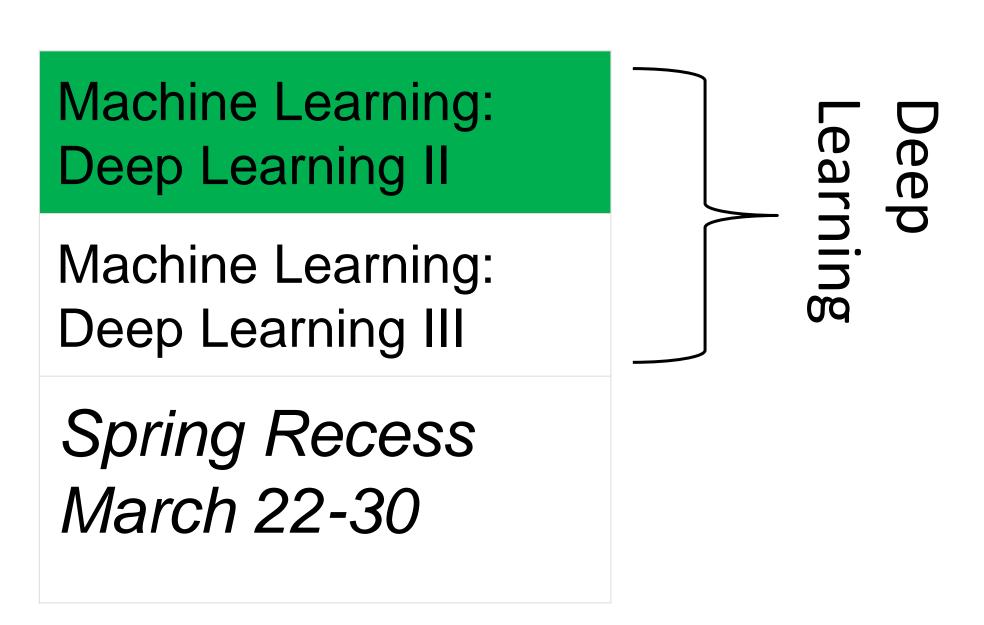


CS540 Introduction to Artificial Intelligence Convolutional Neural Networks (II)

University of Wisconsin-Madison Spring 2025

Announcements

- . Homeworks:
 - HW7 online, deadline on Monday April 7th at 11:59 PM
- . Class roadmap and schedule:



Today's goals

- Review (some of) convolutional computations.
 - 2D convolutions, multiple input channels, pooling.
- Understand how convolutions are used as layers in a (deep) neural network.
- Build intuition for output of convolutional layers.
- Overview the evolution of deeper convolutional networks

How to classify Cats vs. dogs?

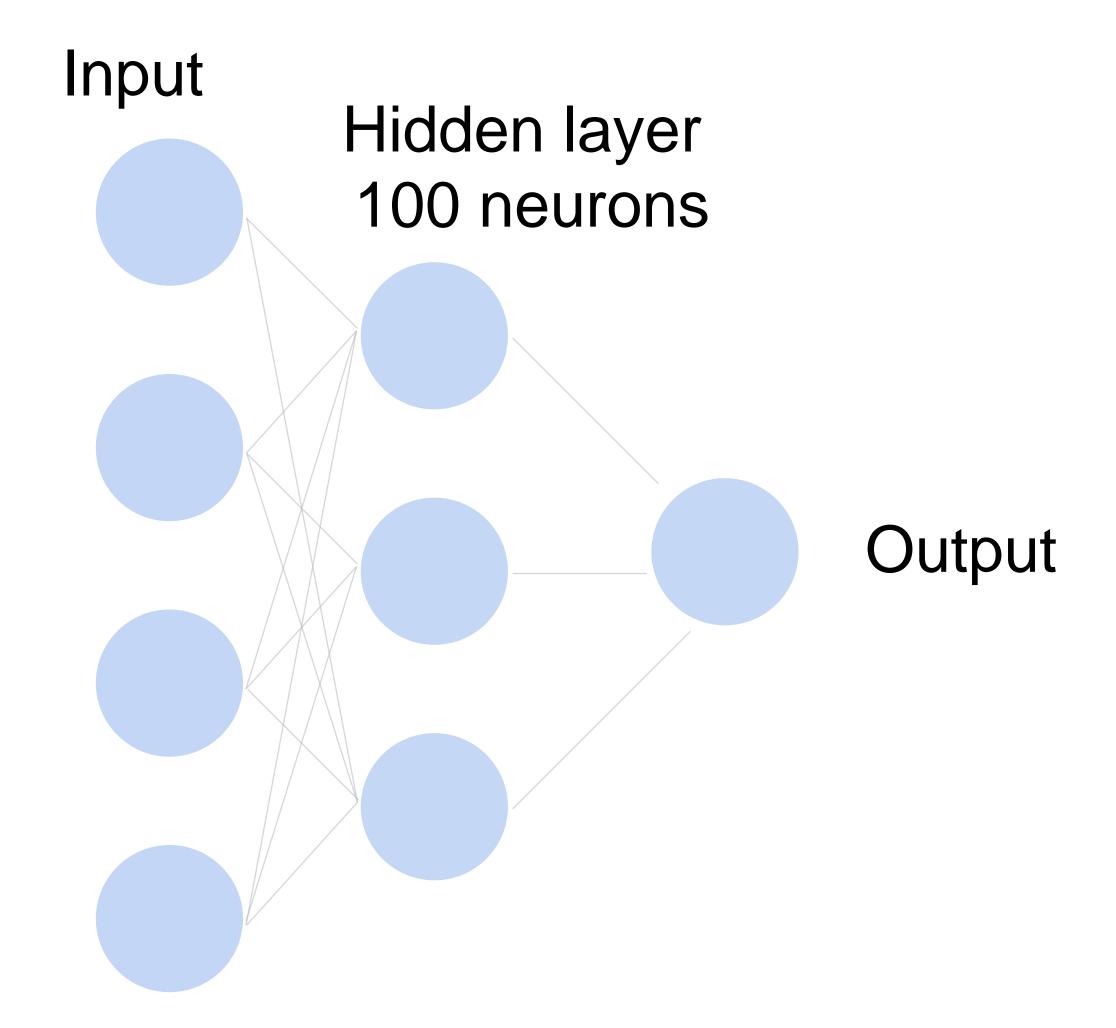
Dual 12NP

wide-angle and telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?



36M elements x 100 = 3.6B parameters!

Review: 2-D Convolution

Input

0	1	2
3	4	5
6	7	8

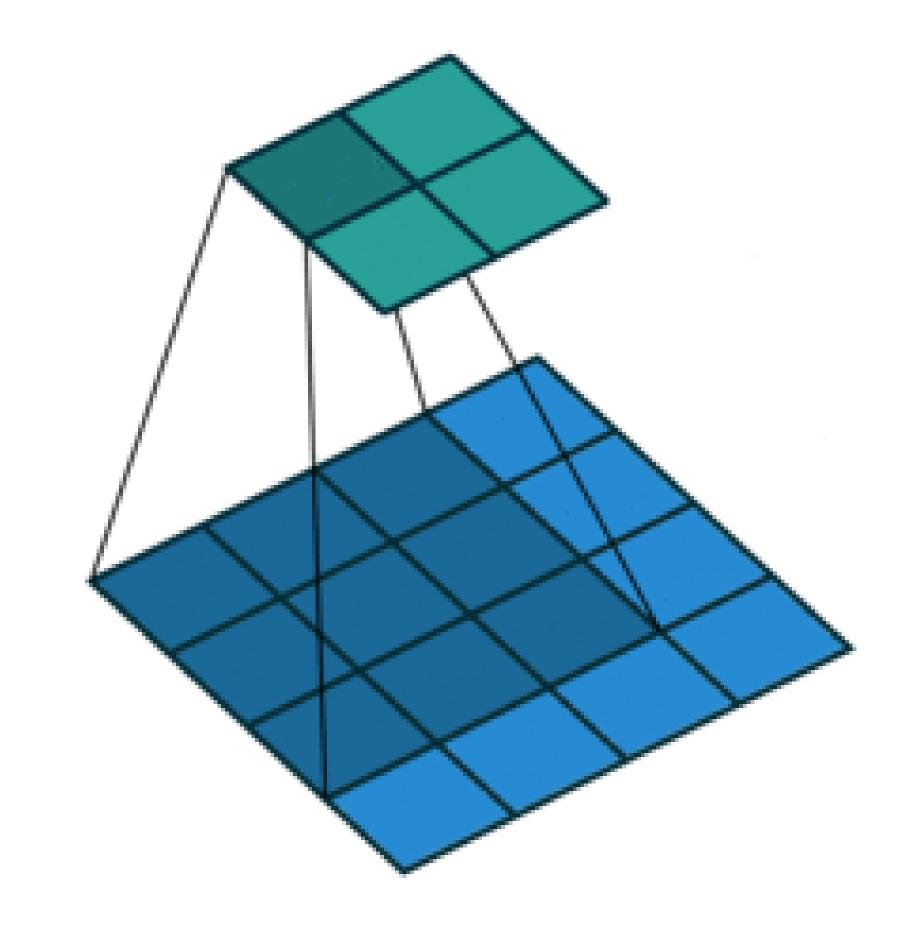
Kernel

Output

19	25
37	43

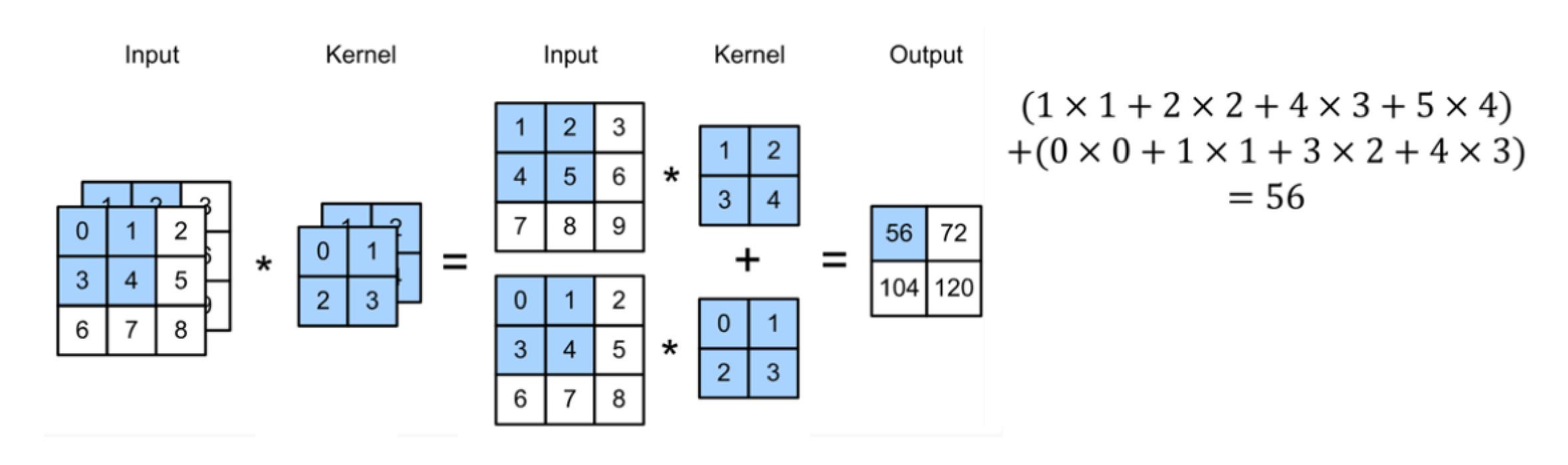
$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,$$

 $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,$
 $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,$
 $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$



(vdumoulin@ Github)

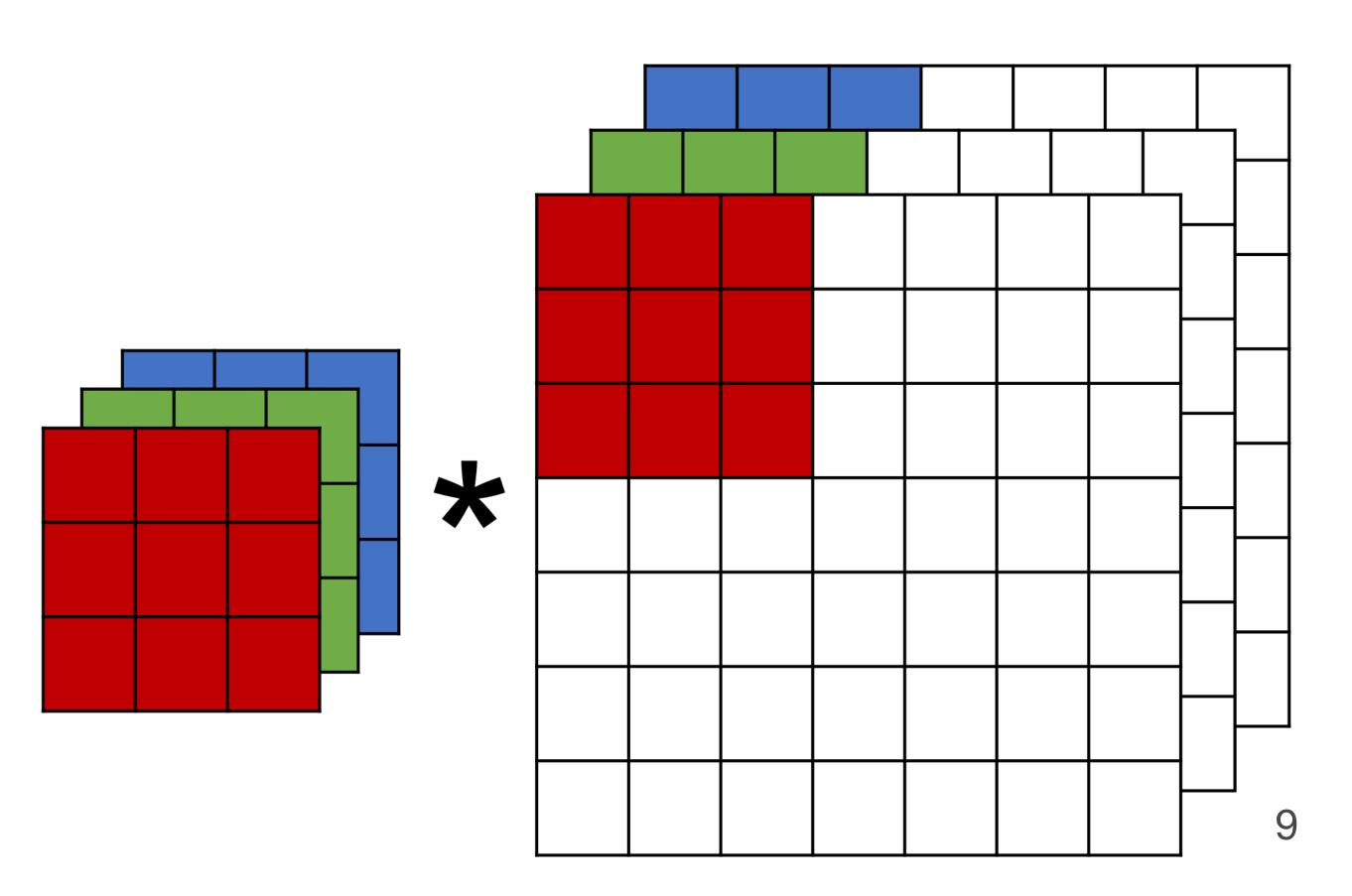
- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels



Input and kernel can be 3D, e.g., an RGB image have 3 channels

Have a kernel for each channel, and then sum results over

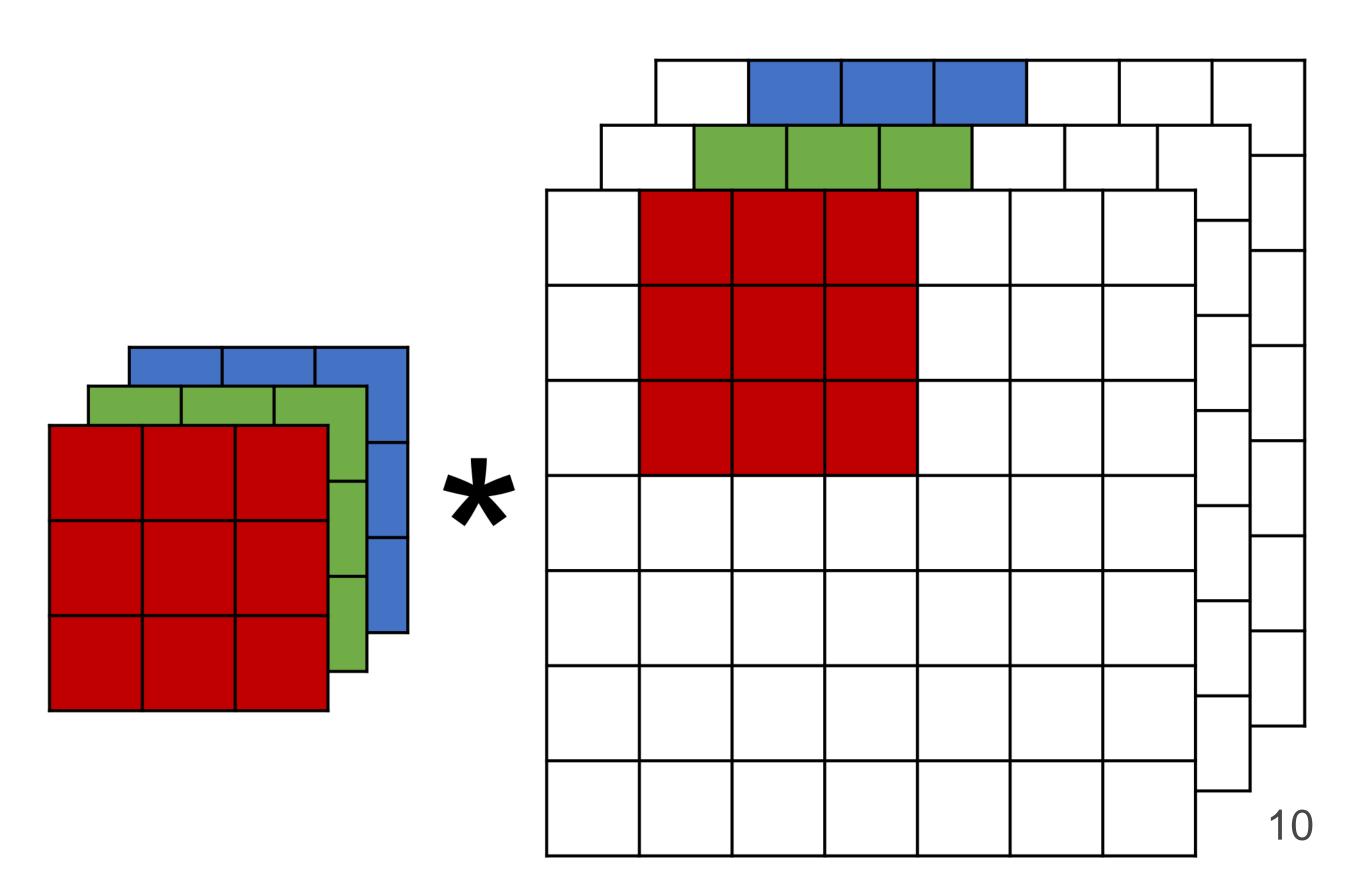
channels



Input and kernel can be 3D, e.g., an RGB image have 3 channels

Have a kernel for each channel, and then sum results over

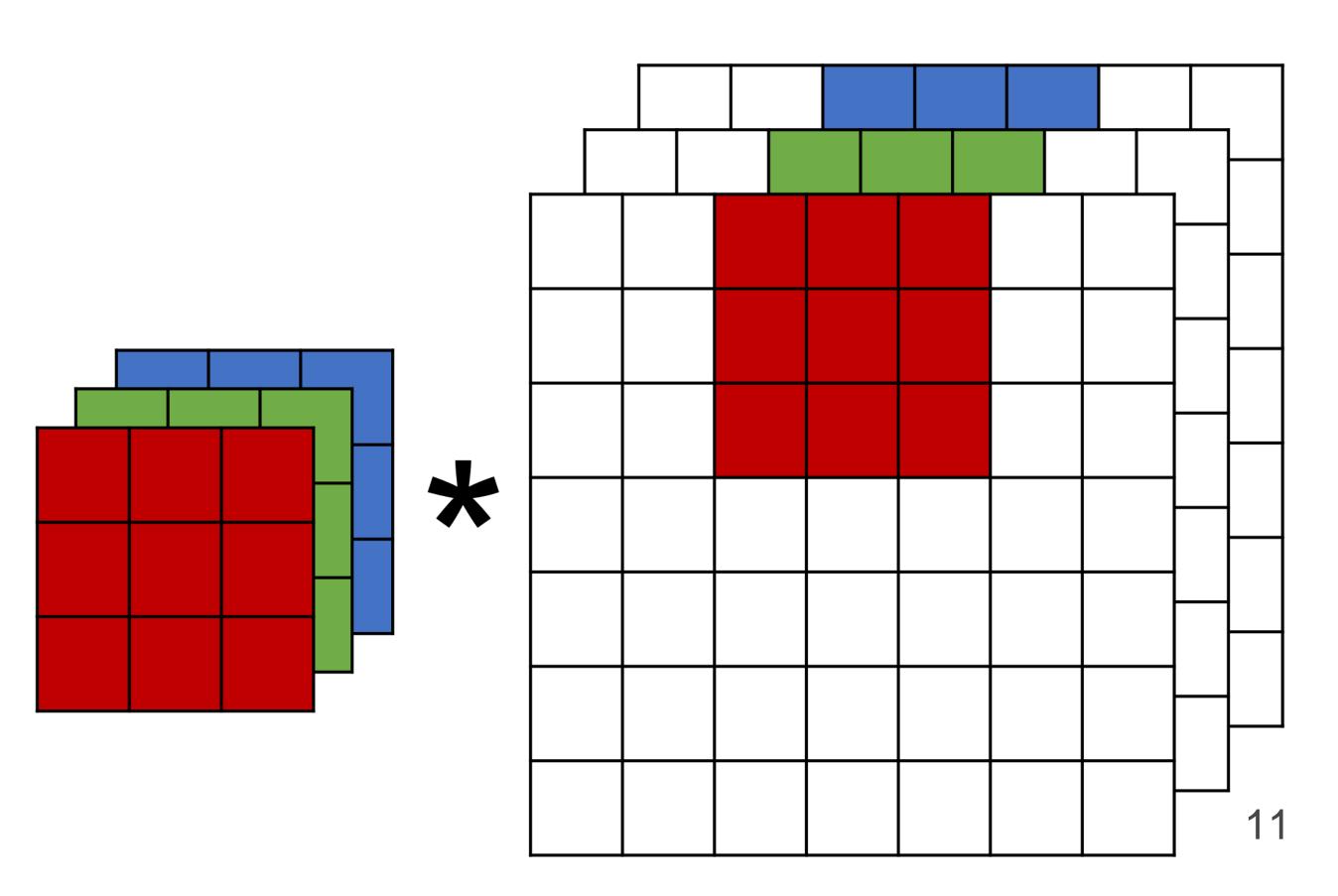
channels



Input and kernel can be 3D, e.g., an RGB image have 3 channels

Have a kernel for each channel, and then sum results over

channels



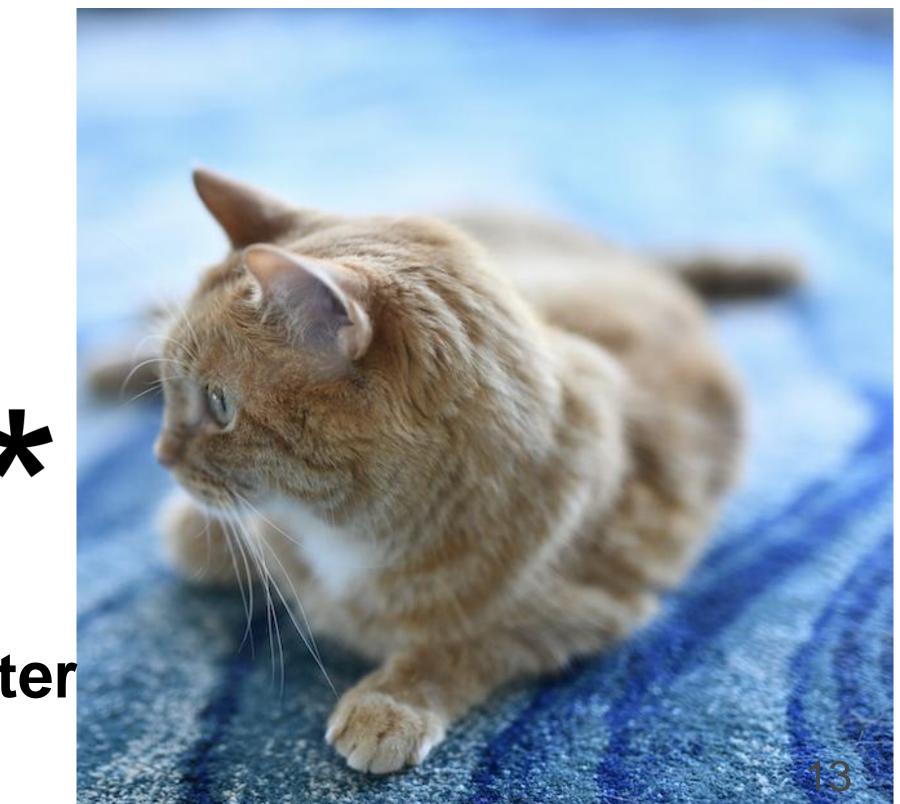
Multiple Input Channels

- Input and kernel can be 3D, e.g. RGB image has 3 channels
- Also call each 3D kernel a "filter", which produces only one output channel (due to summation over channels)

RGB (3 input channels)

Multiple filters (in one layer)

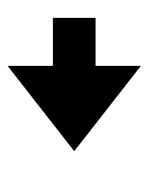
- Apply multiple filters on the input
- Each filter may learn different features about the input
- Each filter (3D kernel) produces one output channel



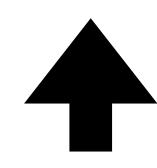
RGB (3 input channels)

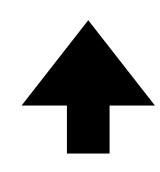
Output shape

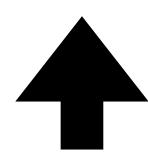
Kernel/filter size



$$[(n_h - k_h + p_h + s_h)/s_h] \times [(n_w - k_w + p_w + s_w)/s_w]$$





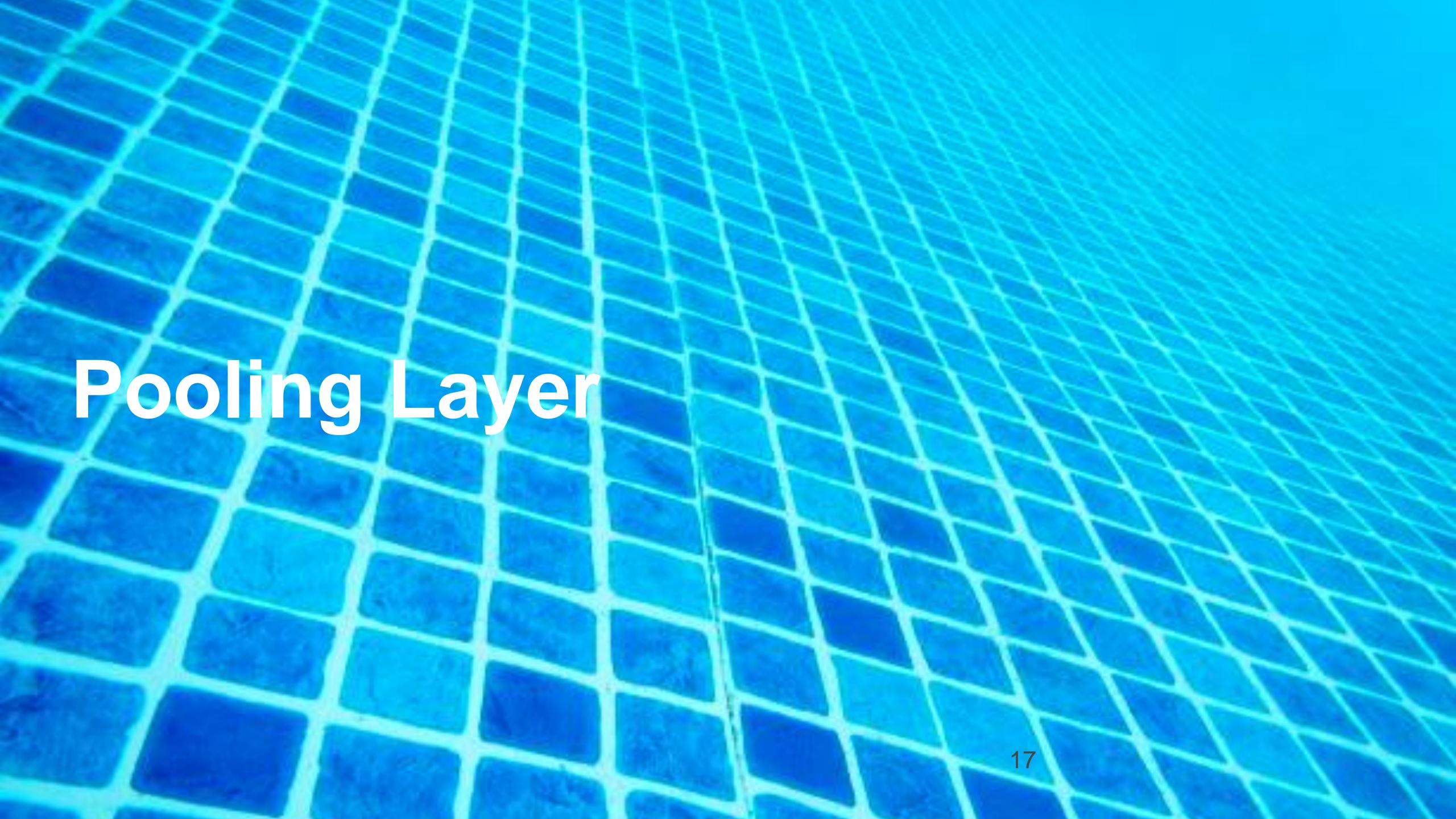


Input size

Pad Stride

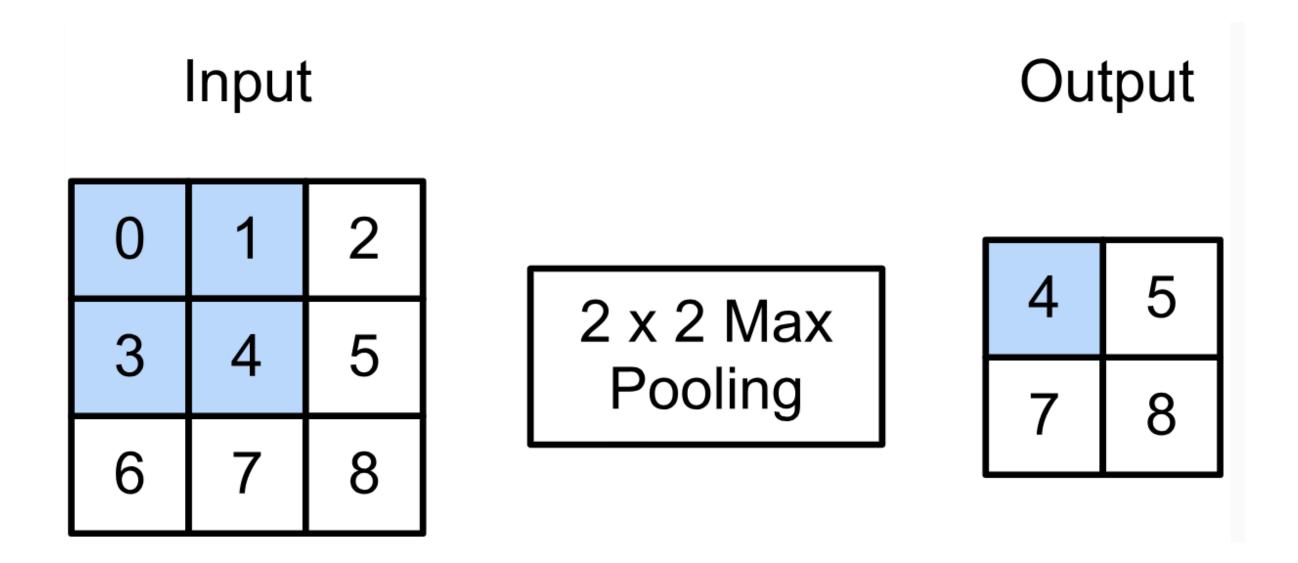
Consider a convolution layer with 16 filters. Each filter has a size of 11x11x3, a stride of 2x2. Given an input image of size 22x22x3, if we don't allow a filter to fall outside of the input, what is the output size?

- 11x11x16
- 6x6x16
- 7x7x16
- 5x5x16

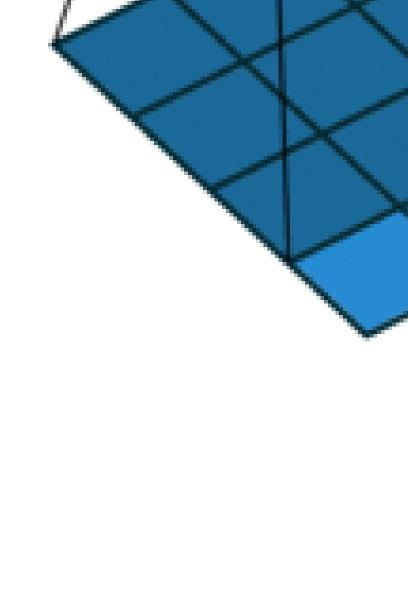


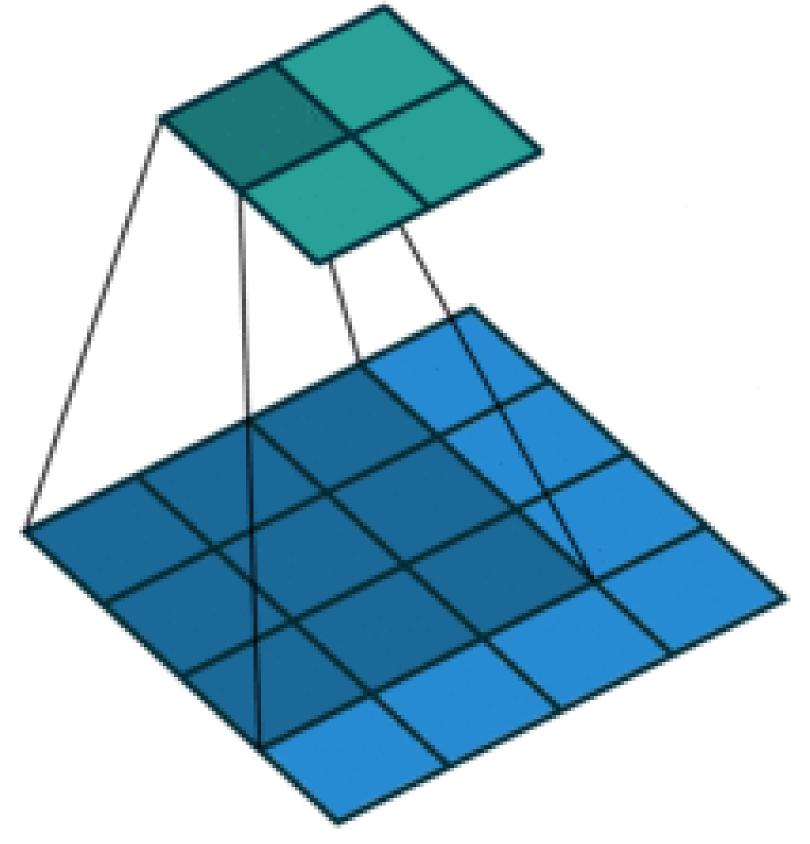
2-D Max Pooling

 Returns the maximal value in the sliding window



max(0,1,3,4) = 4

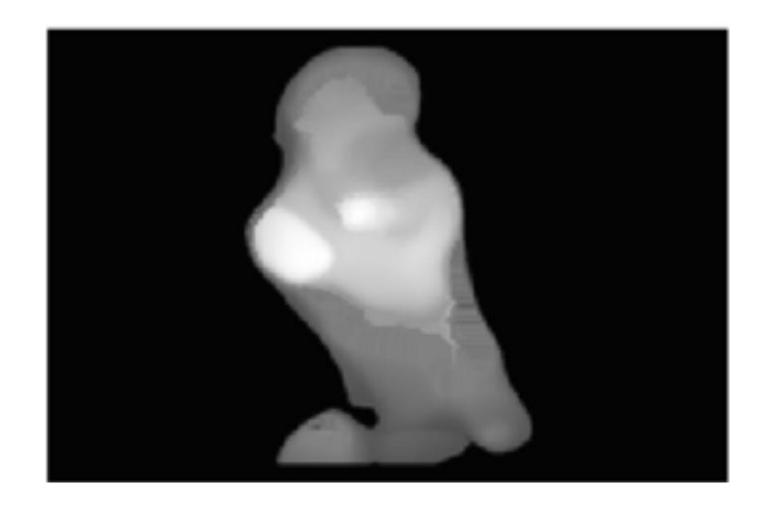




Average Pooling

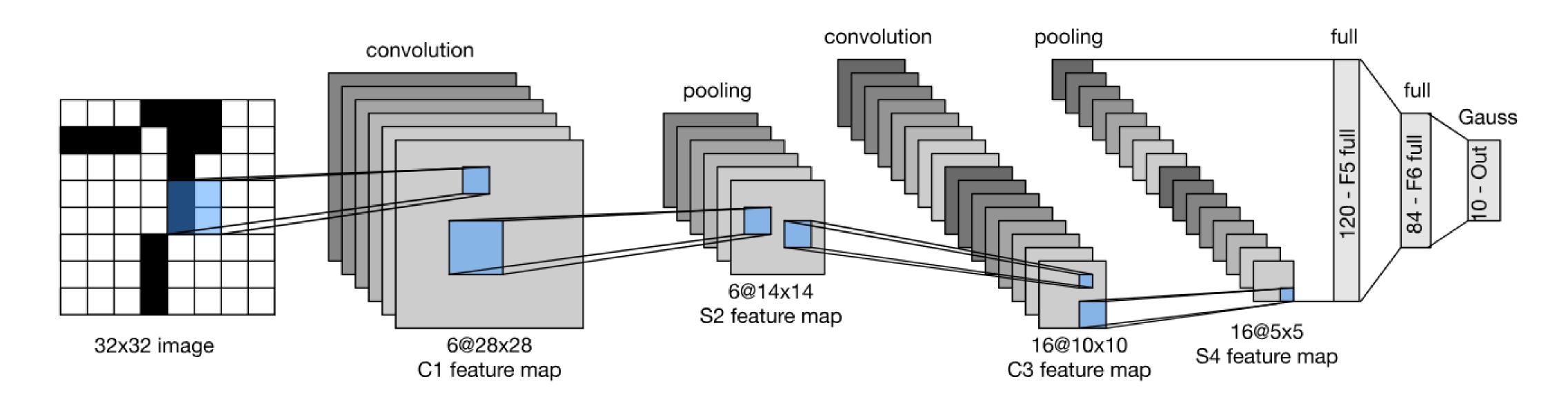
- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
 - The average signal strength in a window

Max pooling



Average pooling

Convolutional Neural Network Architecture



Convolutional Neural Network Intuition

Early layers recognize simple visual features, later layers recognize more complex visual features.

Suppose we want to classify pictures of cats or dogs. How would you do this?

Look for features of cats or dogs in the image and use for decision.

- Example: cats have cat-like faces, dogs have dog-like faces.
- How do you determine what is a "cat-like" face vs a "dog-like" face?

Look for features of "cat-like" faces and "dog-like" faces.

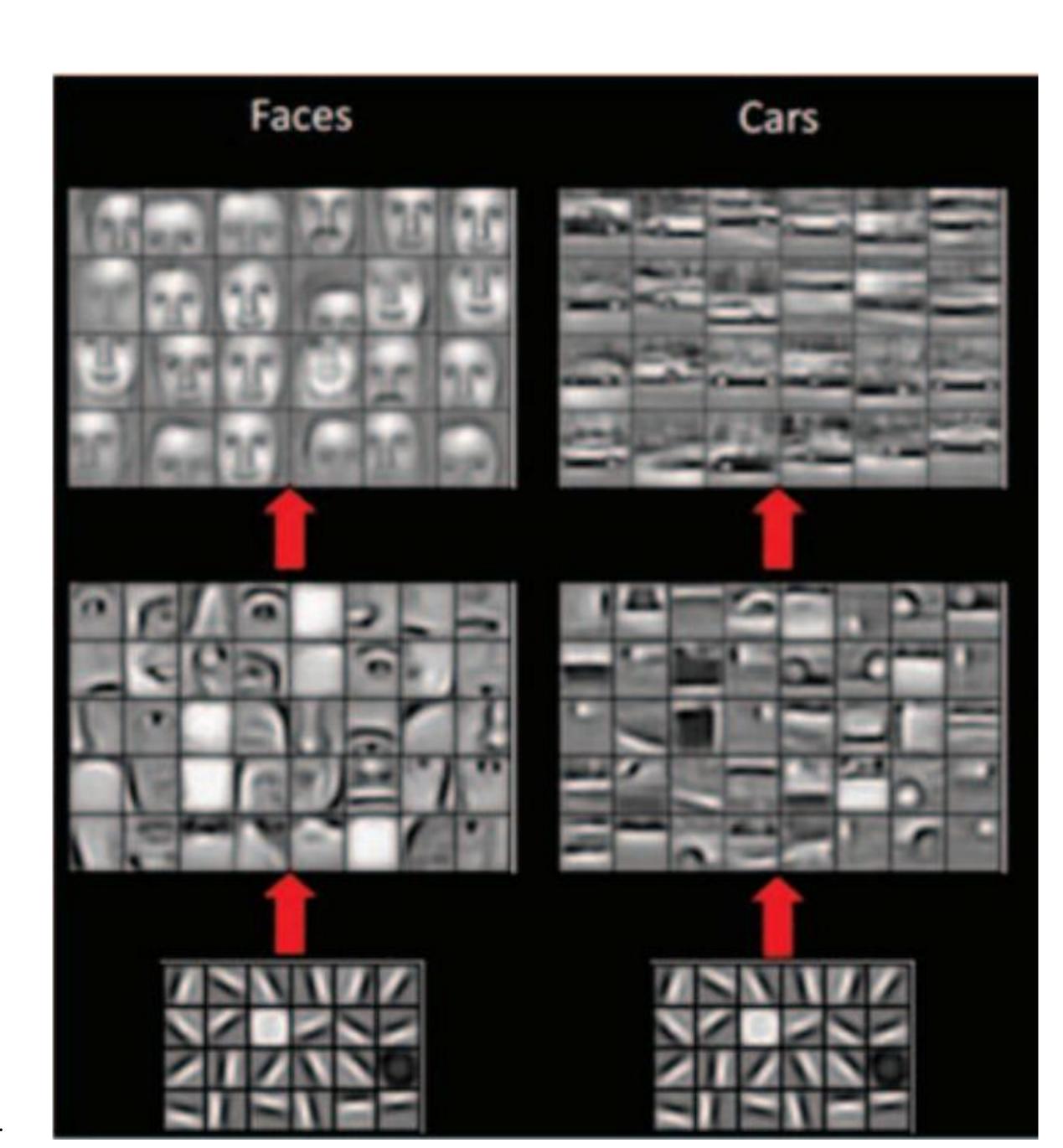
- Example: Dogs have longer snouts.
- How do you determine what is a long snout?

Feature Learning

Later layers recognize complete objects

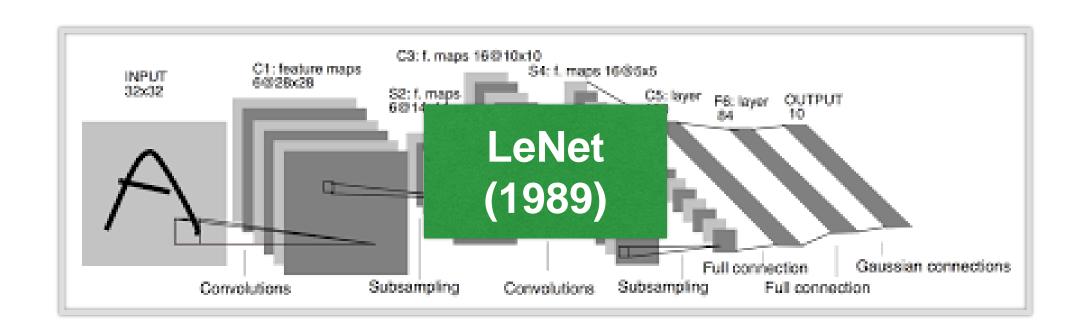
Middle layers recognize parts of objects

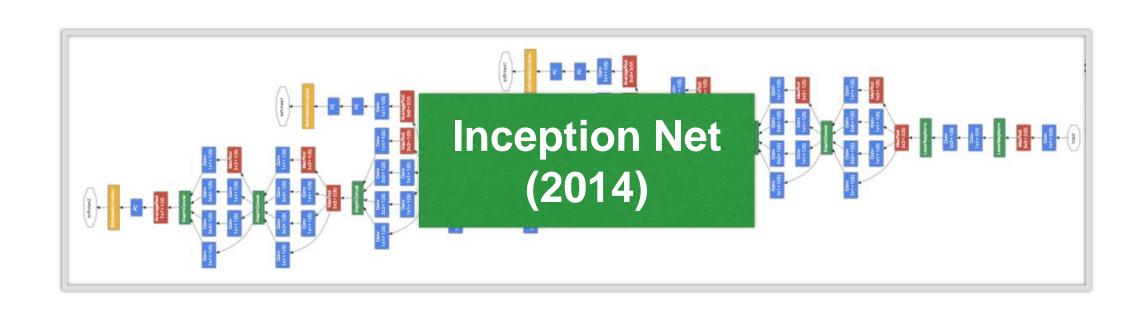
Early layers recognize simple patterns

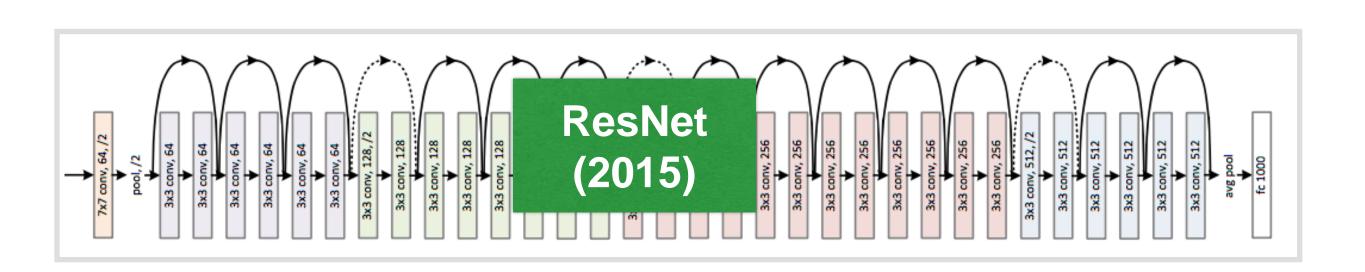


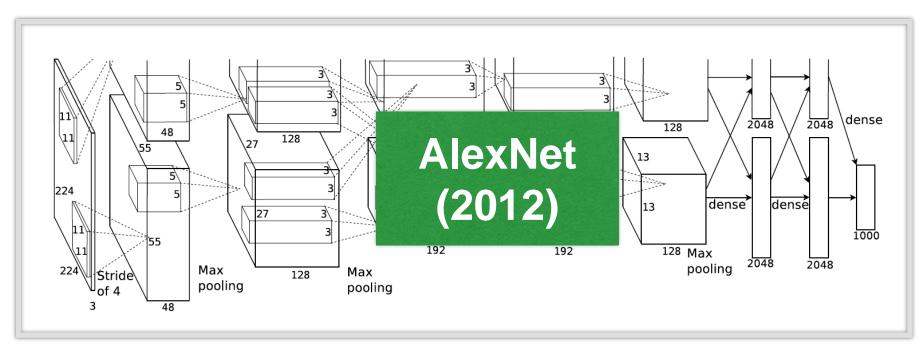
Convolutional Neural Networks Examples

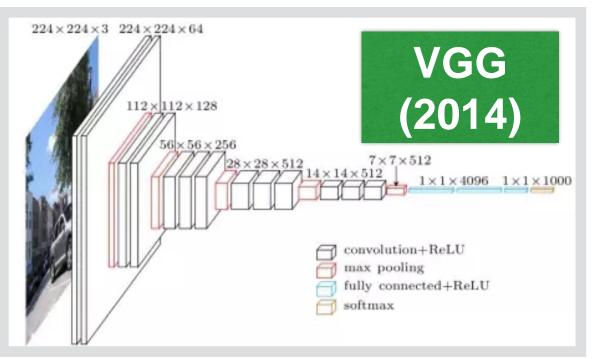
Evolution of neural net architectures

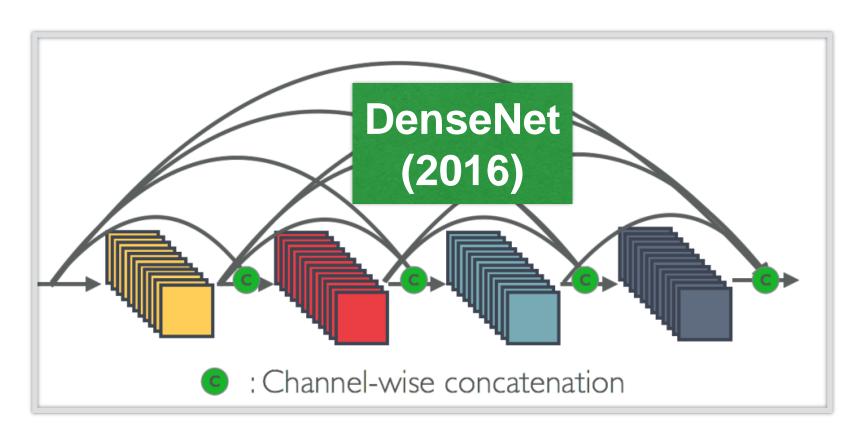




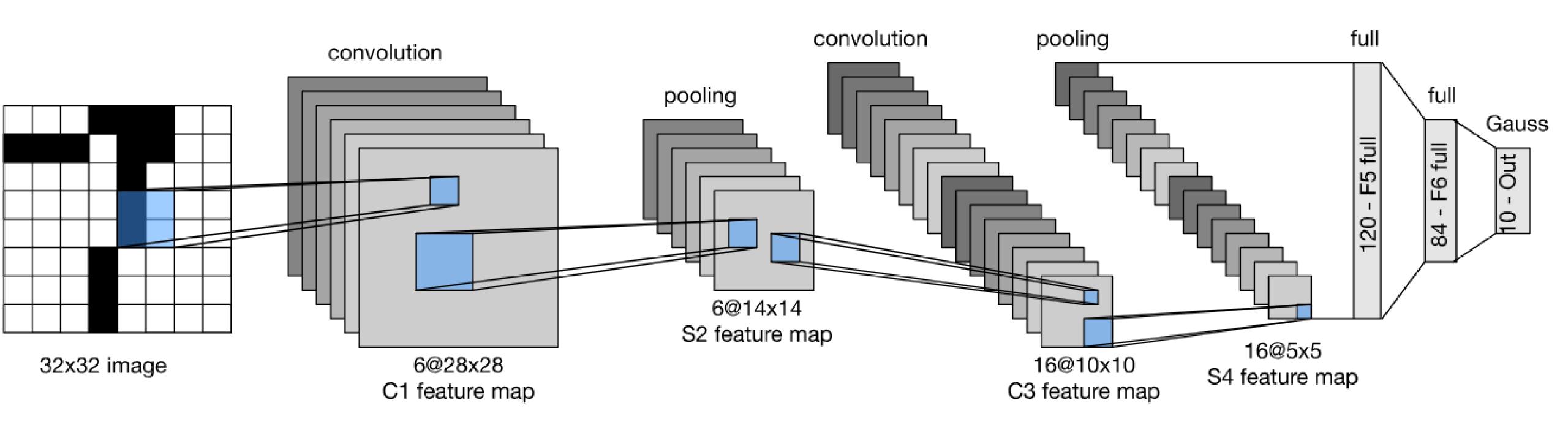






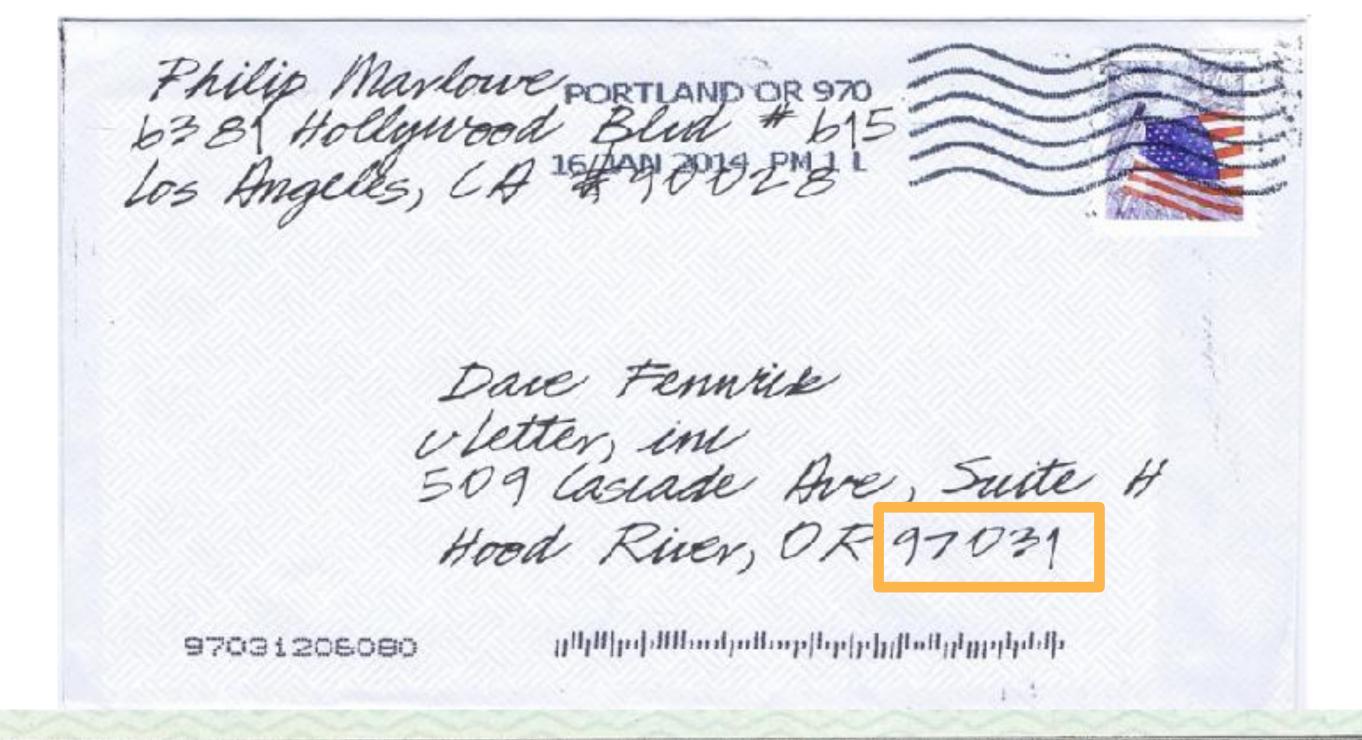


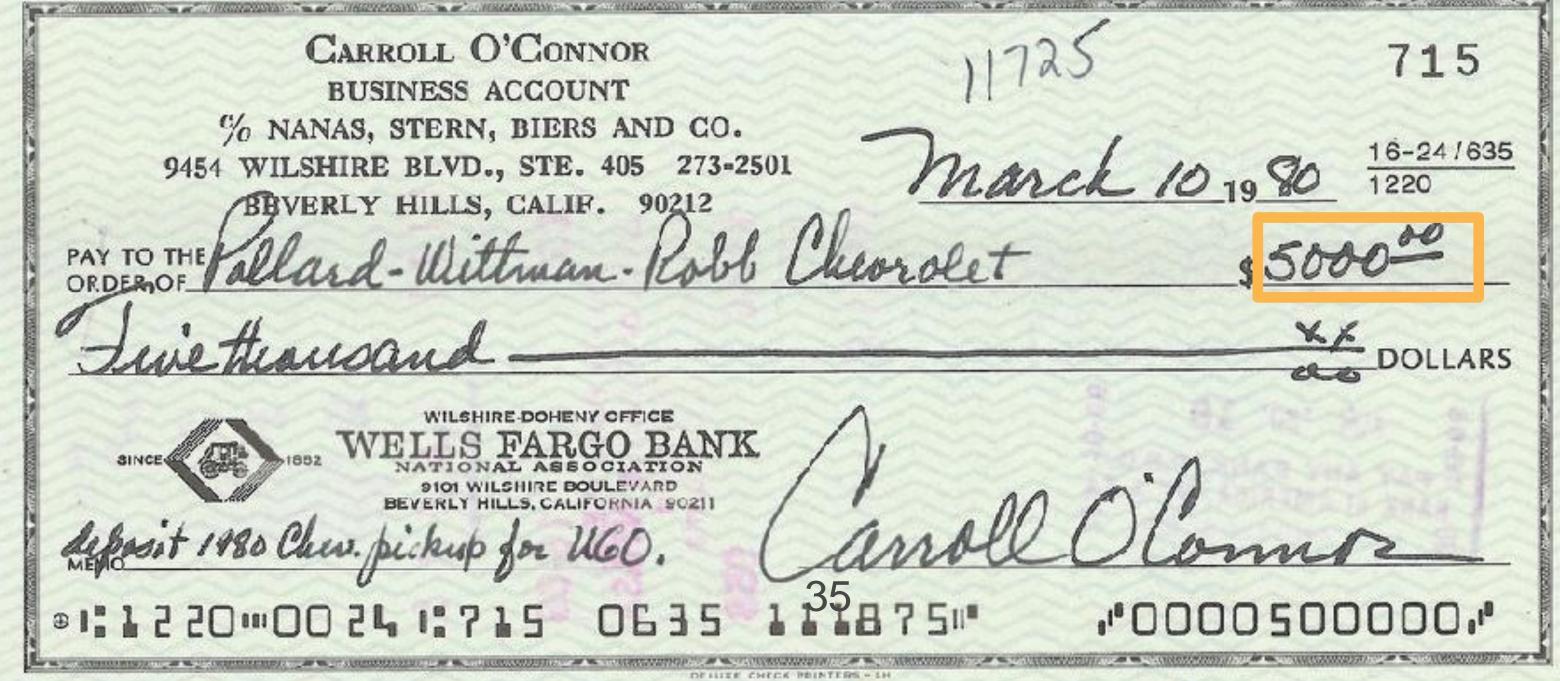
LeNet Architecture (first convolutional neural net; 1989)



34
Gradient-based learning applied to document recognition, by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

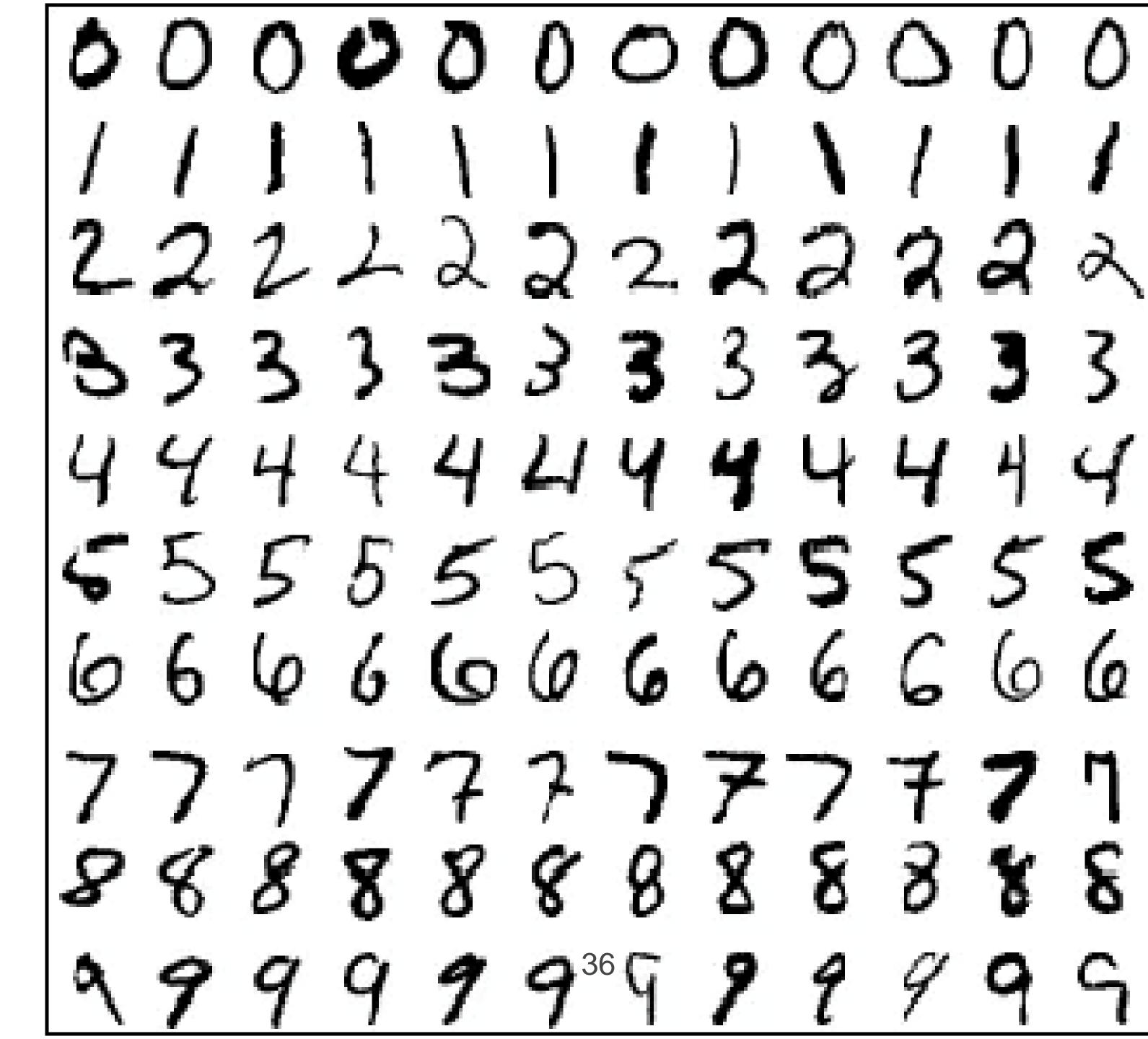
Handwritten Digit Recognition

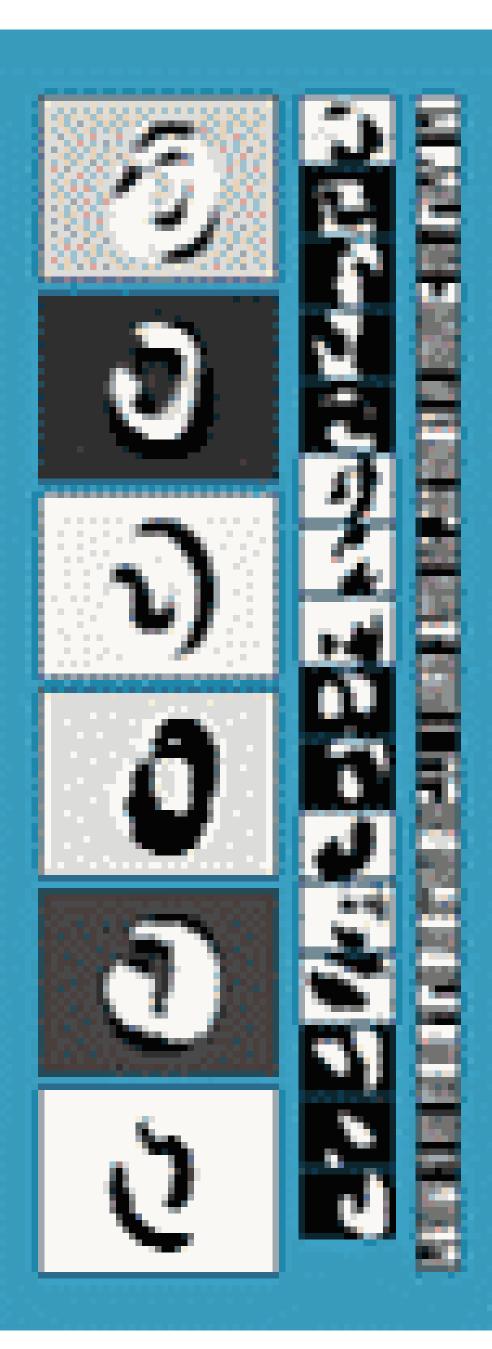


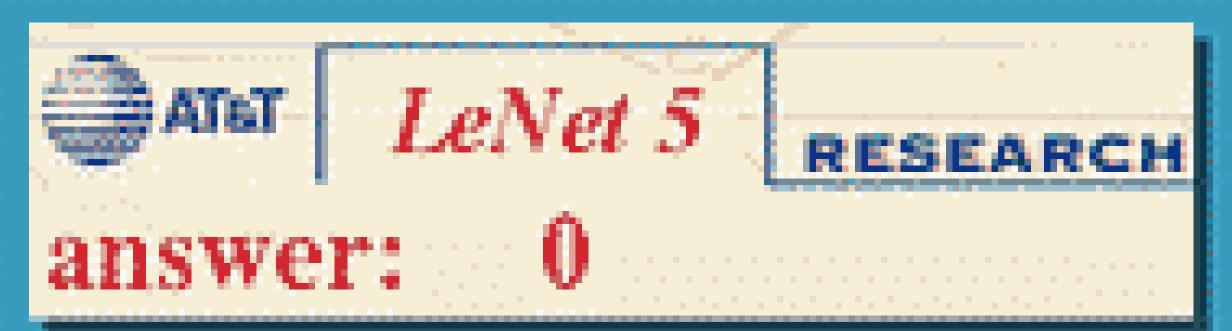


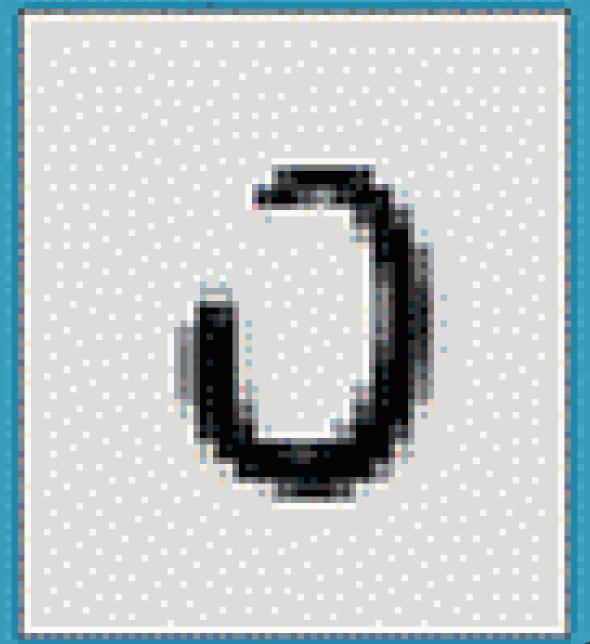
MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28 x 28 images
- 10 classes



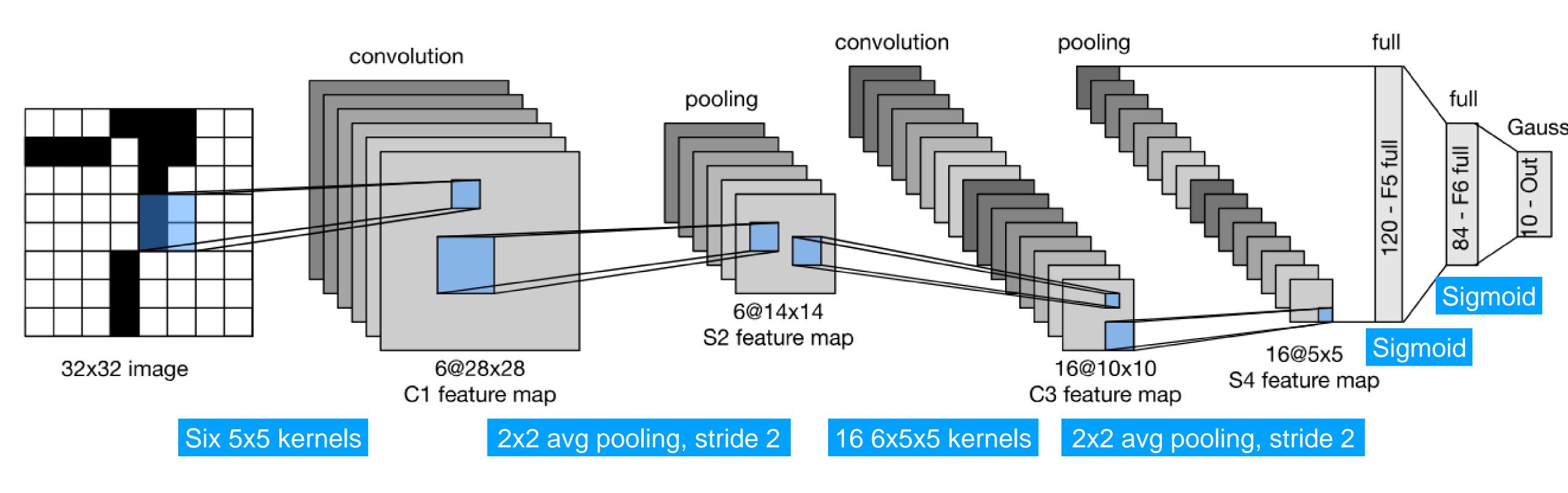






Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

LeNet Architecture



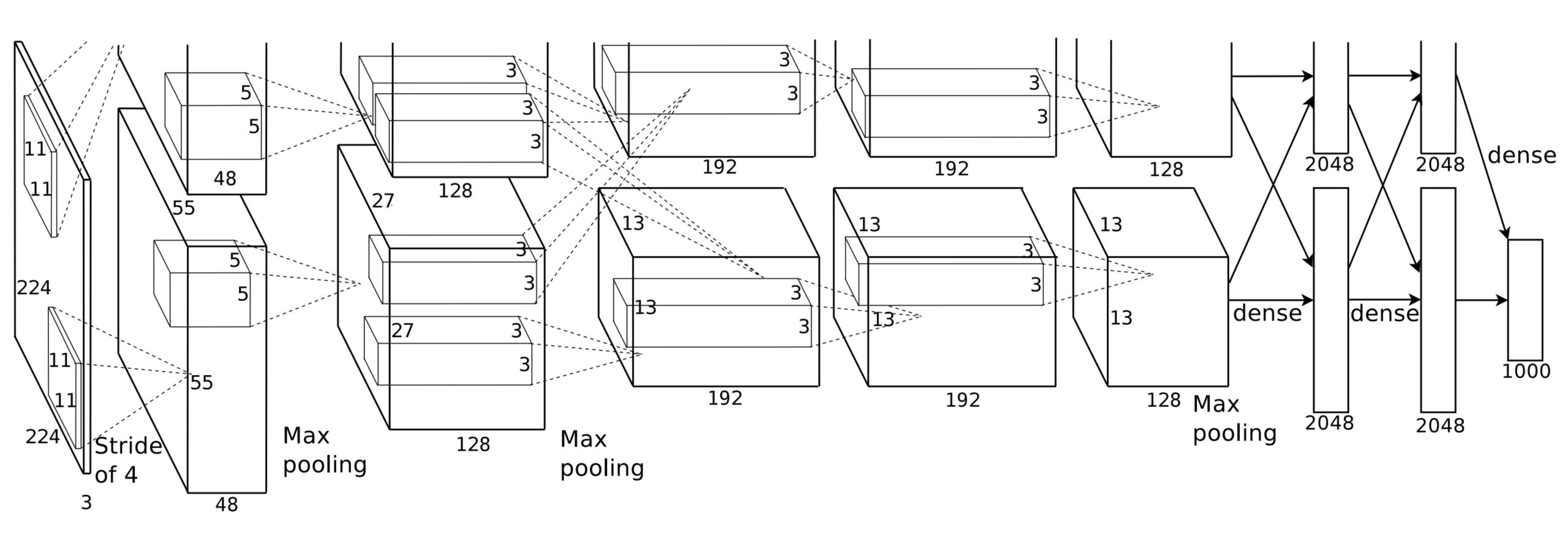
LeNet in Pytorch

```
def __init__(self):
   super(LeNet5, self).__init__()
   # Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)
   self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
   # Max-pooling
   self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
   # Convolution
   self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)
   # Max-pooling
   self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
   # Fully connected layer
   self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (columns)
   self.fc2 = torch.nn.Linear(120, 84) # convert matrix with 120 features to a matrix of 84 features (columns)
   self.fc3 = torch.nn.Linear(84, 10)
                                             # convert matrix with 84 features to a matrix of 10 features (columns)
```

```
def forward(self, x):
   # convolve, then perform ReLU non-linearity
   x = torch.nn.functional.relu(self.conv1(x))
   # max-pooling with 2x2 grid
   x = self.max_pool_1(x)
   # convolve, then perform ReLU non-linearity
   x = torch.nn.functional.relu(self.conv2(x))
   # max-pooling with 2x2 grid
   x = self.max_pool_2(x)
   # first flatten 'max_pool_2_out' to contain 16*5*5 columns
   # read through https://stackoverflow.com/a/42482819/7551231
   x = x.view(-1, 16*5*5)
   # FC-1, then perform ReLU non-linearity
   x = torch.nn.functional.relu(self.fc1(x))
   # FC-2, then perform ReLU non-linearity
   x = torch.nn.functional.relu(self.fc2(x))
   # FC-3
   x = self.fc3(x)
```

LeNet in Pytorch

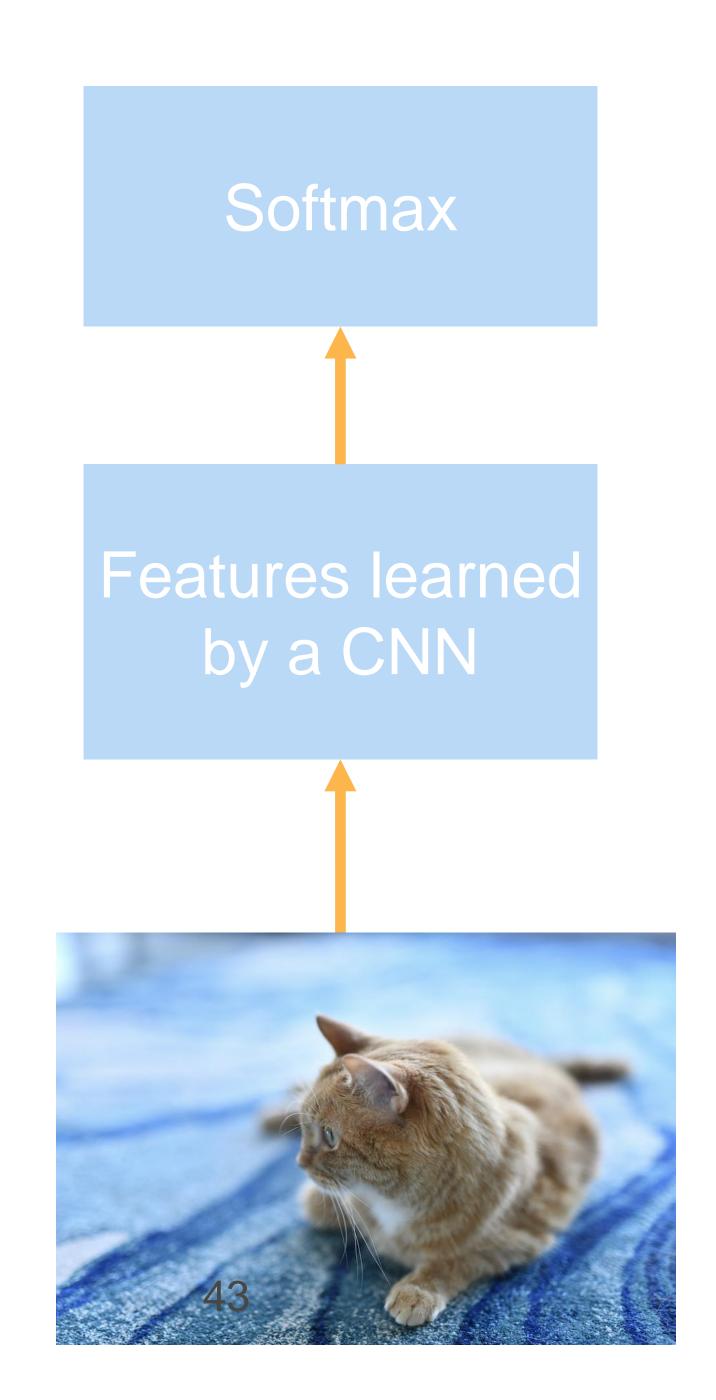
AlexNet



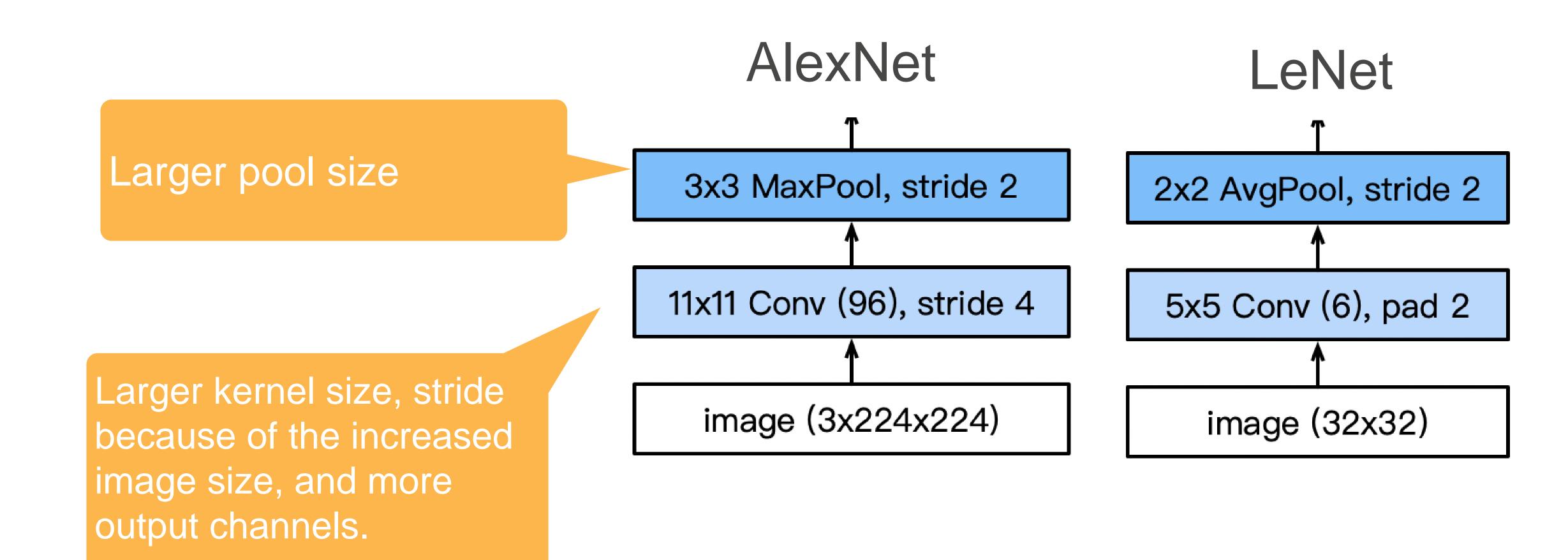
41

AlexNet

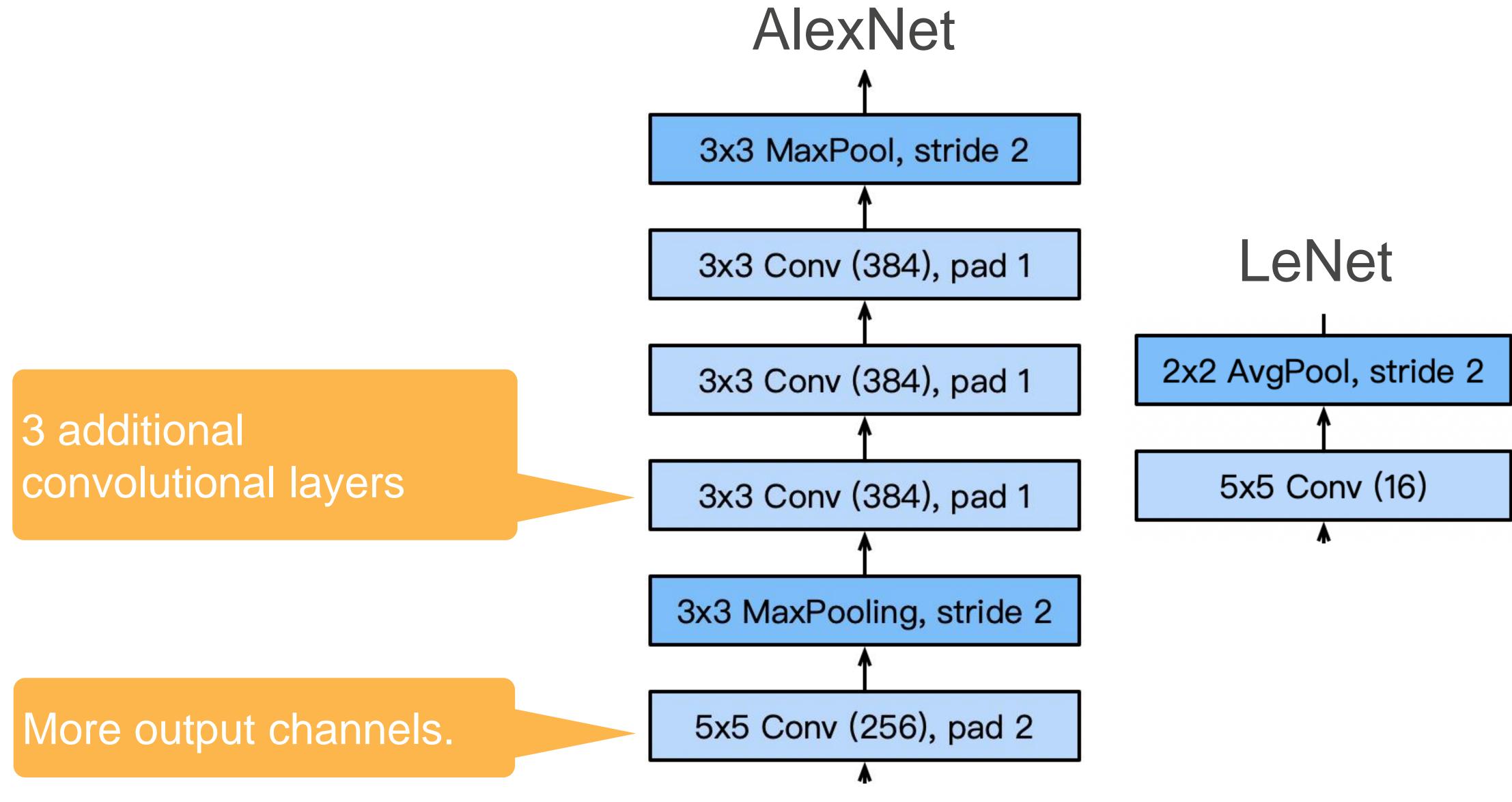
- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision



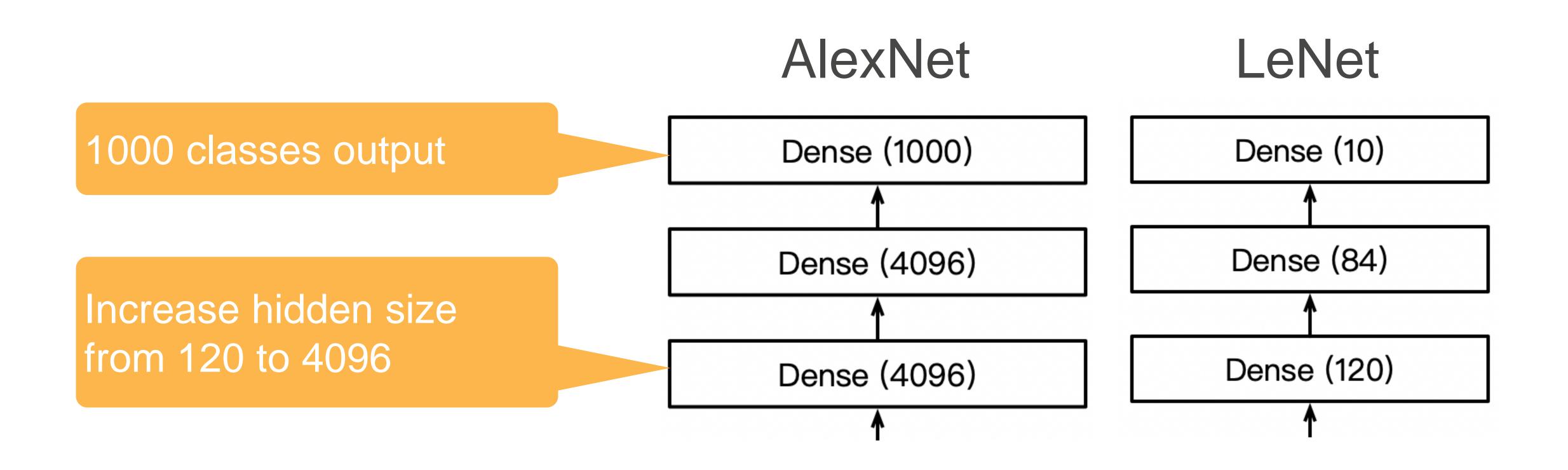
AlexNet Architecture



AlexNet Architecture

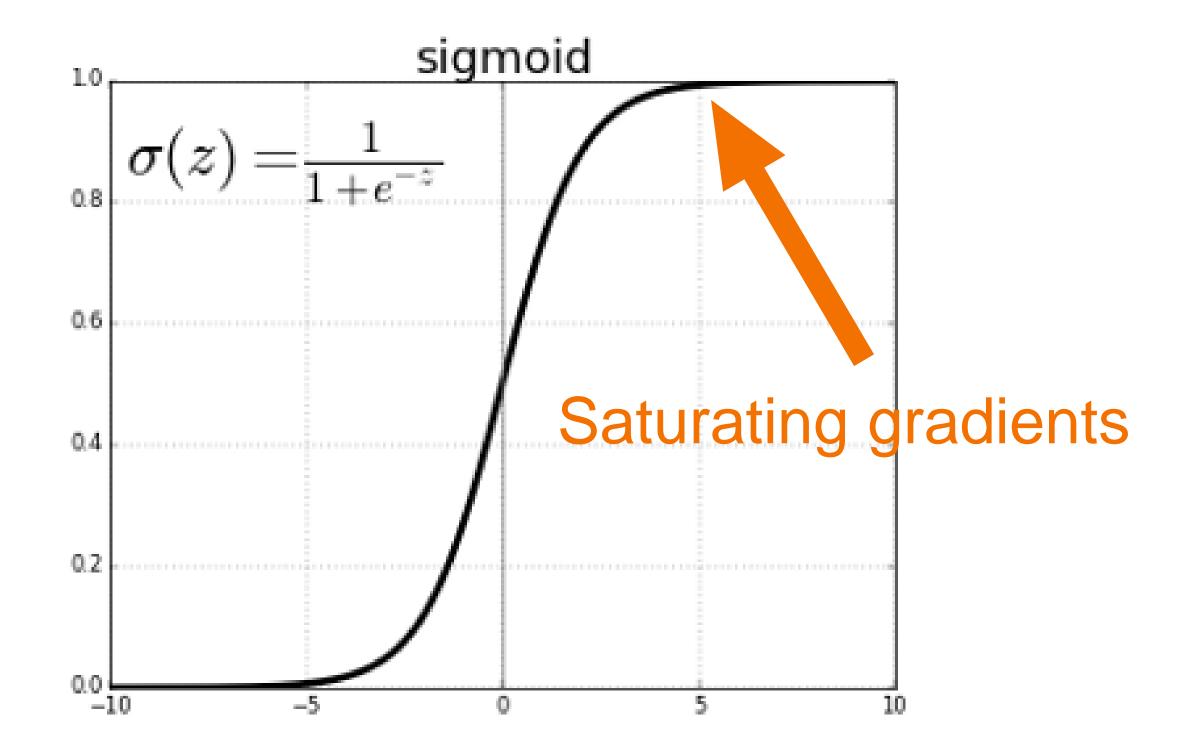


AlexNet Architecture



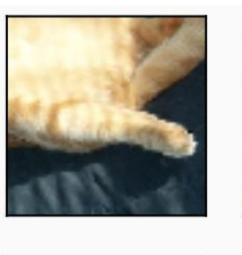
More Differences...

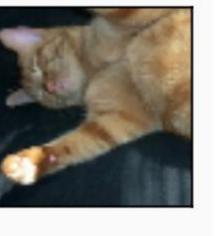
 Change activation function from sigmoid to ReLu (no more vanishing gradient)

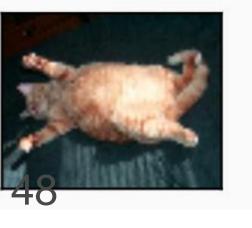


More Differences...

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation

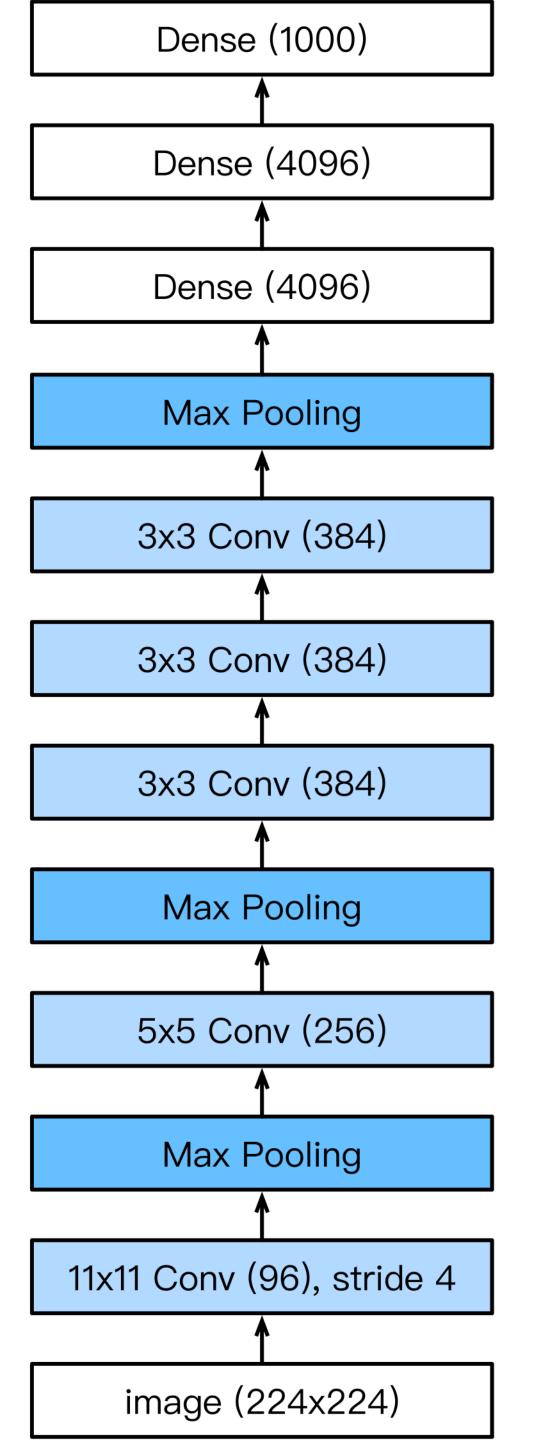






Complexity

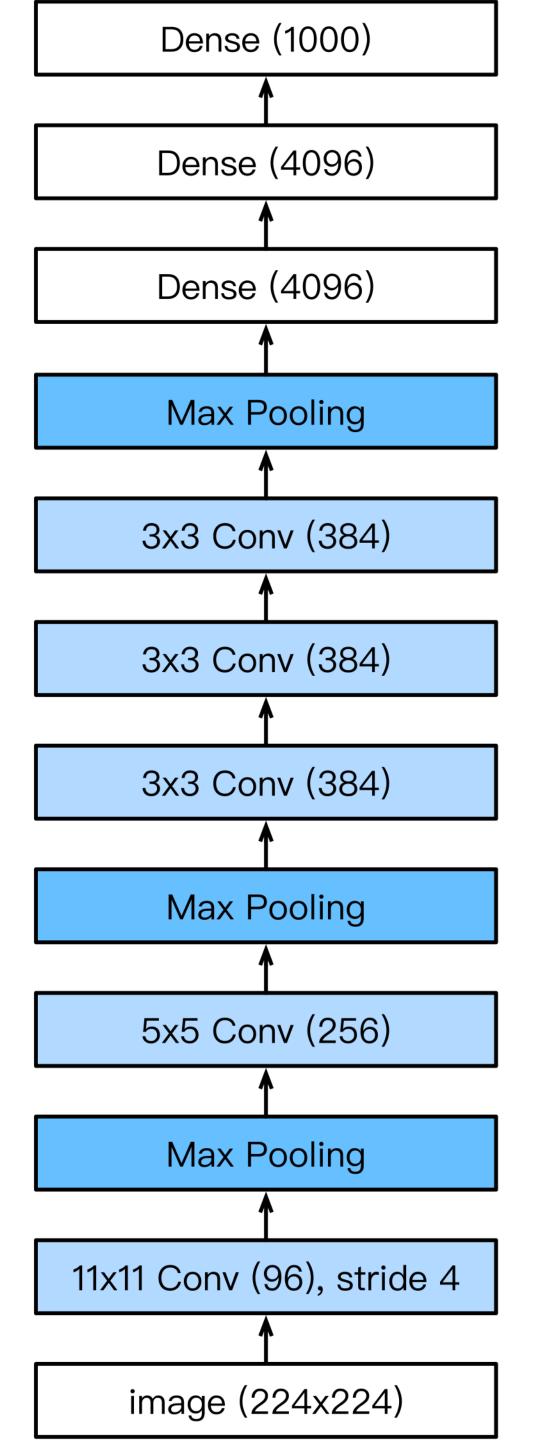
	#parameters	
	AlexNet	LeNet
Conv1	35K	150
Conv2	614K	2.4K
Conv3-5	3M	
Dense1	26M	0.048M
Dense2	16M	0.01M
Total	46M	0.06M

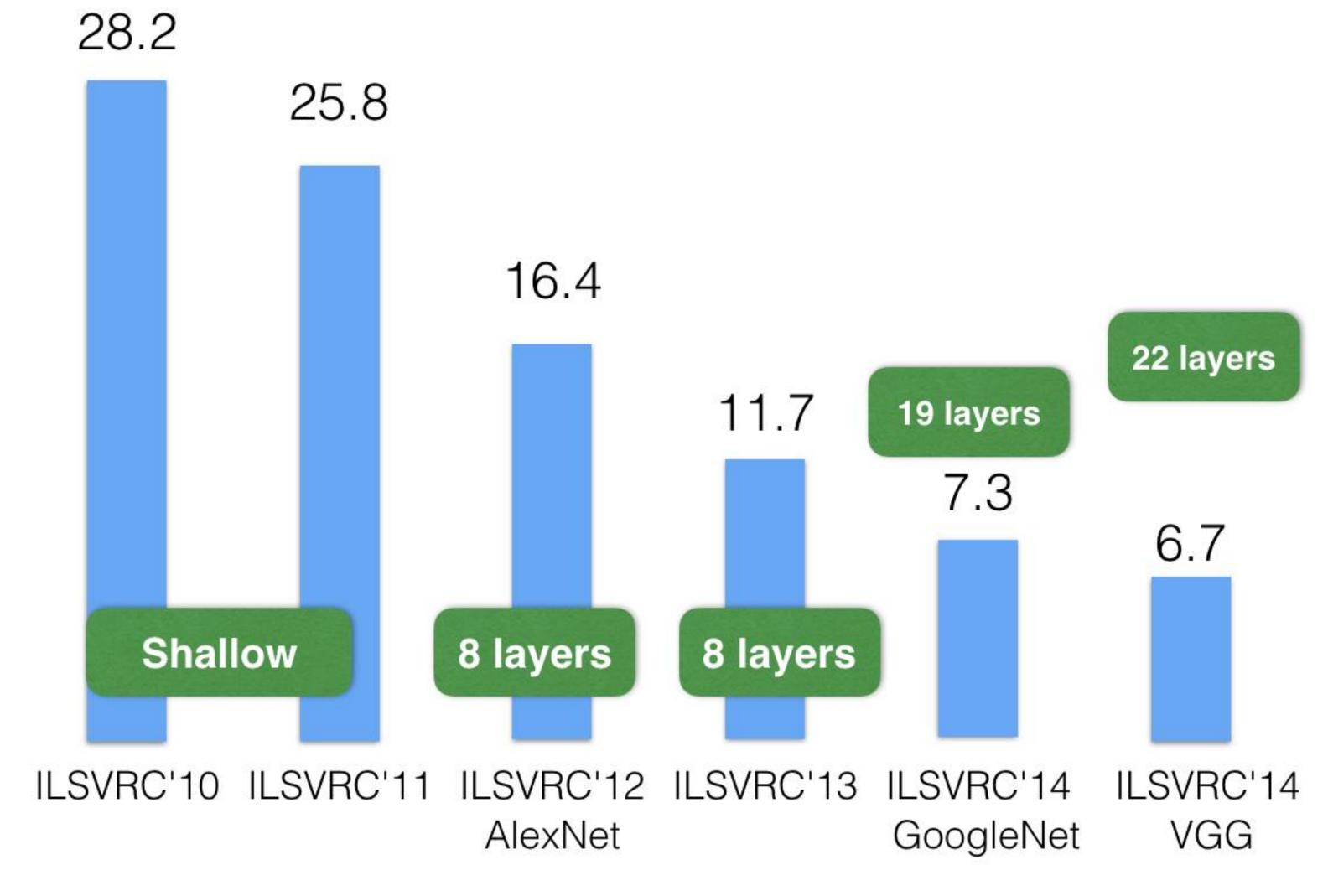


Complexity

	#parameters	
	AlexNet	LeNet
Conv1	35K	150
Conv2	614K	2.4K
Conv3-5	3M	
Dense1	26M	0.048M
Dense2	16M	0.01M
Total	46M	0.06M

11x11x3x96=35k



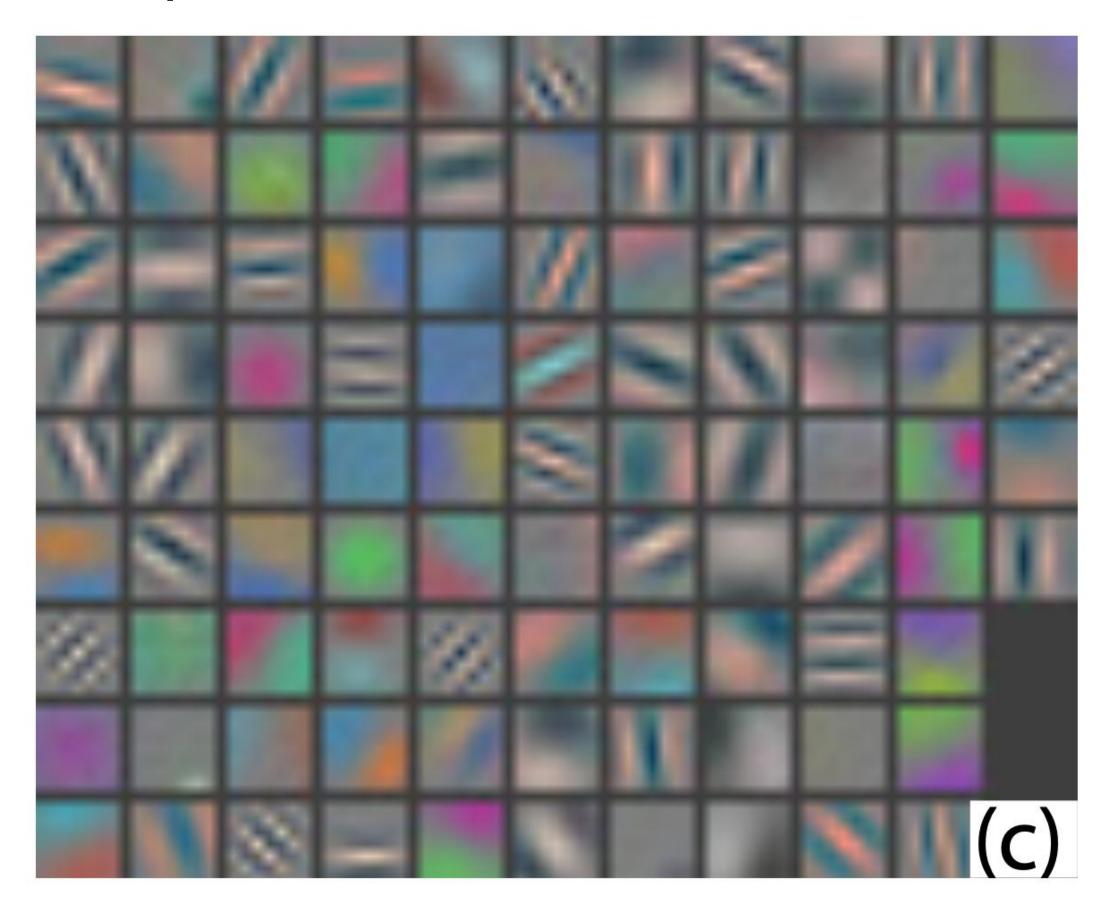


ImageNet Top-5 Classification Error (%)

AlexNet 3x3 MaxPool, stride 2 11x11 Conv (96), stride 4 image (3x224x224)

Each Conv1 kernel is 3x11x11, can be visualized as an

RGB patch:



[Visualizing and Understanding Convolutional Networks. M Zeiler & R Fergus 2013]

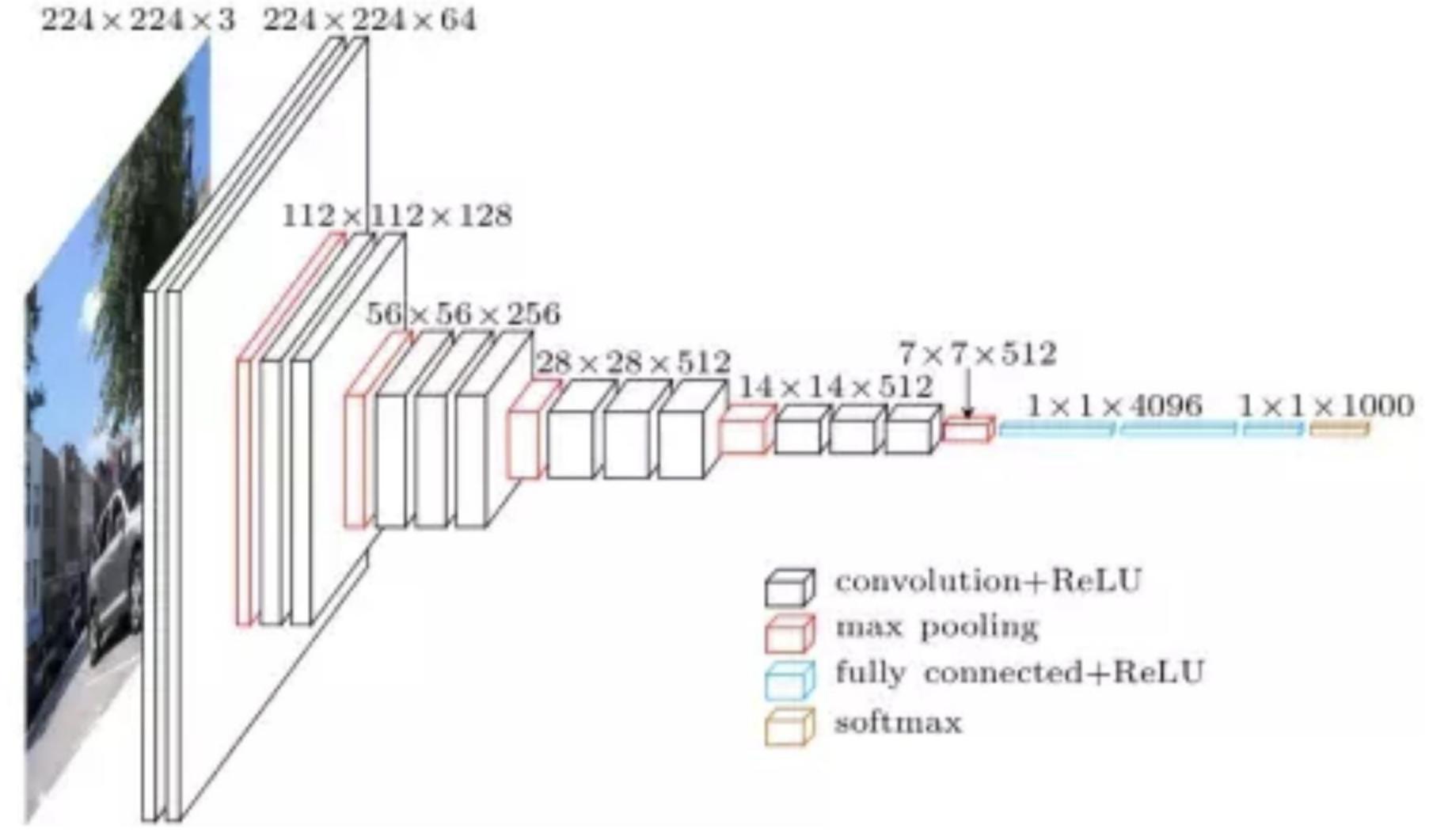
Which of the following are true about AlexNet? Select all that apply.

- A. AlexNet contains 8 conv/fc layers. The first five are convolutional layers.
- B.The last three layers are fully connected layers.
- C.some of the convolutional layers are followed by max-pooling (layers).
- D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

Which of the following are true about AlexNet? Select all that apply.

- A. AlexNet contains 8 conv/fc layers. The first five are convolutional layers.
- B. The last three layers are fully connected layers.
- C.some of the convolutional layers are followed by max-pooling (layers).
- D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

All options are true!



VGG Block: Multiple convolution layers followed by pooling.

VGG

Progress

- LeNet (1995)
 - 2 convolution + pooling layers
 - 2 hidden dense layers
- AlexNet
 - Bigger and deeper LeNet
 - ReLu, preprocessing
- VGG
 - Bigger and deeper AlexNet (repeated VGG blocks)

Which of the following statement is True for the success of deep models?

- Better design of the neural networks
- Large scale training dataset
- Available computing power
- All of the above

Which of the following statement is True for the success of deep models?

- Better design of the neural networks
- Large scale training dataset
- Available computing power
- All of the above

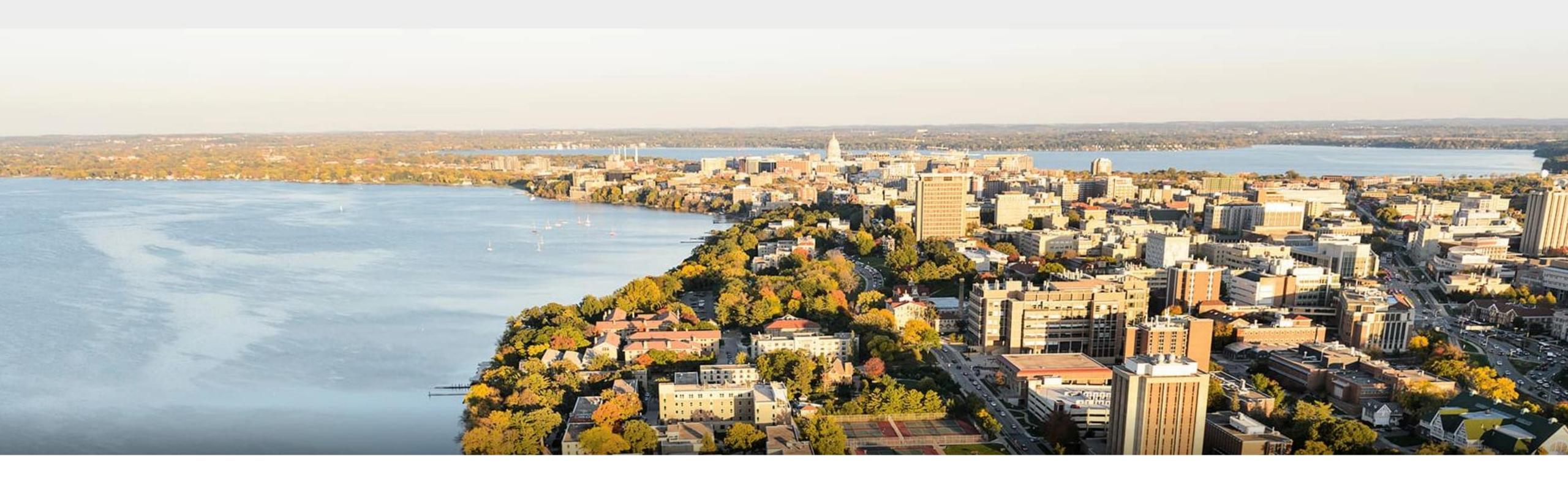
Suggested Reading

Example using PyTorch:

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

Summary of today

- Reviewed (some of) convolutional computations.
 - 2D convolutions, multiple input channels, pooling.
- Shown how convolutions are used as layers in a (deep) neural network.
- Built intuition for output of convolutional layers.
- Overviewed the evolution of deeper convolutional networks



Acknowledgement:

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/),

Alex Smola and Mu Li: https://courses.d21.ai/berkeley-stat-157/index.html