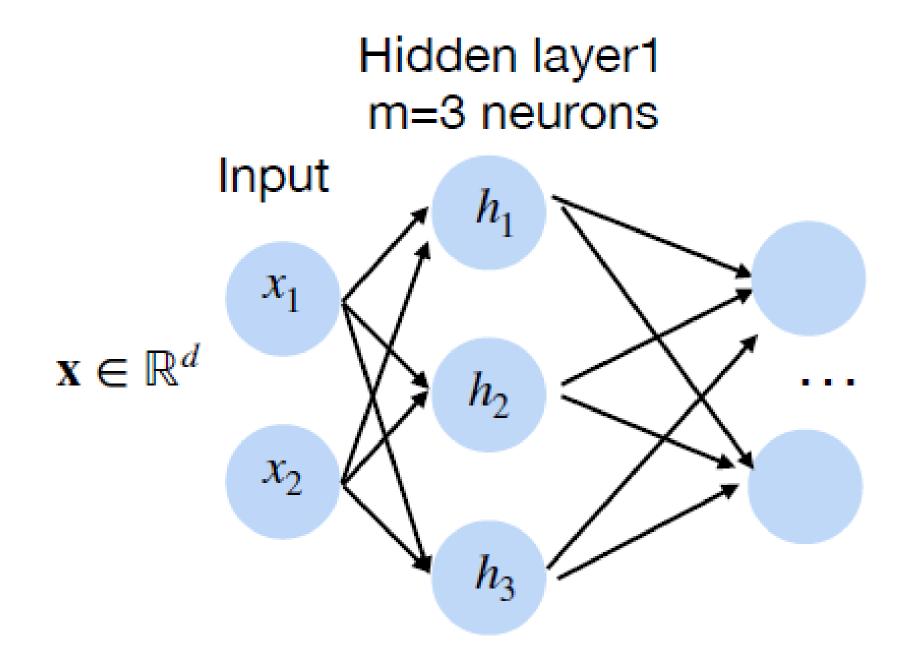


Quiz Break, Q4.1:

In standard dropout regularization, with dropout probability p, each To make E[h'] = h. What is "?"?

> Α. h B. h/p C.h/(1-p)D. h(1-p)

 $\begin{array}{c} 0 \text{ with probability } p \\ ? \text{ otherwise} \end{array}$



What we've learned today...

- Deep neural networks
 - Computational graph (forward and backward propagation)
- Numerical stability in training
 - Gradient vanishing/exploding
- Generalization and regularization
 - Overfitting, underfitting
 - Weight decay and dropout

