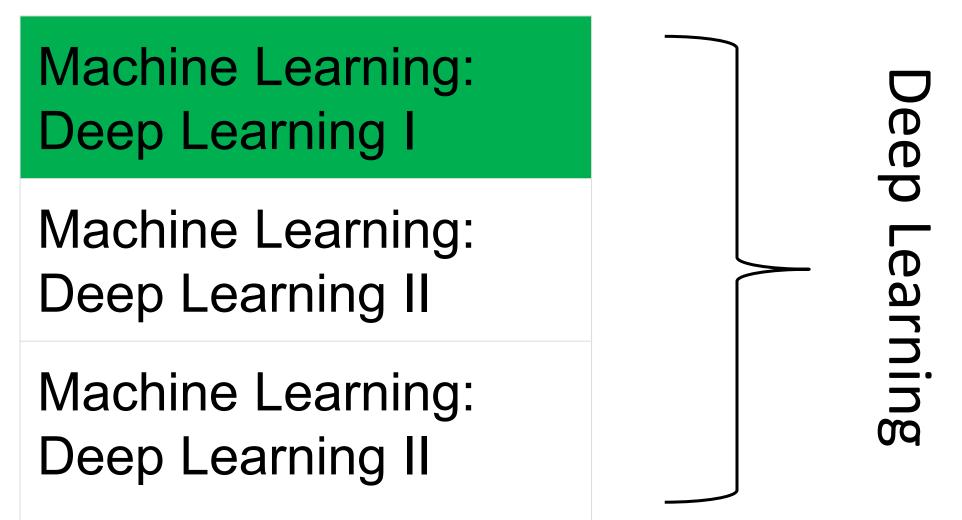


CS540 Introduction to Artificial Intelligence Deep Learning I: Convolutional Neural Networks

University of Wisconsin-Madison Spring 2025

Announcements

- . Homeworks:
 - HW6 online, deadline on Monday March. 17th at 11:59 PM
- · Class roadmap:



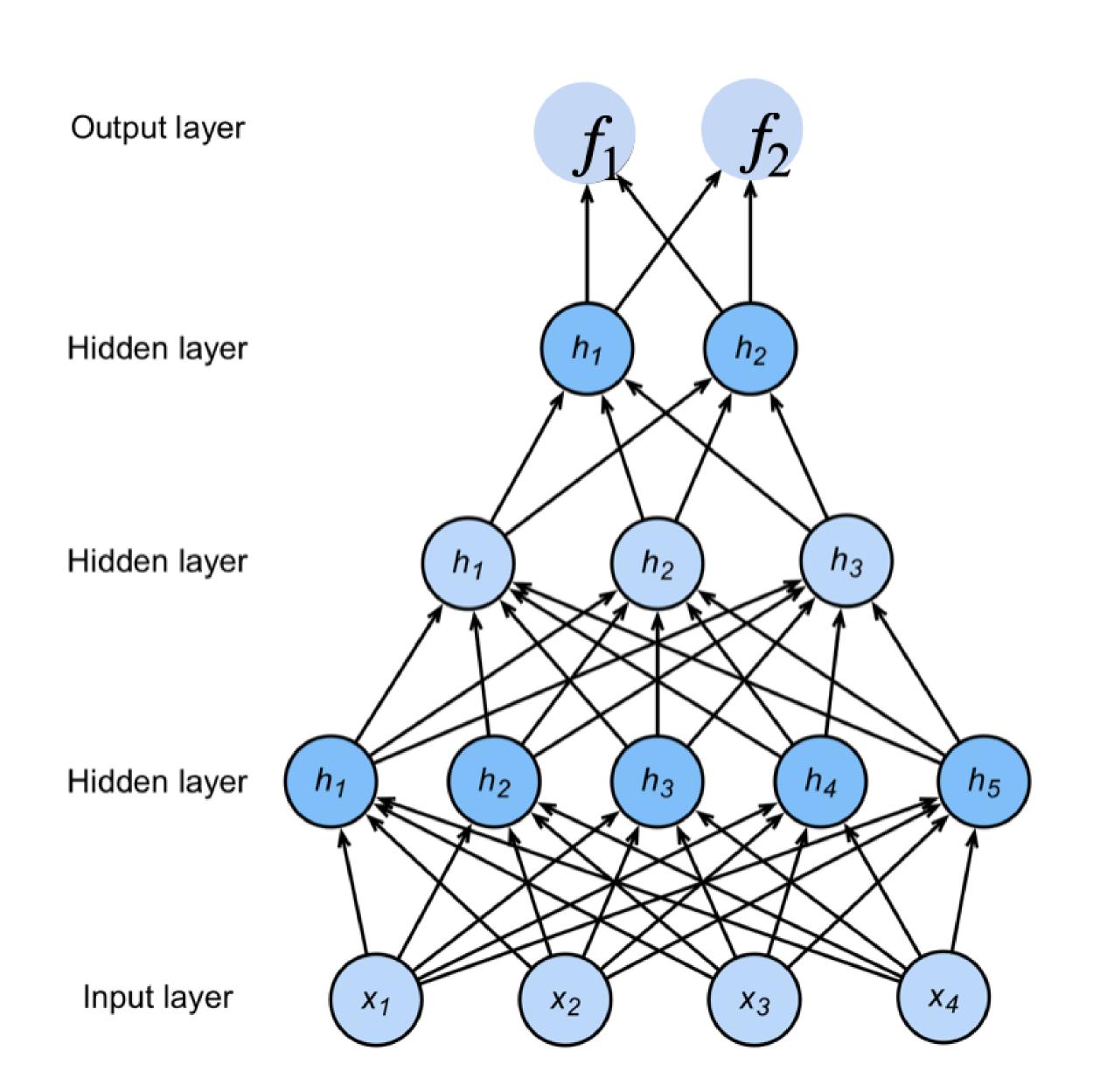
Midterm Information

- Time: March 13th 7:30-9 PM
- **Location:**
 - Section 001 : Ingraham Hall B10
 - Section 002 : Psychology 105
 - Section 003: split in two locations according to the last name:
 - Chamberlin Hall 2103 (last name starting with A-L)
 - Sterling Hall 1310 (last name starting with M-Z)
- McBurney students and students requesting alternate: reach out to your instructor if you have not received any email!
- Format: multiple choice
- · WISC ID
- Cheat sheet: single piece of paper, front and back
- Calculator: fine if it doesn't have an Internet connection
- Detailed topic list + practice on Piazza and Canvas

Today's Goals

- Build an understanding of convolutional neural networks.
- Why do we want convolutional layers?
- What are convolutional neural networks?
 - 2D vs 3D convolutional networks.
 - Padding and stride.
 - Multiple input and output channels
 - Pooling

Review: Multi-Layer Neural Networks



$$\mathbf{h}_1 = \sigma(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)})$$

$$\mathbf{h}_2 = \sigma(\mathbf{W}^{(2)}\mathbf{h}_1 + \mathbf{b}^{(2)})$$

$$\mathbf{h}_3 = \sigma(\mathbf{W}^{(3)}\mathbf{h}_2 + \mathbf{b}^{(3)})$$

$$\mathbf{f} = \mathbf{W}^{(4)}\mathbf{h}_3 + \mathbf{b}^{(4)}$$

$$\mathbf{p} = \text{softmax}(\mathbf{f})$$

NNs are composition of nonlinear functions

How to classify Cats vs. dogs?

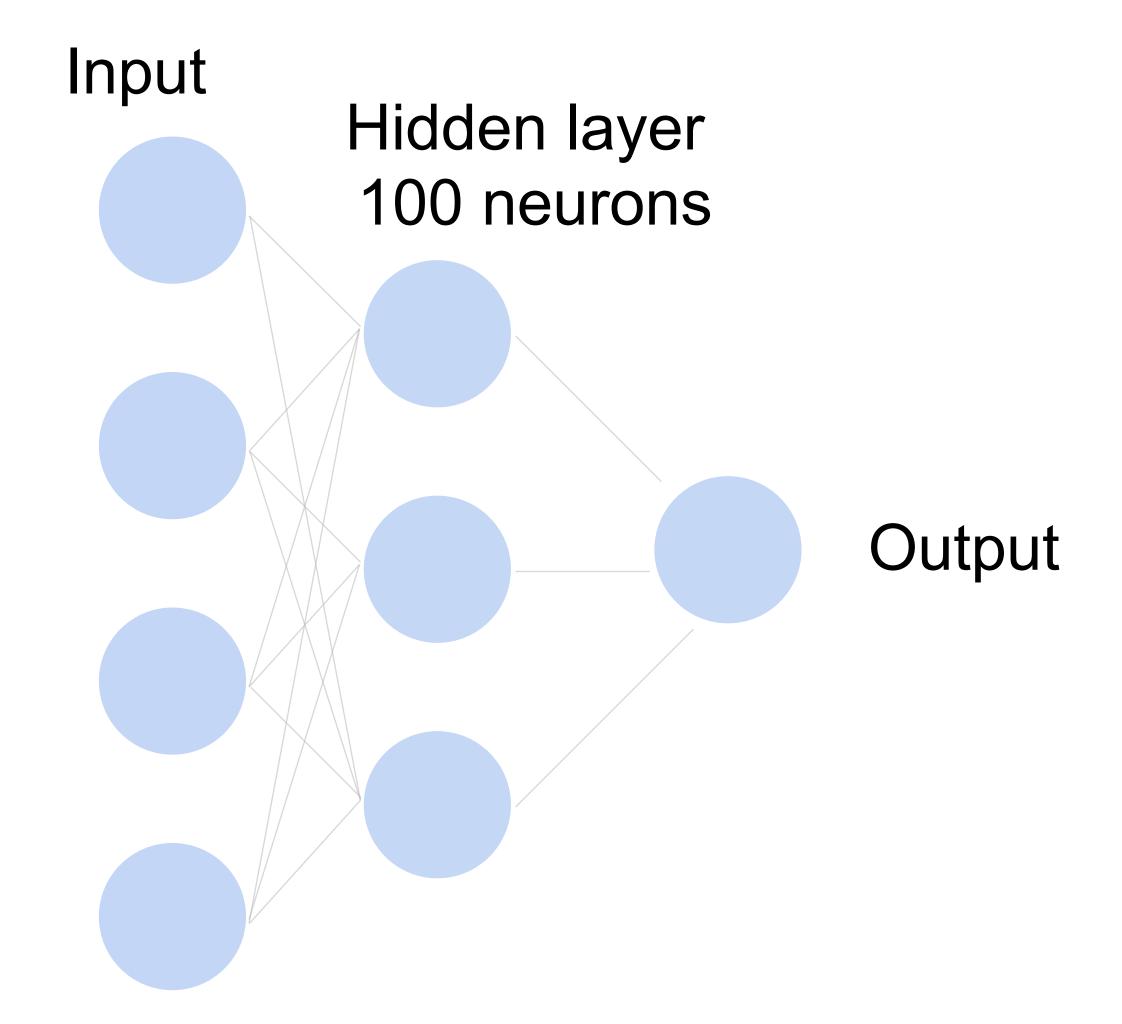
12MP

wide-angle and telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?



~ 36M elements x 100 = ~3.6B parameters!

Convolutions come to rescue!

Where is Waldo?

Why Convolution?

- Translation
 Invariance
- Locality

Input

0

3

6

Kernel

Output

=

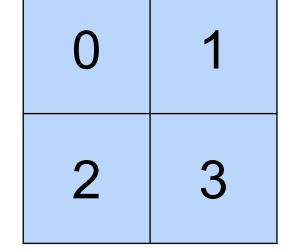
19	25
37	43

$$0x0 + 1x1 + 3x2 + 4x3 = 19$$

Input

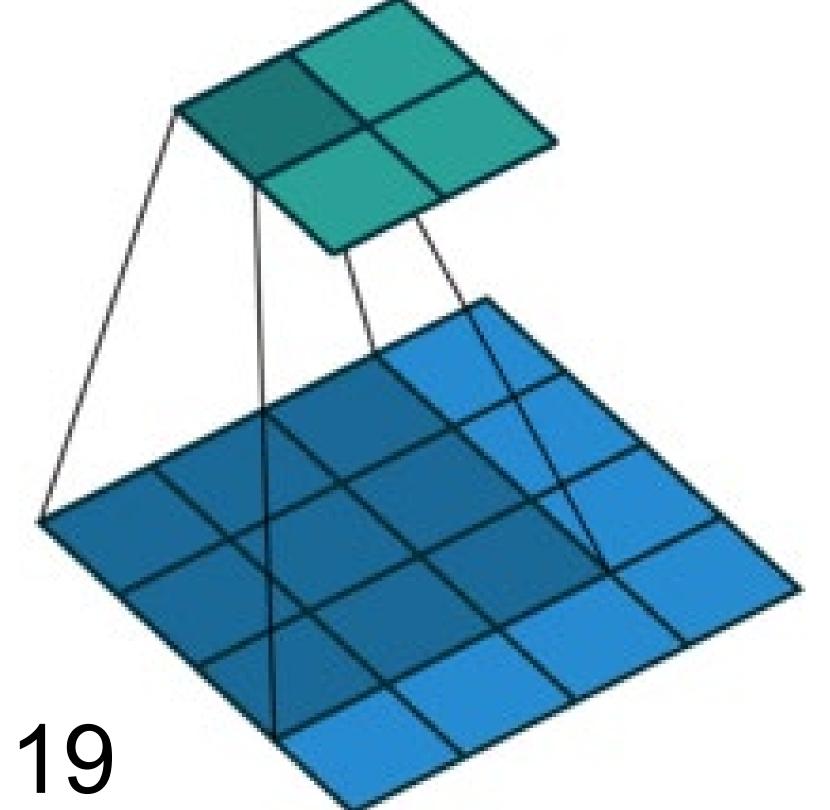
0	1	2
3	4	5
6	7	8

Kernel



Output

19	25
37	43



0x0 + 1x1 + 3x2 + 4x3 = 19

(vdumoulin@ Github)

$$1x0 + 2x1 + 4x2 + 5x3 = 25$$

Input

Kernel

Output

0	1	2
3	4	5
6	7	8

2 3

19 2537 43

$$3x0 + 4x1 + 6x2 + 7x3 = 37$$

Input

Kernel

Output

0	1	2
3	4	5
6	7	8

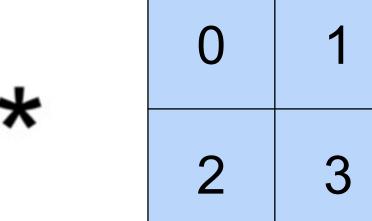
2 3

19	25
37	43

$$4x0 + 5x1 + 7x2 + 8x3 = 43$$

2-D Convolution Layer

0	1	2
3	4	5
6	7	8



19	25
37	43

- $X: n_h \times n_w$ input matrix
- W: $k_h \times k_w$ kernel matrix
- Y: $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix

2-D Convolution Layer

0	1	2				•		
<u> </u>	I	2		0	1		20	26
3	4	5	*		•	+1=	20	20
<u> </u>	T	J	**	2	3	· · · · · · · · · · · · · · · · · · ·	38	ΔΛ
6	7	8			5			77
J	"							

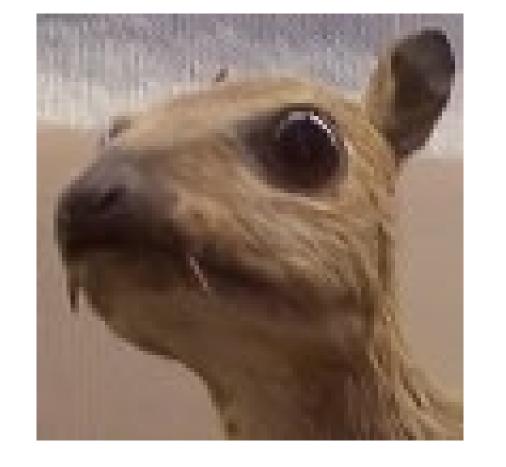
- \mathbf{X} : $n_h \times n_w$ input matrix
- W: $k_h \times k_w$ kernel matrix
- b: scalar bias
- Y: $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix

$$Y = X * W + b$$

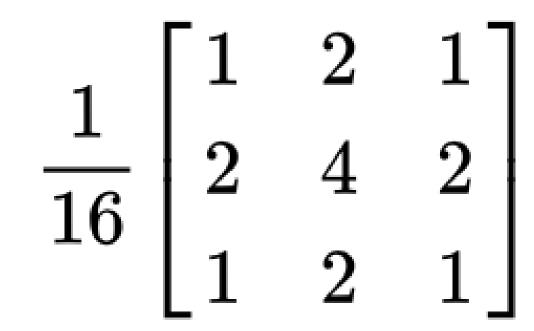
• W and b are learnable parameters

Examples

$$egin{bmatrix} -1 & -1 & -1 \ -1 & 8 & -1 \ -1 & -1 & -1 \end{bmatrix}$$

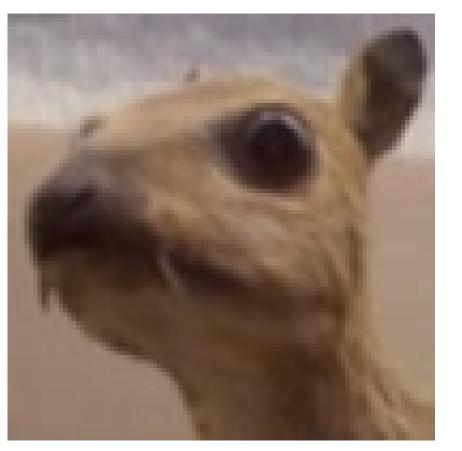


$$\left[egin{array}{cccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array}
ight]$$



Edge Detection

Sharpen



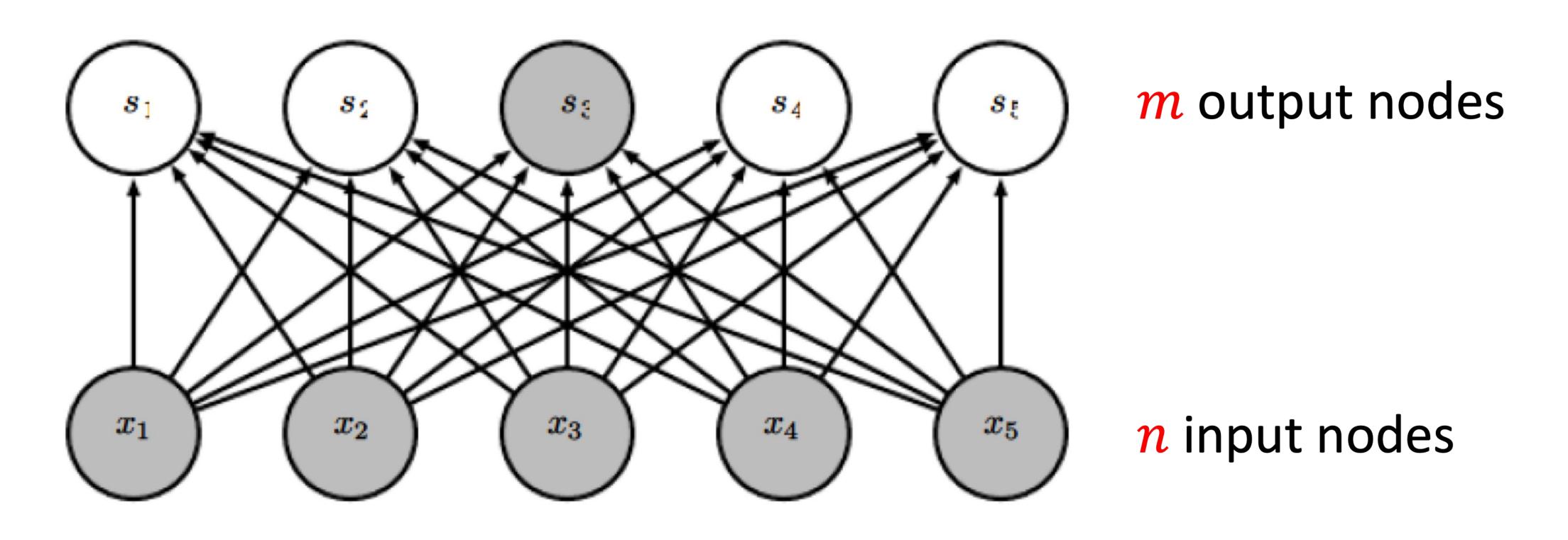
Gaussian Blur

Convolutional Neural Networks

- Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers
- Strong empirical performance in applications particularly computer vision.
- Examples: image classification, object detection.

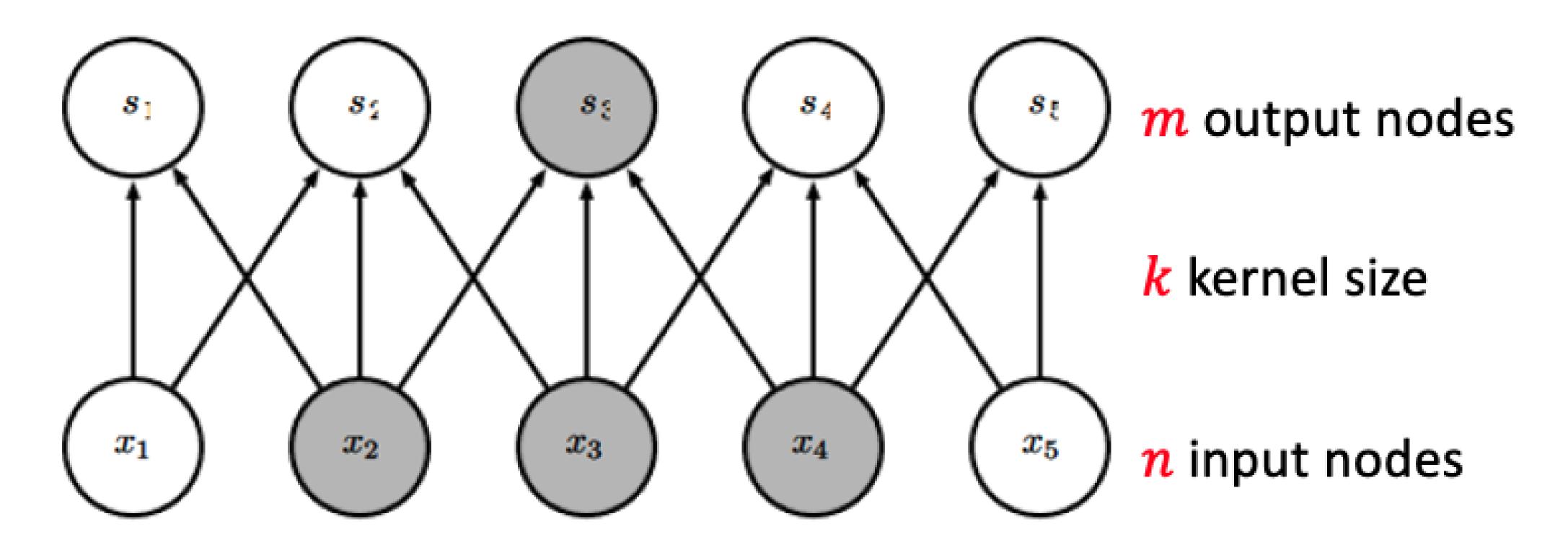
Advantage: sparse interaction

Fully connected layer, $m \times n$ edges



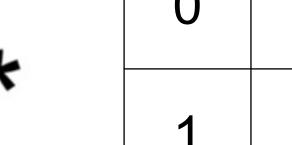
Advantage: sparse interaction

Convolutional layer, $\leq m \times k$ edges



Q1. Suppose we want to perform convolution as follows. What's the output?

0	1	2
3	4	5
6	7	8



A.

1	2
4	5

B.

1	2
3	4

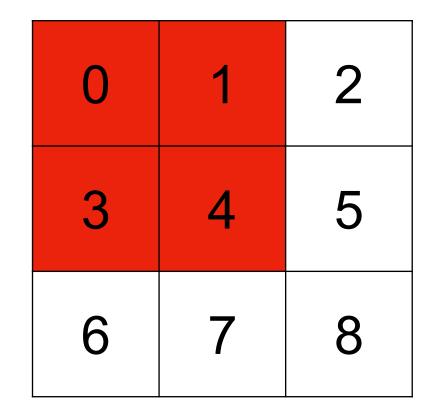
C.

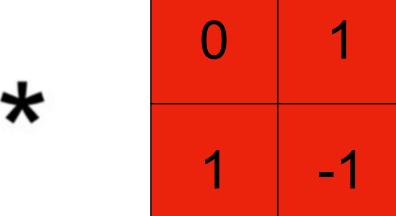
1	3
3	5

D.

0	1
3	4

Q1. Suppose we want to perform convolution as follows. What's the output?





1	2
4	5

$0 \times 0 + 1 \times 1 + 3 \times 1 + 4 \times (-1) + 1 = 1$
$1 \times 0 + 2 \times 1 + 4 \times 1 + 5 \times (-1) + 1 = 2$
$3 \times 0 + 4 \times 1 + 6 \times 1 + 7 \times (-1) + 1 = 4$
$4\times0+5\times1+7\times1+8\times(-1)+1=5$

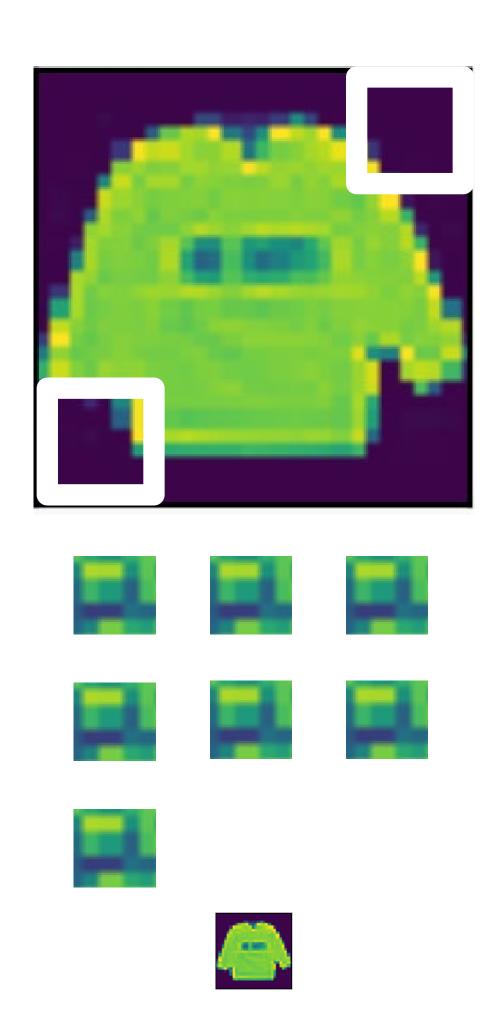
1	2
3	4

1	3
3	5

)		
•	0	1
	3	4

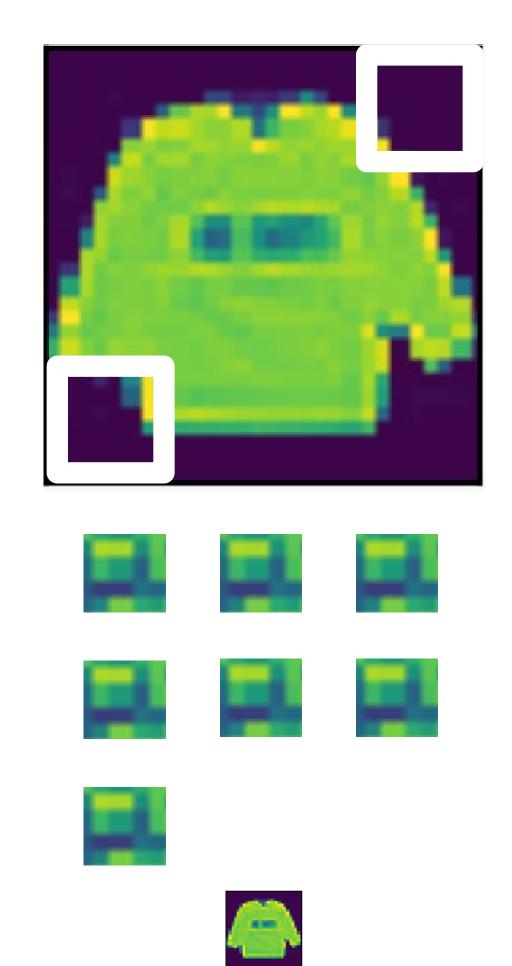
Padding

- Given a 32 x 32 input image
- Apply convolution with 5 x 5 kernel
 - 28 x 28 output with 1 layer
 - 4 x 4 output with 7 layers



Padding

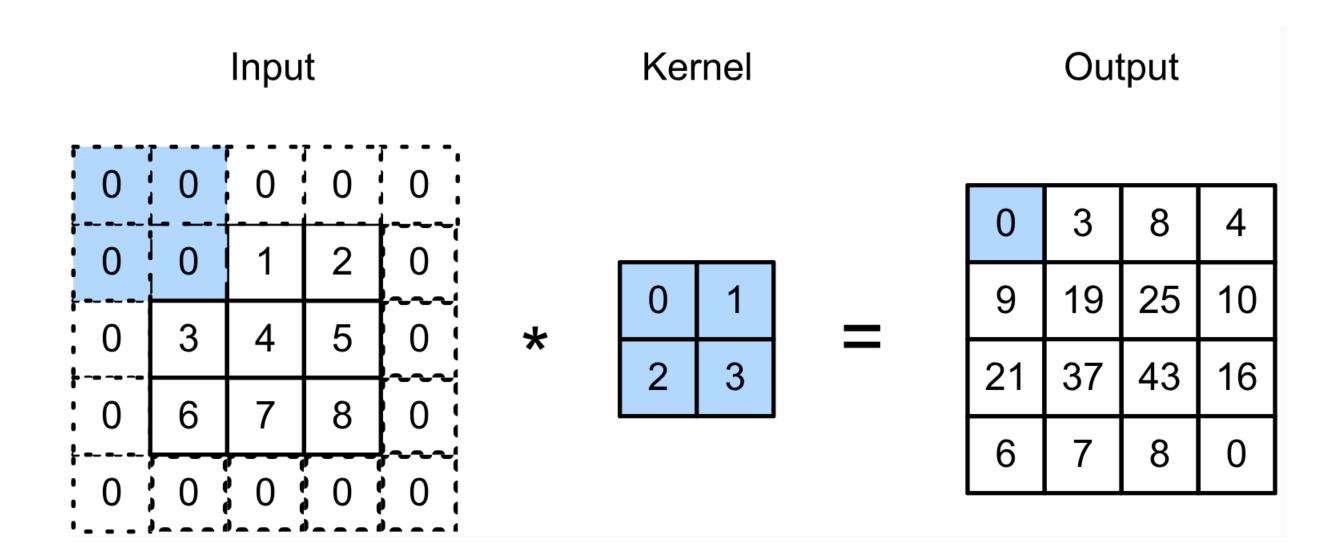
- Given a 32 x 32 input image
- Apply convolution with 5 x 5 kernel
 - 28 x 28 output with 1 layer
 - 4 x 4 output with 7 layers
- Shape decreases faster with larger kernels
 - Shape reduces from $n_h \times n_w$ to

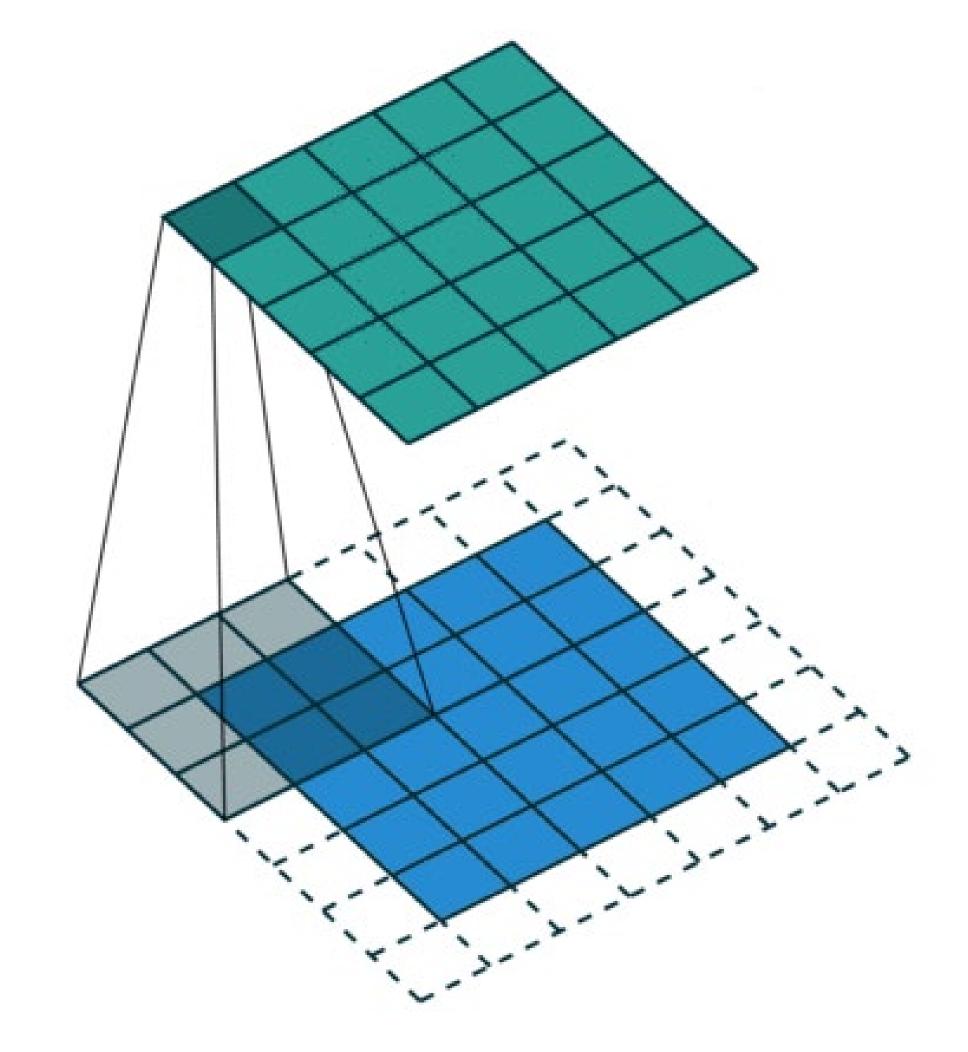


$$(n_h - k_h + 1) \times (n_w - k_w + 1)$$

Convolutional Layers: Padding

Padding adds rows/columns around input



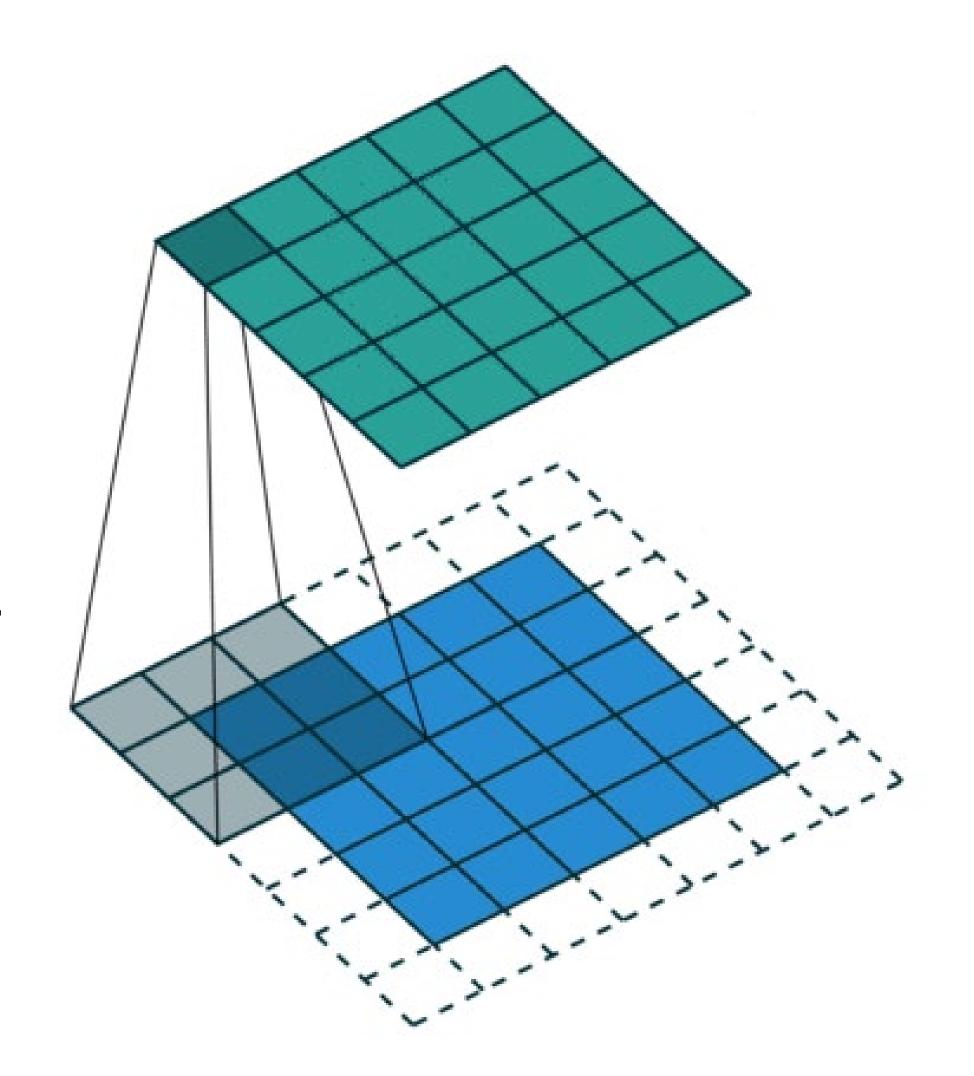


Convolutional Layers: Padding

Padding adds rows/columns around input

Why?

- 1. Keeps edge information
- 2. Preserves sizes / allows deep networks
 - ie, for a 32x32 input image, 5x5 kernel, after 1 layer, get 28x28, after 7 layers, only 4x4
- 3. Can combine different filter sizes



Convolutional Layers: Padding

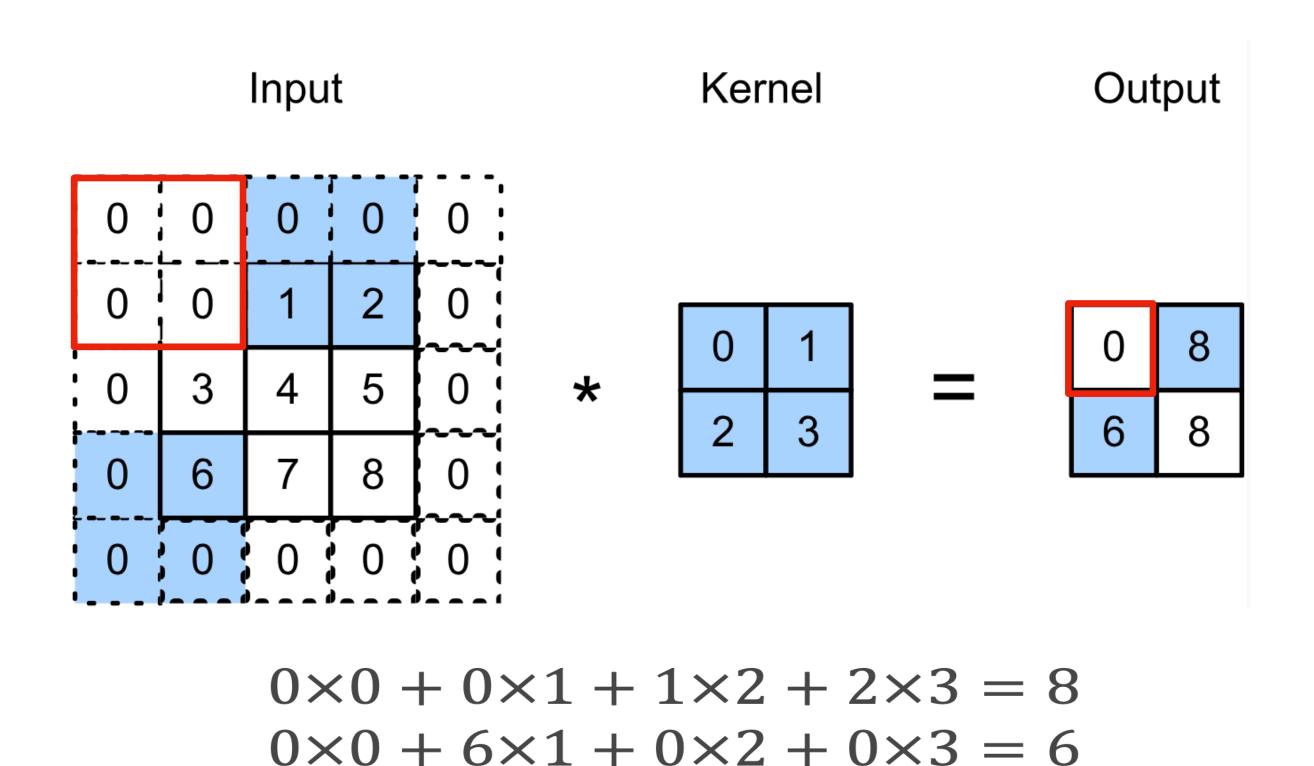
• Padding p_h rows and p_w columns, output shape is $(n_h - k_h + p_h + 1) \times (n_w - k_w + p_w + 1)$

- Common choice is $p_h = k_h$ -1 and $p_w = k_w$ -1
 - Odd k_h : pad $p_h/2$ on both top and bottom
 - Even k_h : pad ceil $(p_h/2)$ on top, floor $(p_h/2)$ on bottom

Stride

Stride is the #rows / #columns per slide

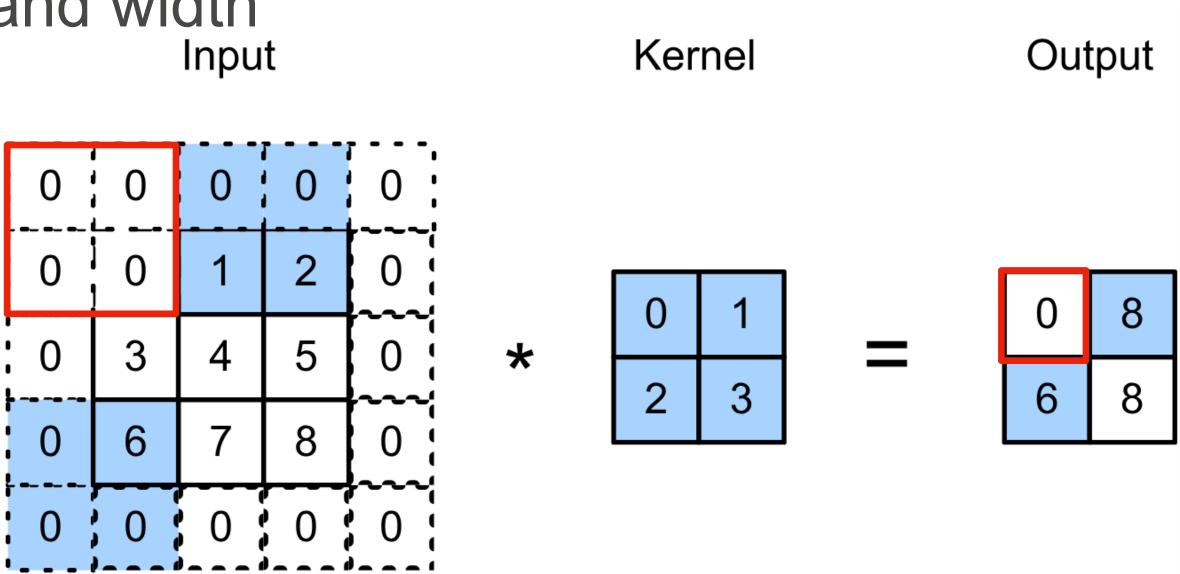
Example: strides of 3 and 2 for height and width



Stride

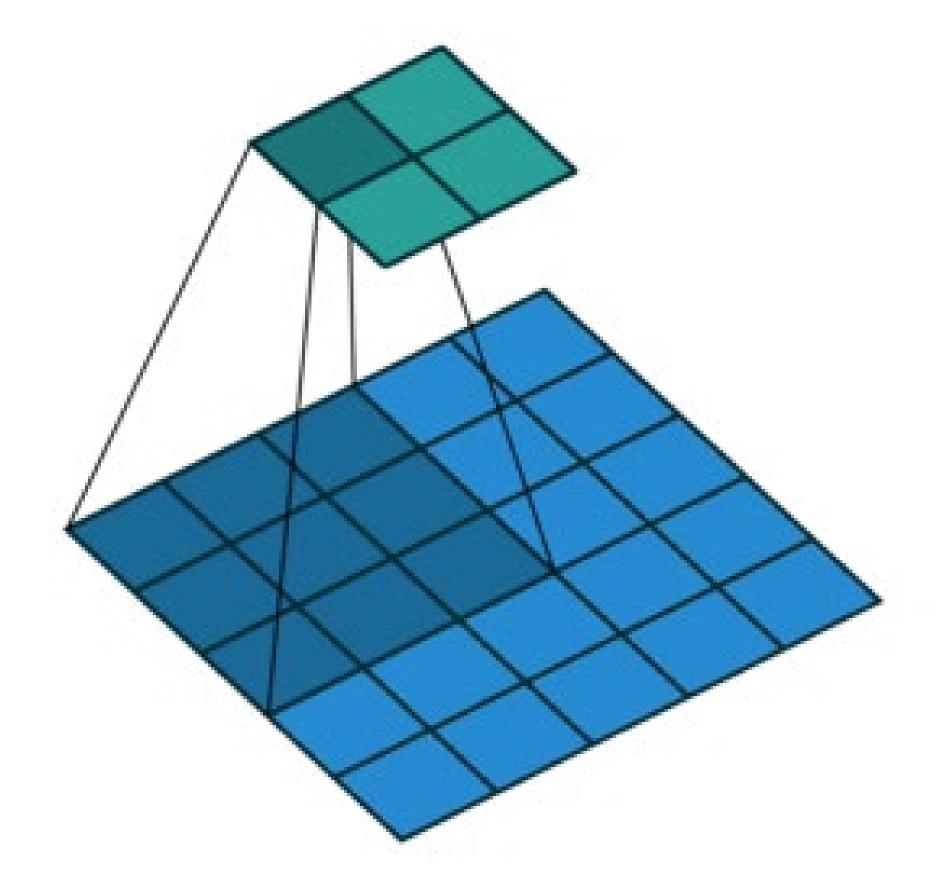
• Stride is the #rows / #columns per slide

Example: strides of 3 and 2 for height and width



$$0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$$

 $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$



Stride 2,2

Convolutional Layers: Stride

• Given stride s_h for the height and stride s_w for the width, the output shape is

$$[(n_h-k_h+p_h+s_h)/s_h] \times [(n_w-k_w+p_w+s_w)/s_w]$$

• Set $p_h = k_h-1$, $p_w = k_w-1$, then get

$$[(n_h + s_h - 1)/s_h] \times [(n_w + s_w - 1)/s_w]$$

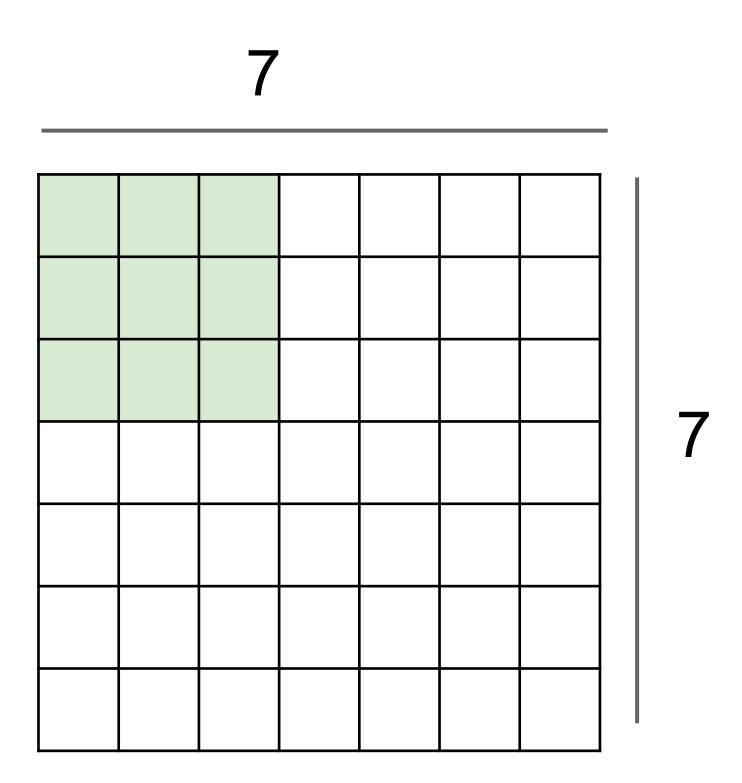
Q2. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3

B.7x7

C.5x5

D.2x2



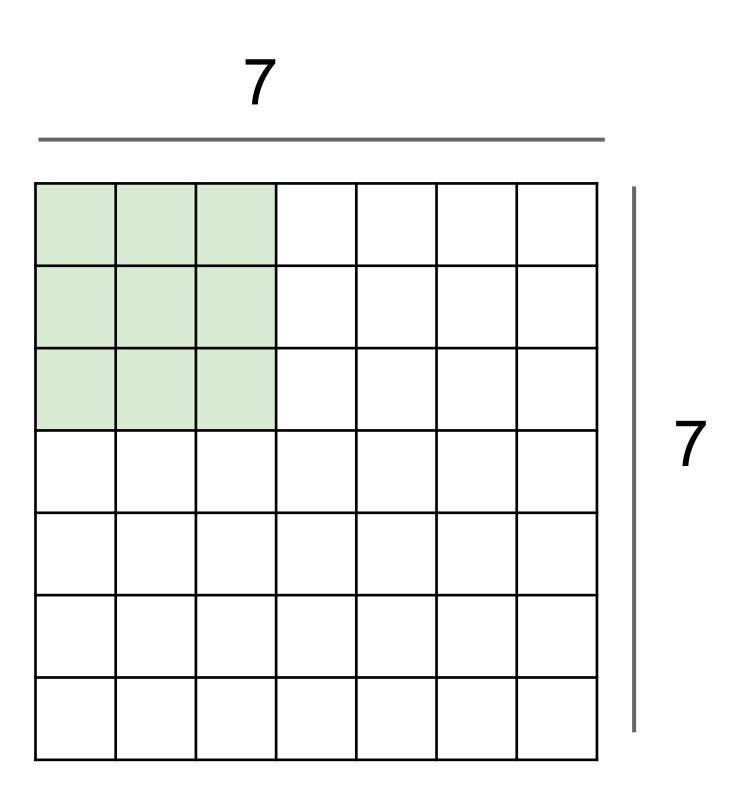
Q2. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3

B.7x7

C.5x5

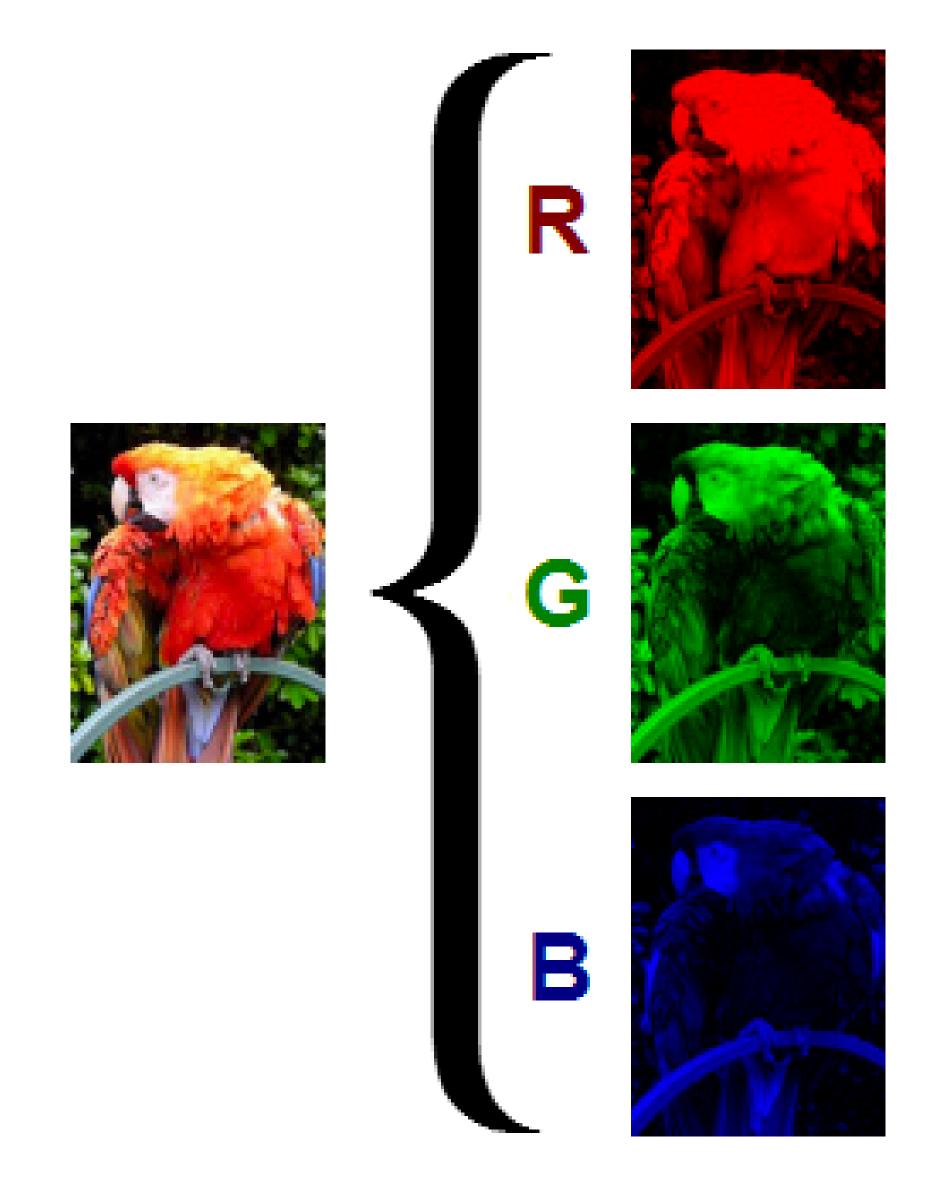
D.2x2



$$[(n_h-k_h+p_h+s_h)/s_h] \times [(n_w-k_w+p_w+s_w)/s_w]$$

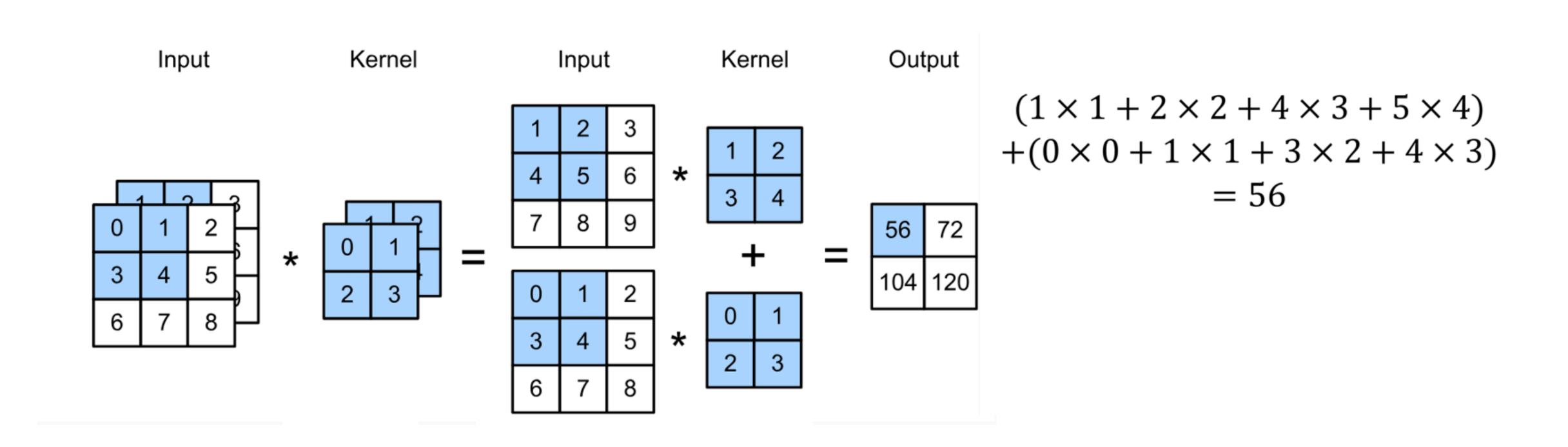
Multiple Input Channels

- Color image may have three RGB channels
- Converting to grayscale loses information



Multiple Input Channels

 Have a kernel matrix for each channel, and then sum results over channels



Convolutional Layers: Channels

How to integrate multiple channels?

 $\mathbf{Y}: m_h \times m_w$

 Have a kernel for each channel, and then sum results over channels

$$\mathbf{X} : c_i \times n_h \times n_w$$

$$\mathbf{Y} = \sum_{i=0}^{c_i} \mathbf{X}_{i,:,:} \star \mathbf{W}_{i,:,:}$$

$$\mathbf{W} : c_i \times k_h \times k_w$$
"Slices" of tensors

Tensor: generalization of matrix to higher dimensions

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel

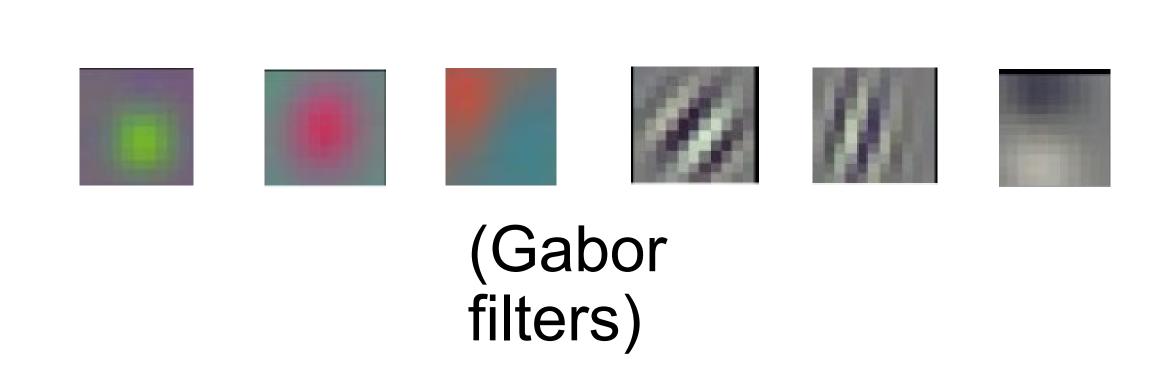
Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input $\mathbf{X}: c_i \times n_h \times n_w$
- Kernels $\mathbf{W}: c_o \times c_i \times k_h \times k_w$
- Output $Y: c_o \times m_h \times m_w$

$$Y_{i,:,:} = X * W_{i,:,:,:}$$
for $i = 1, ..., c_0$

Multiple Input/Output Channels

• Each 3-D kernel may recognize a particular pattern



Q3. Suppose we want to perform convolution on an RGB image of size 224x224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222

B.64 x 3 x 3 x 222

C.3 x 3 x 222 x 222

D.64 x 3 x 3 x 3 x 222 x 222

Q3. Suppose we want to perform convolution on an RGB image of size 224x224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222

B.64 x 3 x 3 x 222

C.3 x 3 x 222 x 222

D.64 x 3 x 3 x 3 x 222 x 222

Q3. Suppose we want to perform convolution on an RGB image of size 224x224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

A.64 x 3 x 3 x 222 x 222

B.64 x 3 x 3 x 222

C.3 x 3 x 222 x 222

D.64 x 3 x 3 x 3 x 222 x 222

For each kernel, we slide the window to 222 x 222 different locations. For each location, the number of multiplication is 3x3x3. So in total 64x3x3x3x222x222

Q4. Suppose we want to perform convolution on a RGB image of size 224 x 224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?

$$D.(3 \times 3 \times 3 + 1) \times 64$$

Q4. Suppose we want to perform convolution on a RGB image of size 224 x 224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?

A.64 x 222 x 222

B.64 x 3 x 3 x 222

 $C.3 \times 3 \times 3 \times 64$

 $D.(3 \times 3 \times 3 + 1) \times 64$

Q4. Suppose we want to perform convolution on a RGB image of size 224 x 224 (no padding) with 64 kernels, each with height 3 and width 3. Stride = 1. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?

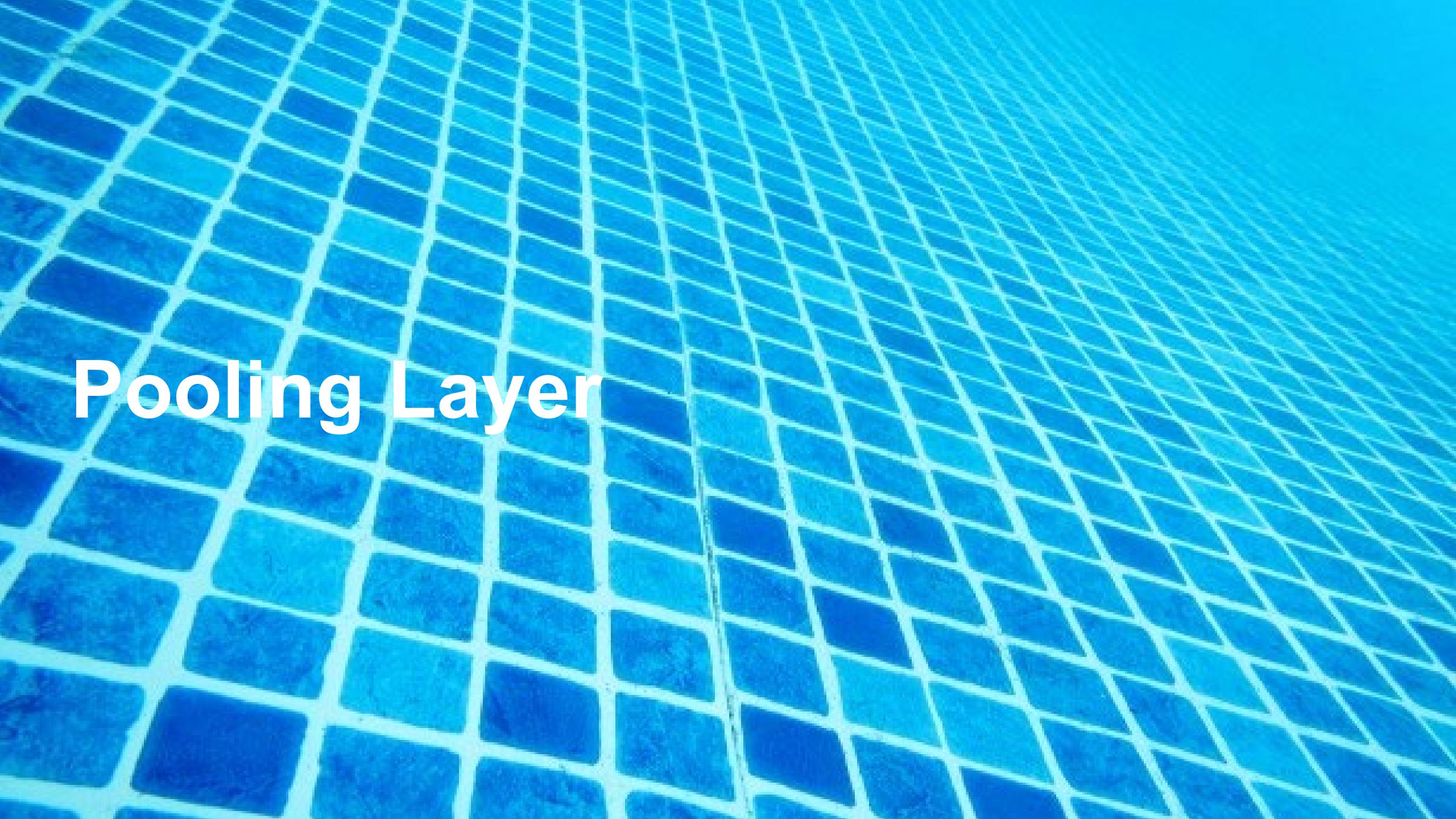
A.64 x 222 x 222

B.64 x 3 x 3 x 222

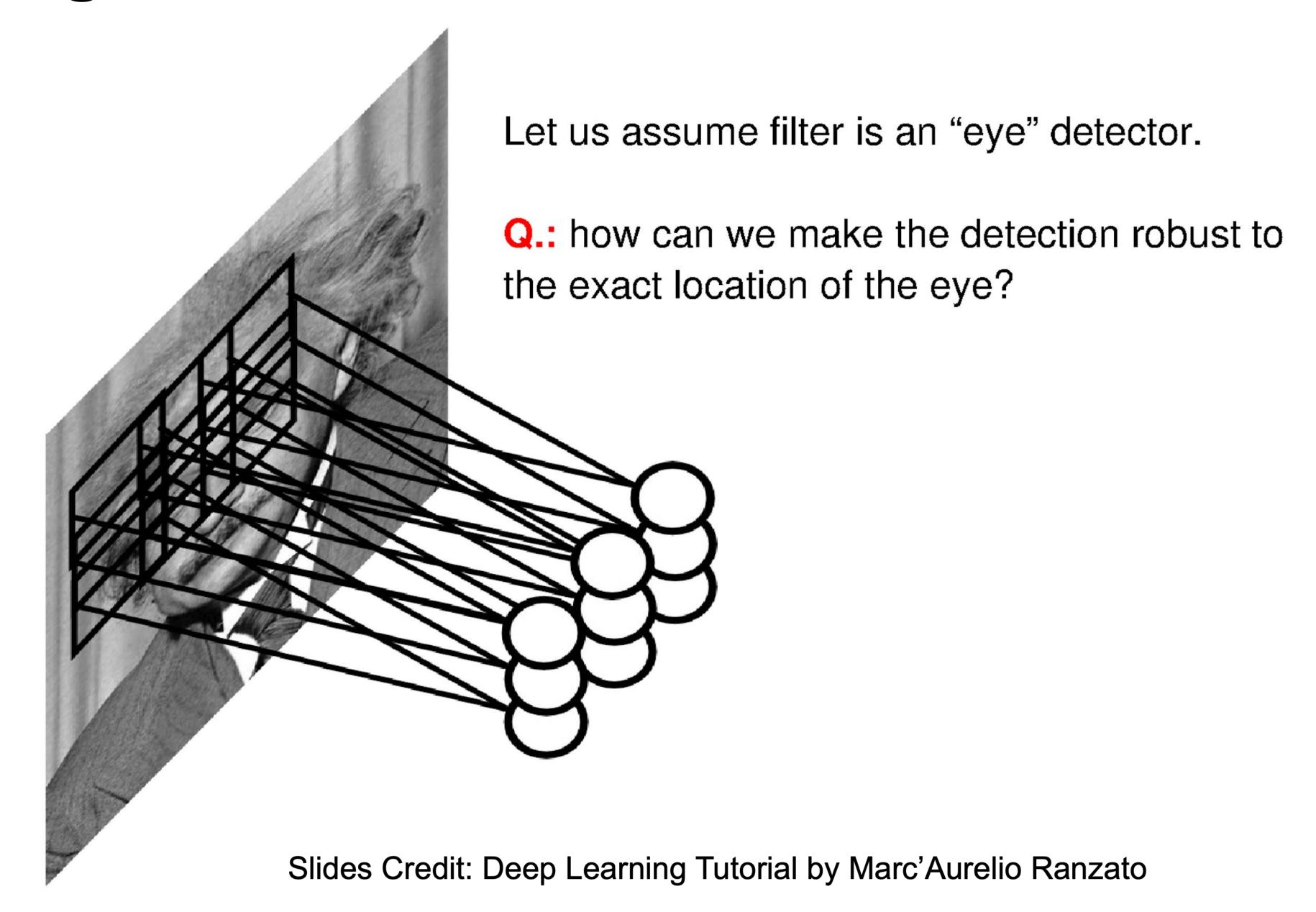
 $C.3 \times 3 \times 3 \times 64$

 $D.(3 \times 3 \times 3 + 1) \times 64$

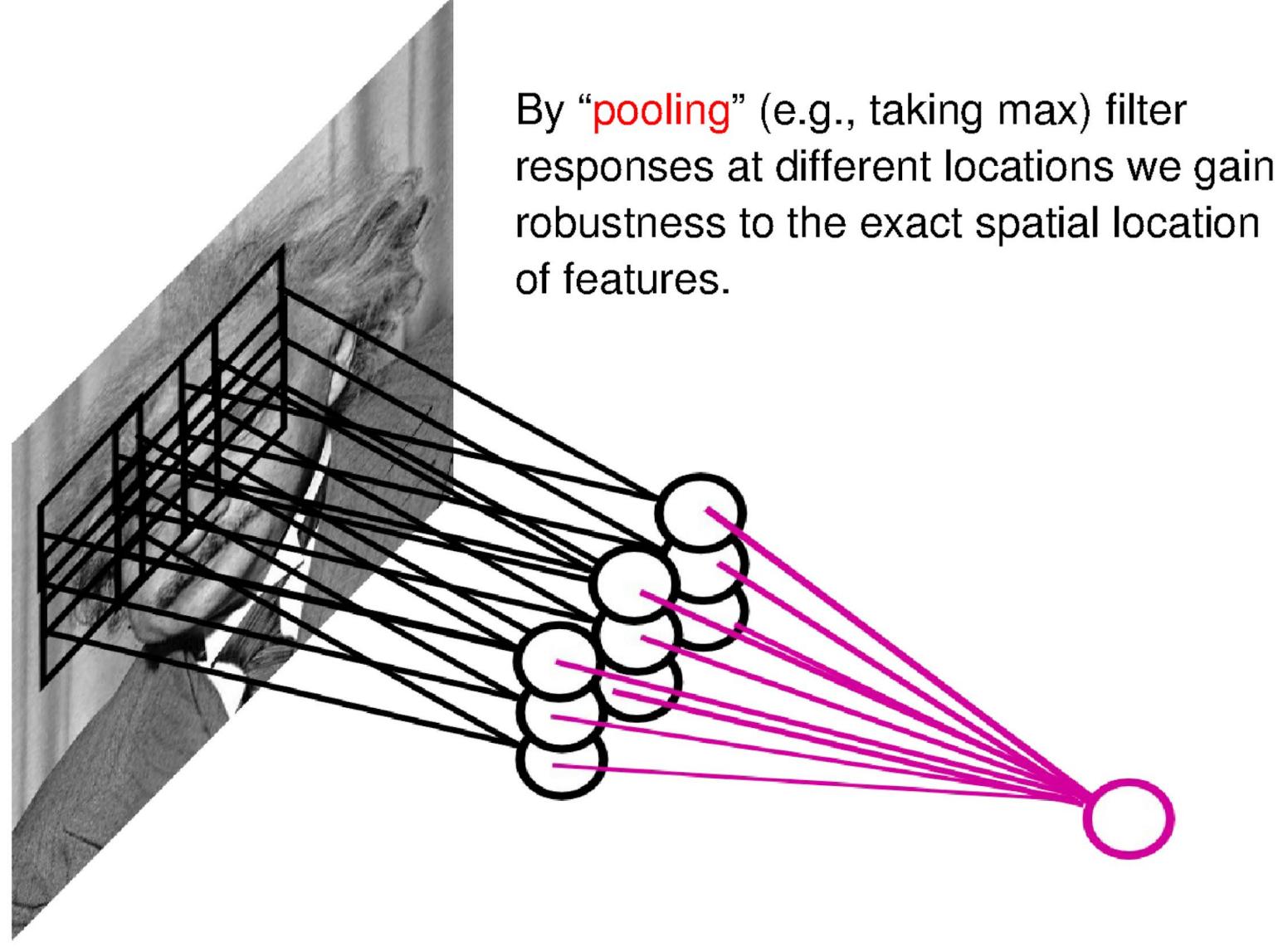
Each kernel is 3D kernel across 3 input channels, so has 3x3x3 parameters. Each kernel has 1 bias parameter. So in total (3x3x3+1)x64



Pooling



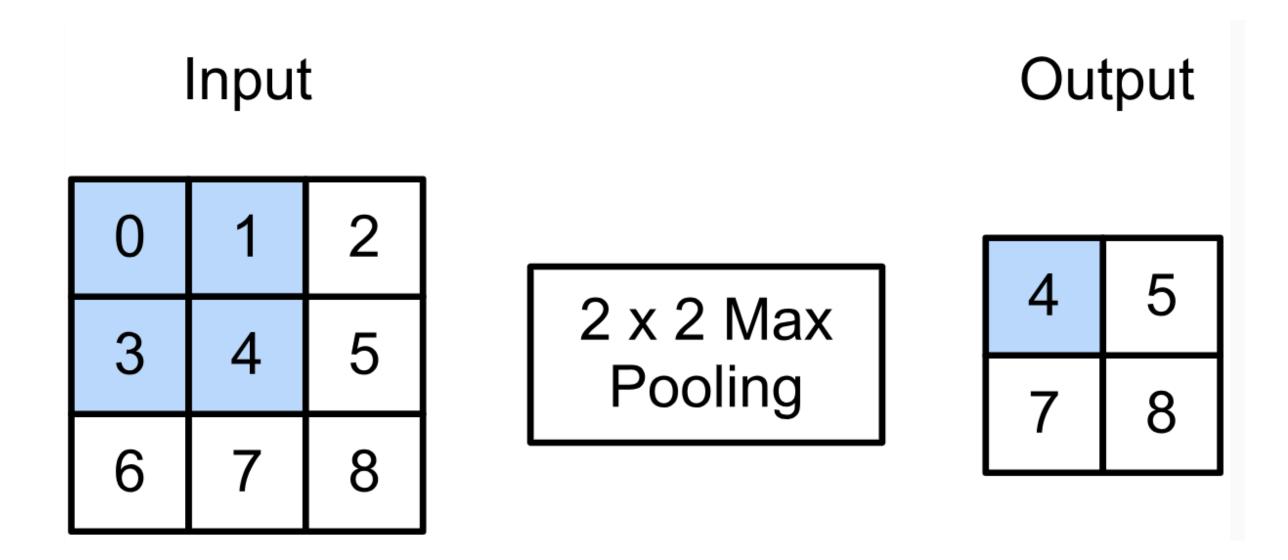
Pooling



Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

2-D Max Pooling

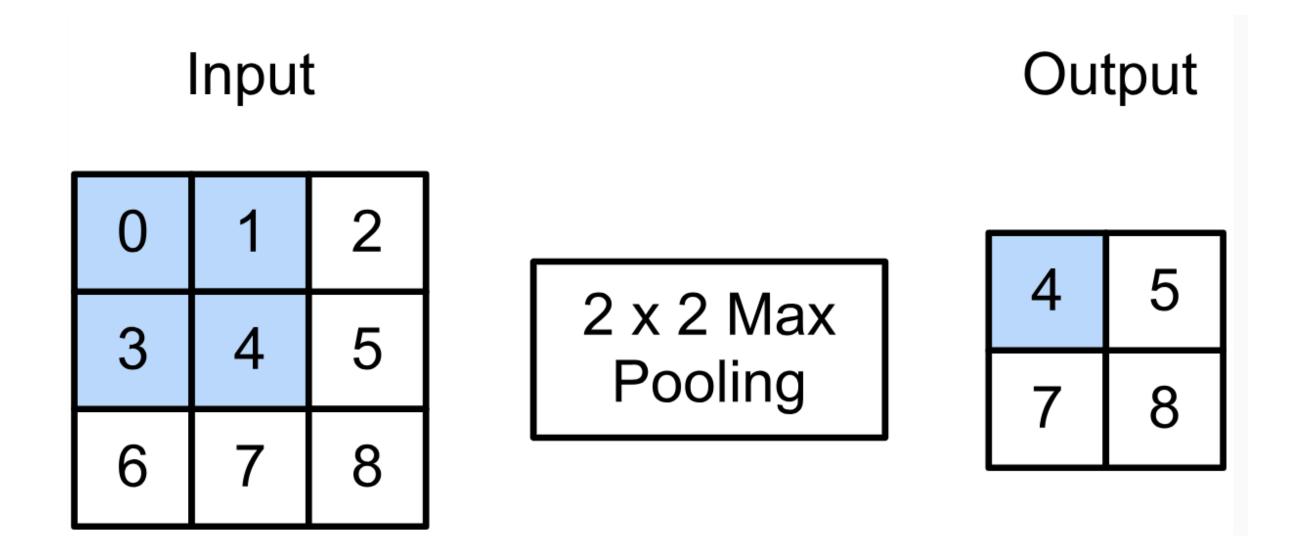
Returns the maximal value in the sliding window



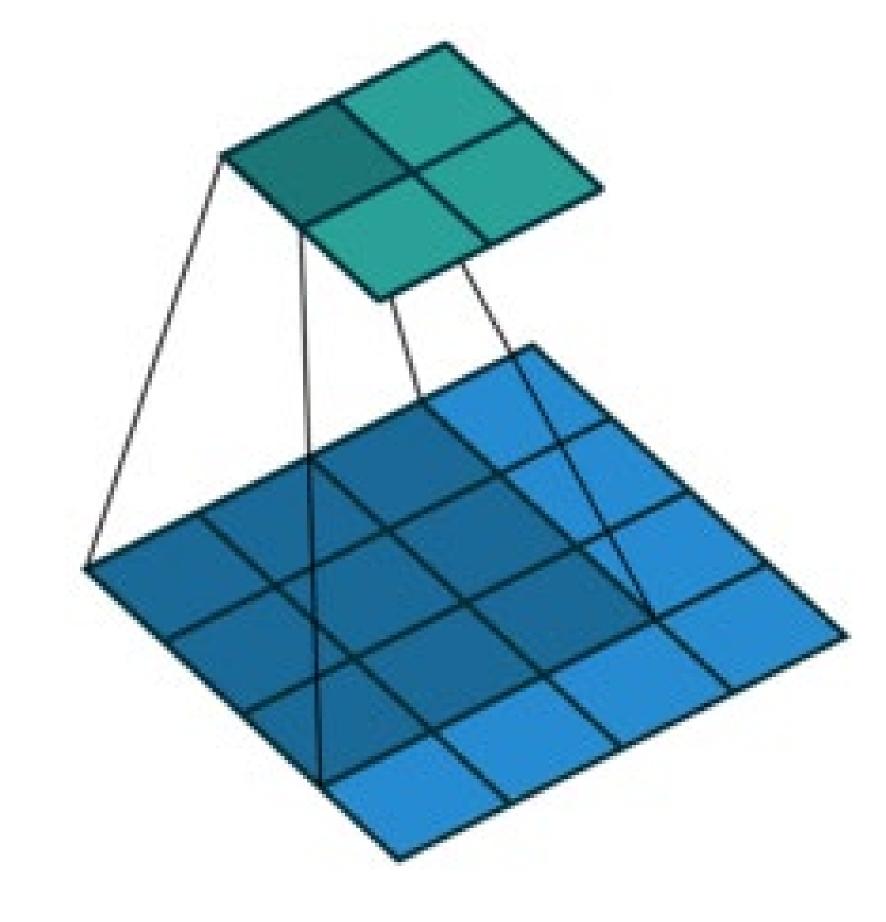
$$max(0,1,3,4) = 4$$

2-D Max Pooling

Returns the maximal value in the sliding window



max(0,1,3,4) = 4



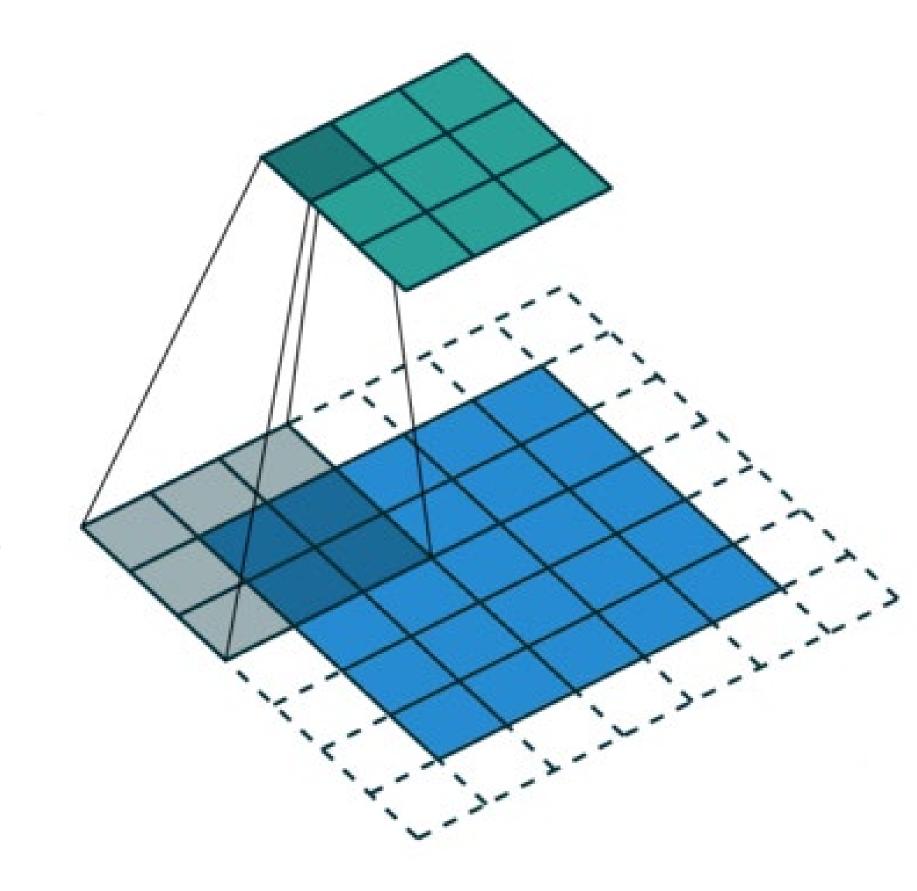
Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

#output channels = #input channels

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel



#output channels = #input channels

Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
 - The average signal strength in a window

Max pooling

Average pooling

Q5. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2.

What is the output?

_	20	3
Α.	70	9

	16	8
B.	20	25

	20	30
O .	20	25

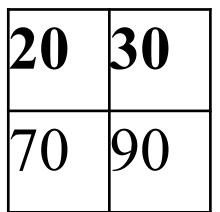
D.	12	2
	70	5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q5. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2.

What is the output?

Α.



В.

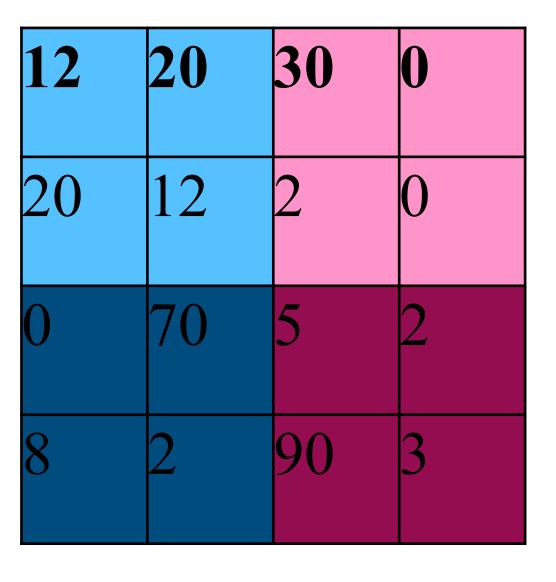
16	8
20	25

C.

20	30
20	25

D.

12	2
70	5



Q6. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?

A.

20	30
70	90

В

16	8
20	25

C.

2	20	30
2	20	25

D.

12	2
70	5

12	20	30	0
20	12	2	O
0	70	5	2
8	2	90	3

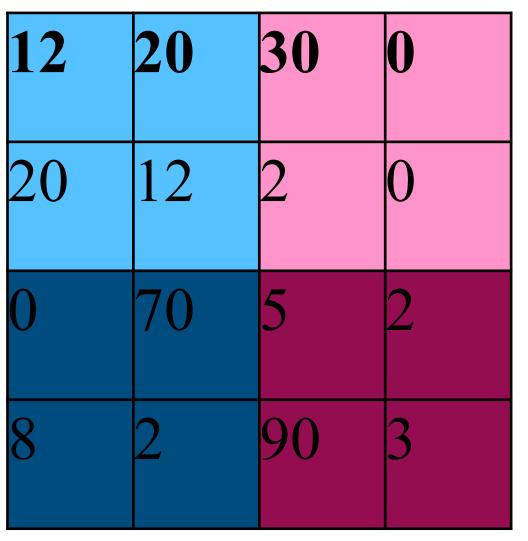
Q6. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?

20 3 **70** 9

B. 20 25

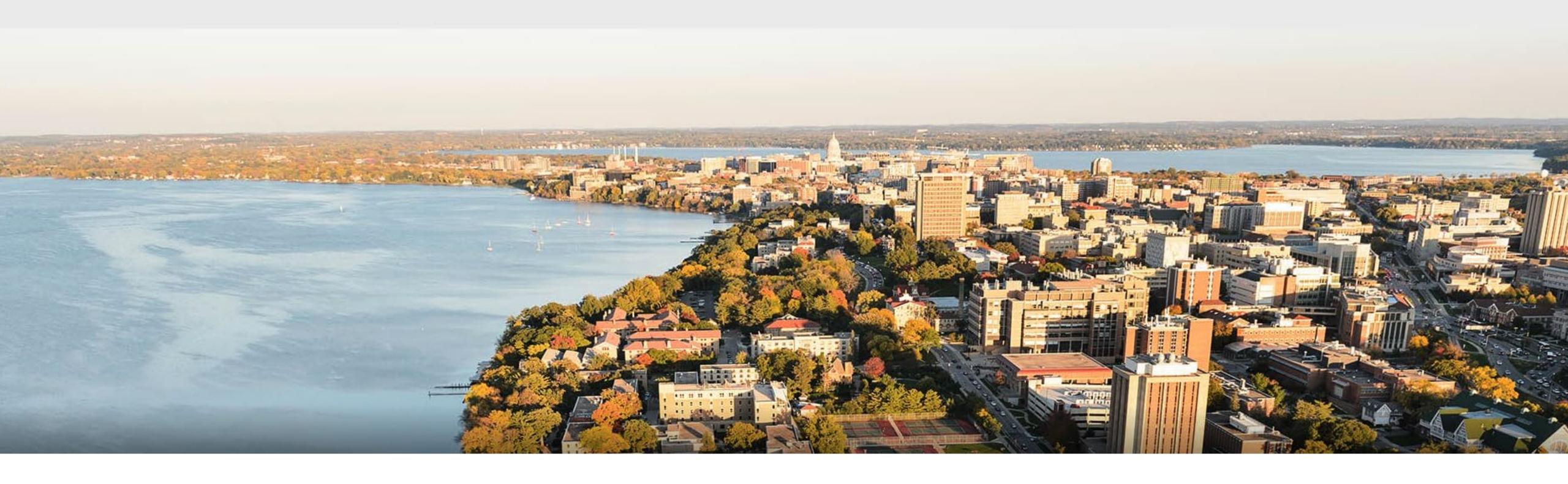
20 30 20 25

D. $\begin{vmatrix} 12 & 2 \\ 70 & 5 \end{vmatrix}$



Summary

- Intro of convolutional computations
 - 2D convolution
 - Padding, stride
 - Multiple input and output channels
 - Pooling



Acknowledgement:

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:

https://courses.d21.ai/berkeley-stat-157/index.html