
CS 540 Introduction to Artificial Intelligence
Neural Networks (III)

University of Wisconsin-Madison
Spring 2025

Announcements
• Homeworks:

– HW6 online, deadline on Monday March. 17th at 11:59 PM

• Midterm March 13th . More on next slide.
• Class roadmap: Machine Learning:

Neural Networks III

Midterm Review

M
achine

Learning

Midterm Information
• Time: March 13th 7:30-9 PM
• Location:

– Section 001 : Ingraham Hall B10
– Section 002 : Psychology 105
– Section 003: split in two locations according to the last name:

• Chamberlin Hall 2103 (last name starting with A-L)
• Sterling Hall 1310 (last name starting with M-Z)

• McBurney students and students requesting alternate: reach out to your instructor if
you have not received any email!

• Format: multiple choice
• Cheat sheet: single piece of paper, front and back
• Calculator: fine if it doesn’t have an Internet connection
• Detailed topic list + practice on Piazza and Canvas

Output

Hidden layer
Input

100 neurons

How to train a neural network?
Update the weights W to minimize the loss function

𝐿𝐿 =
1

|𝐷𝐷|
∑

(𝐱𝐱,𝑦𝑦)∈𝐷𝐷
ℓ(𝐱𝐱,𝑦𝑦)

Use gradient descent!

Gradient Descent
• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1,2,…

• Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
𝜕𝜕𝐿𝐿

𝜕𝜕𝐰𝐰𝑡𝑡−1

= 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐷𝐷|
∑

(𝐱𝐱,𝑦𝑦)∈𝐷𝐷

𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat until converges

D can be very
large. Expensive

per iteration

𝐰𝐰0

𝐰𝐰1
𝐰𝐰2

The gradient w.r.t. all parameters is
obtained by concatenating the
partial derivatives w.r.t. each

parameter

Minibatch Stochastic Gradient Descent
• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1,2,…

• Randomly sample a subset (mini-batch) 𝐵𝐵
⊂ 𝐷𝐷Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐵𝐵|
∑

(𝐱𝐱,𝑦𝑦)∈𝐵𝐵

𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat until converges

𝐰𝐰0

𝐰𝐰1
𝐰𝐰2

Non-convex
Optimization

[Gao and Li et al., 2018]

Quiz Break

• What is the partial derivative
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

of: 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,𝑤𝑤1,𝑤𝑤2,𝑦𝑦) = 𝑦𝑦log𝜎𝜎(𝑤𝑤1𝑥𝑥1

+ 𝑤𝑤2𝑥𝑥2) + (1 − 𝑦𝑦)log(1 − 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2)) when 𝑦𝑦 = 1 and 𝜎𝜎(𝑧𝑧)

= 1
1+𝑒𝑒−𝑧𝑧

 .Hint: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎 𝑧𝑧).

Quiz Break

• What is the partial derivative
𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤1

 of: 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,𝑤𝑤1,𝑤𝑤2,𝑦𝑦) = 𝑦𝑦log𝜎𝜎(𝑤𝑤1𝑥𝑥1

+ 𝑤𝑤2𝑥𝑥2) + (1 − 𝑦𝑦)log(1 − 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2)) when 𝑦𝑦 = 1 and 𝜎𝜎(𝑧𝑧)

= 1
1+𝑒𝑒−𝑧𝑧

. Hint: 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧)).

𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤1

=
𝑦𝑦
𝑎𝑎
𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))𝑥𝑥1 = (1 − 𝜎𝜎(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2))𝑥𝑥1

Let 𝑎𝑎 = 𝜎𝜎(𝑧𝑧) Let 𝑧𝑧 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2
𝜕𝜕𝑓𝑓
𝜕𝜕𝑤𝑤1

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑎𝑎

𝜕𝜕𝑎𝑎
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝑤𝑤1

Calculate Gradient (on one data point)

• Want to compute
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕𝑤𝑤11

• Data point: ((𝑥𝑥1, 𝑥𝑥2),𝑦𝑦)

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)

Use chain rule!

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧)
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦 =

1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦

• By chain rule:

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧)
𝜕𝜕ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦 =

1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦

• By chain rule: 𝑥𝑥1

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule: �𝑦𝑦(1 − �𝑦𝑦)𝑥𝑥1

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule: (
1 − 𝑦𝑦
1 − �𝑦𝑦 −

𝑦𝑦
�𝑦𝑦) �𝑦𝑦(1 − �𝑦𝑦)𝑥𝑥1

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule: (�𝑦𝑦 − 𝑦𝑦)𝑥𝑥1

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule:

Calculate Gradient (on one data point)

ℓ(𝐱𝐱,𝑦𝑦)
𝜕𝜕�𝑦𝑦
𝜕𝜕𝑧𝑧

= 𝜎𝜎′(𝑧𝑧) = 𝜎𝜎(𝑧𝑧)(1 − 𝜎𝜎(𝑧𝑧))

• By chain rule:

Make it deeper

Calculate Gradient (on one data point)

• By chain rule: (1)

Calculate Gradient (on one data point)

• By chain rule: (1)

Calculate Gradient (on one data point)

• By chain rule:

Neural Networks as a
Computational Graph

Neural networks as variables + operations
𝐚𝐚 = sigmoid(𝐖𝐖𝐱𝐱 + 𝐛𝐛)

• Decompose functions into atomic operations

• Separate data (variables) and computing (operations)

• Can describe with a computational graph

Neural networks as a computational graph
• A two-layer neural network

Neural networks as a computational graph
• A two-layer neural network
• Forward propagation vs. backward propagation

Neural networks: forward propagation
• A two-layer neural network
• Intermediate variables Z

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5

• A two-layer neural network
• Assuming forward propagation is done

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5

Neural networks: backward propagation

• Minimize a loss function L

• A two-layer neural network
• Assuming forward propagation is done

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5

Neural networks: backward propagation

• First, define a neural network as a computational graph
• Nodes are variables and operations.

• Must be a directed graph
• All operations must be differentiable.
• Backpropagation computes partial derivatives starting

from the loss and then working backwards through the
graph.

Backward propagation: A modern treatment

Backward propagation: PyTorch

Forward propagation

Backward propagation

Gradient Descent

Hidden layer

Input
m=3 neurons

𝑥𝑥1

𝑥𝑥2

Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss

ℓ(𝐲𝐲, �𝐲𝐲) = − ∑
𝑗𝑗=1

𝑘𝑘
𝑦𝑦𝑗𝑗log�𝐲𝐲𝑗𝑗 , where the ground truth and predicted probabilities 𝐲𝐲, �𝐲𝐲 ∈ ℝ𝑘𝑘 . Recall that the

softmax function turns output into probabilities: �y𝑗𝑗 = exp𝜕𝜕𝑗𝑗(𝑥𝑥)
∑𝑖𝑖
𝑘𝑘exp𝜕𝜕𝑖𝑖(𝑥𝑥)

. What is the partial derivative 𝜕𝜕𝜕𝜕𝑗𝑗ℓ(𝐲𝐲, �𝐲𝐲)?

𝐱𝐱 ∈ ℝ𝑑𝑑

Output

𝑓𝑓𝑘𝑘

…
𝑓𝑓1

A.�y𝑗𝑗 − 𝑦𝑦𝑗𝑗

B. exp(𝑦𝑦𝑗𝑗) − 𝑦𝑦𝑗𝑗

C. 𝑦𝑦𝑗𝑗−�y𝑗𝑗

Hidden layer

Input
m=3 neurons

𝑥𝑥1

𝑥𝑥2

Q1.1 Suppose we want to solve the following k-class classification problem with cross entropy loss

ℓ(𝐲𝐲, �𝐲𝐲) = − ∑
𝑗𝑗=1

𝑘𝑘
𝑦𝑦𝑗𝑗log�𝐲𝐲𝑗𝑗 , where the ground truth and predicted probabilities 𝐲𝐲, �𝐲𝐲 ∈ ℝ𝑘𝑘 . Recall that the

softmax function turns output into probabilities: �y𝑗𝑗 = exp𝜕𝜕𝑗𝑗(𝑥𝑥)
∑𝑖𝑖
𝑘𝑘exp𝜕𝜕𝑖𝑖(𝑥𝑥)

. What is the partial derivative 𝜕𝜕𝜕𝜕𝑗𝑗ℓ(𝐲𝐲, �𝐲𝐲)?

𝐱𝐱 ∈ ℝ𝑑𝑑

Output

𝑓𝑓𝑘𝑘

…
𝑓𝑓1

A.�y𝑗𝑗 − 𝑦𝑦𝑗𝑗

B. exp(𝑦𝑦𝑗𝑗) − 𝑦𝑦𝑗𝑗

C. 𝑦𝑦𝑗𝑗−�y𝑗𝑗

Numerical Stability

Gradients for Neural Networks

• Compute the gradient of the loss w.r.t.

𝜕𝜕ℓ
𝜕𝜕𝐖𝐖𝑡𝑡 =

𝜕𝜕ℓ
𝜕𝜕𝐡𝐡𝑑𝑑

𝜕𝜕𝐡𝐡𝑑𝑑

𝜕𝜕𝐡𝐡𝑑𝑑−1
…
𝜕𝜕𝐡𝐡𝑡𝑡+1

𝜕𝜕𝐡𝐡𝑡𝑡
𝜕𝜕𝐡𝐡𝑡𝑡

𝜕𝜕𝐖𝐖𝑡𝑡

ℓ 𝐖𝐖𝑡𝑡

Multiplication of many matrices

Wikipedia

Two Issues for Deep Neural Networks
�
𝑖𝑖=𝑡𝑡

𝑑𝑑−1
𝜕𝜕𝐡𝐡𝑖𝑖+1

𝜕𝜕𝐡𝐡𝑖𝑖

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10

Issues with Gradient Exploding

• Value out of range: infinity value (NaN)
• Sensitive to learning rate (LR)

• Not small enough LR larger gradients
• Too small LR No progress
• May need to change LR dramatically during training

Gradient Vanishing

• Use sigmoid as the activation function

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥 𝜎𝜎′(𝑥𝑥) = 𝜎𝜎(𝑥𝑥)(1 − 𝜎𝜎(𝑥𝑥))

Small
gradients

Small
gradients

Issues with Gradient Vanishing

• Gradients with value 0
• No progress in training

• No matter how to choose learning rate
• Severe with bottom layers (those near the input)

• Only top layers (near output) are well trained
• No benefit to make networks deeper

How to
stabilize
training?

Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range
• E.g. in [1e-6, 1e3]

• Multiplication plus
• Architecture change (e.g., ResNet)

• Normalize
• Batch Normalization, Gradient clipping

• Proper activation functions

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible.

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Q5. A Leaky ReLU is defined as f(x)=max(0.1x, x). Let f’(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. No

Generalization & Regularization

How good are
the models?

Training Error and Generalization Error

• Training error: model error on the training data
• Generalization error: model error on new data
• Example: practice a future exam with past exams

• Doing well on past exams (training error) doesn’t
guarantee a good score on the future exam
(generalization error)

Underfitting
Overfitting

Image credit: hackernoon.com

Model Capacity

• The ability to fit variety of functions
• Low capacity models struggles to

fit training set
• Underfitting

• High capacity models can
memorize the training set
• Overfitting

Influence of Model Complexity

Also known as
“Test loss”

* Recent research has challenged this view for some types of models.

Estimate Neural Network Capacity

• It’s hard to compare complexity
between different families of models.
• e.g. K-NN vs neural networks

• Given a model family, two main factors
matter:
• The number of parameters
• The values taken by each parameter

𝑑𝑑 + 1

(𝑑𝑑 + 1)𝑚𝑚 + (𝑚𝑚 + 1)𝑘𝑘

Data Complexity

• Multiple factors matters
• # of examples
• # of features in each example
• time/space structure
• # of labels

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.

Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.

Quiz Break: Adding more layers to a multi-layer
perceptron may cause ______.

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.

Quiz Break: Adding more layers to a multi-layer
perceptron may cause ______. (Multiple
answers)

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.

How to regularize the model for
better generalization?

Weight
Decay

Squared Norm Regularization as Hard Constraint

• Reduce model complexity by limiting value
range

• Often do not regularize bias b
• Doing or not doing has little difference in

practice
• A small means more regularization

𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏)subject to ∥ 𝐰𝐰 ∥2≤ 𝐵𝐵

𝐵𝐵

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

Squared Norm Regularization as Soft Constraint

• We can rewrite the hard constraint version as

• Hyper-parameter controls regularization importance
• : no effect

𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

𝜆𝜆 = 0
𝜆𝜆 → ∞,𝐰𝐰∗ → 𝟎𝟎

𝜆𝜆

Illustrate the Effect on Optimal Solutions

𝐰𝐰
˜ ∗

𝐰𝐰∗

𝐰𝐰∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏) +
𝜆𝜆
2
∥ 𝐰𝐰 ∥2

𝐰𝐰
˜ ∗ = arg𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿(𝐰𝐰, 𝑏𝑏)

Dropout
Hinton et al.

Apply Dropout
• Often apply dropout on the output of hidden fully-connected layers

courses.d2l.ai/berkeley-stat-157

Dropout

Dropout
Hinton et al.

Quiz Break, Q4.1:

In standard dropout regularization, with dropout probability p, each

intermediate activation h is replaced by a random variable h’ as:

To make E[h’] = h. What is “?” ?

Quiz Break, Q4.1:

In standard dropout regularization, with dropout probability p, each

intermediate activation h is replaced by a random variable h’ as:

To make E[h’] = h. What is “?” ?

What we’ve learned today…

• Deep neural networks

• Computational graph (forward and backward propagation)

• Numerical stability in training

• Gradient vanishing/exploding

• Generalization and regularization

• Overfitting, underfitting

• Weight decay and dropout

	CS 540 Introduction to Artificial IntelligenceNeural Networks (III)
	Announcements
	Midterm Information
	How to train a neural network?
	Gradient Descent
	Minibatch Stochastic Gradient Descent
	Non-convexOptimization
	Quiz Break
	Quiz Break
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Calculate Gradient (on one data point)
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Neural Networks as a Computational Graph
	Slide Number 28
	Neural networks as variables + operations
	Neural networks as a computational graph
	Neural networks as a computational graph
	Neural networks: forward propagation
	Neural networks: backward propagation
	Neural networks: backward propagation
	Neural networks: backward propagation
	Neural networks: backward propagation
	Backward propagation: A modern treatment
	Backward propagation: PyTorch
	Slide Number 39
	Slide Number 40
	Numerical Stability
	Gradients for Neural Networks
	Two Issues for Deep Neural Networks
	Issues with Gradient Exploding
	Gradient Vanishing
	Issues with Gradient Vanishing
	How to stabilize training?
	Stabilize Training: Practical Considerations
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Generalization & Regularization
	How good are the models?
	Training Error and Generalization Error
	Underfitting Overfitting
	Model Capacity
	Influence of Model Complexity
	Estimate Neural Network Capacity
	Data Complexity
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	How to regularize the model for better generalization?
	Weight Decay
	Squared Norm Regularization as Hard Constraint
	Squared Norm Regularization as Soft Constraint
	Squared Norm Regularization as Soft Constraint
	Illustrate the Effect on Optimal Solutions
	Dropout
	Apply Dropout
	Dropout
	Dropout
	Slide Number 77
	Slide Number 78
	What we’ve learned today…

