

CS 540 Introduction to Artificial Intelligence Deep Learning III

University of Wisconsin-Madison Spring 2025

Announcements

- Homeworks:
 - HW7 online, due on Monday April 7th at 11:59 PM
- Class roadmap and schedule:

Machine Learning: Deep Learning III

Machine Learning: Deep Learning and Neural Network's Summary

Outline

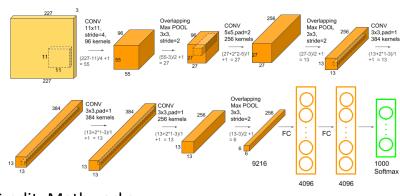
- CNNs with more layers: ResNets
 - Layer problems, residual connections, identity maps
- Data Augmentation & Regularization
 - Expanding the dataset, avoiding overfitting
- More Signal From our Data
 - Graph-structured data, graph neural networks

Last Time: CNNs

We talked about CNN components & architectures

- Components: convolutional layers, pooling layers (recall kernels, channels, strides, padding)
- Architectures: LeNet, AlexNet, VGG

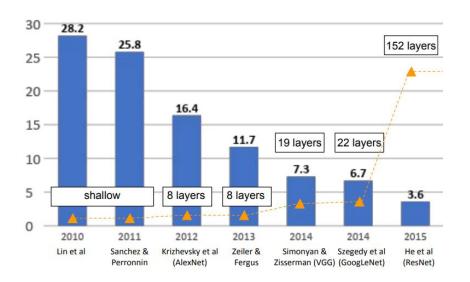
Trend: bigger, deeper.



Credit: Mathworks

Evolution of CNNs

ImageNet competition (error rate)



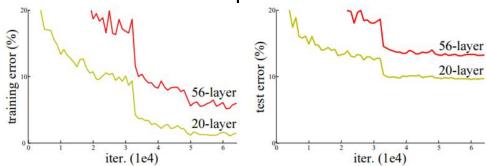
Credit: Stanford CS 231n

Simple Idea: Add More Layers

VGG: 19 layers. ResNet: 152 layers. **Add more layers**... sufficient?

- No! Some problems:
 - i) Vanishing gradients: more layers → more likely
 - ii) Instability: deeper models are harder to optimize

Reflected in training error:



He et al: "Deep Residual Learning for Image Recognition"

Depth Issues & Learning Identity

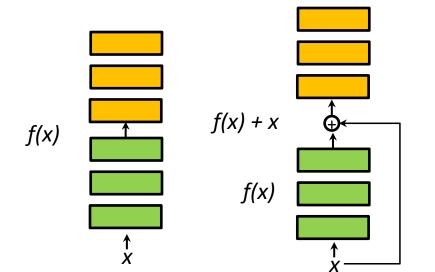
Why would more layers result in worse performance?

Idea: if layers can learn identity, can't get worse.

Residual Connections

Idea: Identity might be hard to learn, but zero is easy!

- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:



Left: Conventional layers block

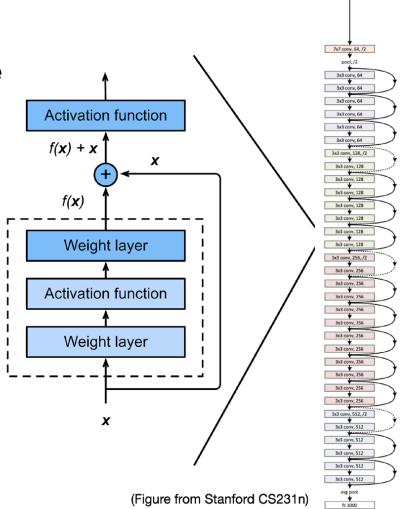
Right: **Residual** layer block

To learn identity f(x) = x, layers now need to learn $f(x) = 0 \rightarrow$ easier

Full ResNet Architecture

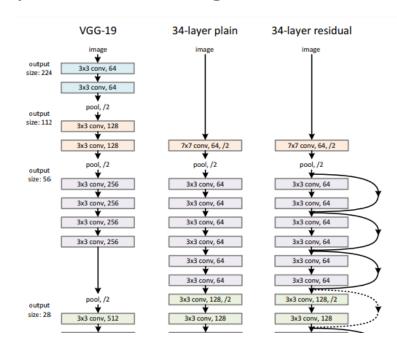
[He et al. 2015]

- Stack residual blocks
- Every residual block has two 3x3 ; conv layers
- Periodically, double # of filters and downsample spatially using stride of 2 (/2 in each dimension)



Idea: Residual (skip) connections help make learning easier

- Example architecture:
- Note: residual connections
 - Every two layers for ResNet34
- Vastly better performance
 - No additional parameters!
 - Records on many benchmarks



He et al: "Deep Residual Learning for Image Recognition"

Various depth

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \right] \times 3 $	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10 ⁹	3.6×10^9	3.8×10^9	7.6×10^9	11.3×10 ⁹	

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

Various depth

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
conv2_x	56×56	3×3 max pool, stride 2					
		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x		[,]	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	[1×1, 1024]	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10 ⁹	3.6×10^{9}	3.8×10^{9}	7.6×10 ⁹	11.3×10 ⁹	

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

FLOPs

Various depth # of filters Repeat x3 times 34-layer output size 18-layer 50-layer 101-layer 152-layer layer name 112×112 7×7 , 64, stride 2 conv1 3×3 max pool, stride 2 $1 \times 1,64$ $1 \times 1,64$ $1 \times 1,64$ 3×3, 64]×2 56×56 conv2_x $3 \times 3,64$ 3×3.64 $\times 3$ 3×3.64 $\times 3$ $3 \times 3,64$ $\times 3$ $3 \times 3,64$ $1 \times 1,256$ $1 \times 1,256$ $1 \times 1,256$ $1 \times 1, 128$ $1 \times 1, 128$ $1 \times 1, 128$ $\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 2$ $3 \times 3, 128$ conv3_x 28×28 $3 \times 3, 128$ ×4 $3 \times 3, 128$ $\times 4$ $3 \times 3, 128$ $\times 8$ $3 \times 3, 128$ $1 \times 1,512$ $1 \times 1,512$ $1 \times 1,512$ $1 \times 1,256$ $1 \times 1,256$ $1 \times 1,256$ $\begin{bmatrix} 3\times3,256\\ 3\times3,256 \end{bmatrix} \times 6$ 14×14 conv4_x $3 \times 3,256$ $3 \times 3,256$ $3 \times 3,256$ ×6 $\times 23$ $\times 36$ $1 \times 1, 1024$ $1 \times 1, 1024$ $1 \times 1, 1024$ $1 \times 1,512$ $1 \times 1,512$ $1 \times 1,512$ 3×3, 512]×2 $3 \times 3,512$ 7×7 $3 \times 3,512$ $\times 3$ conv5_x $3 \times 3,512$ $\times 3$ $3 \times 3,512$ $\times 3$ $1 \times 1,2048$ $1 \times 1,2048$ $1 \times 1,2048$ 1×1 average pool, 1000-d fc, softmax

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

 3.8×10^{9}

 7.6×10^{9}

 11.3×10^{9}

 3.6×10^{9}

 1.8×10^{9}

Various depth

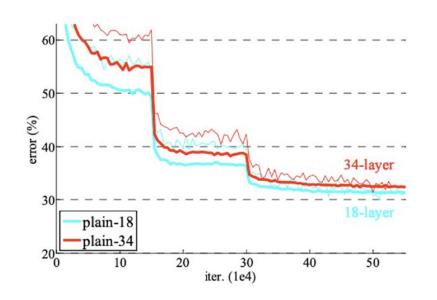
1 + 2x3 + 2x4 + 2x6 + 2x3 + 1 = 34

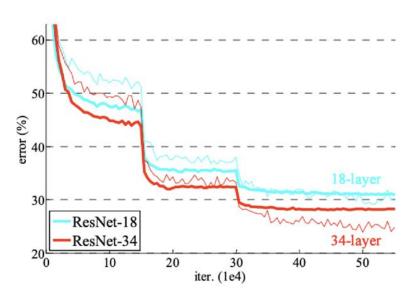
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
	56×56	3×3 max pool, stride 2					
conv2_x		$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10 ⁹	3.6×10 ⁹	3.8×10^{9}	7.6×10^9	11.3×10 ⁹	

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

ResNet Training Curves on ImageNet

[He et al., 2015]





A Bit More on ResNets

Idea: Residual (skip) connections help make learning easier

- Note: Can also analyze from backpropagation p.o.v
 - Residual connections add paths to computation graph
- Also uses batch normalization
 - Normalize the features at each layer to have same mean/variance
 - Common deep learning trick
- Highway networks: learn weights for residual connections

Q 1.1: Which of the following is **not** true?

- A. Adding more layers can improve the performance of a neural network.
- B. Residual connections help deal with vanishing gradients.
- C. CNN architectures use no more than ~20 layers to avoid problems such as vanishing gradients.
- D. It is usually easier to learn a zero mapping than the identity mapping.

Q 1.1: Which of the following is **not** true?

- A. Adding more layers can improve the performance of a neural network.
- B. Residual connections help deal with vanishing gradients.
- C. CNN architectures use no more than ~20 layers to avoid problems such as vanishing gradients.
- D. It is usually easier to learn a zero mapping than the identity mapping.

Q 1.1: Which of the following is **not** true?

- A. Adding more layers can improve the performance of a neural network. (Yes, as long as we're careful, e.g., ResNets.)
- B. Residual connections help deal with vanishing gradients. (Yes, this is an explicit consideration for residual connections.)
- C. CNN architectures use no more than ~20 layers to avoid problems such as vanishing gradients. (No, much deeper networks.)
- D. It is usually easier to learn a zero mapping than the identity mapping. (Yes: simple way to learn zero is to make weights zero)

Data Concerns

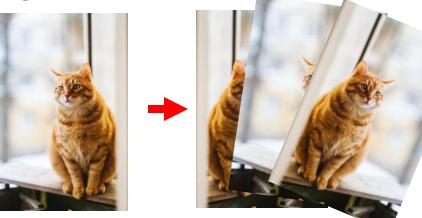
What if we don't have a lot of data?

- We risk overfitting
- Avoiding overfitting: **regularization** methods
- Data augmentation: a classic way to regularize

Data Augmentation

Augmentation: transform + add new samples to dataset

- Transformations: based on domain
- Idea: build invariances into the model
 - Ex: if all images have same alignment, model learns to use it
- Keep the label the same!



Transformations

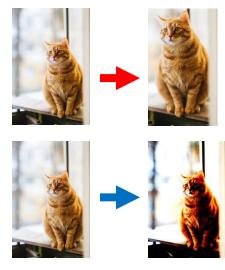
Examples of transformations for images

- Crop (and zoom)
- Color (change contrast/brightness)
- Rotations+ (translate, stretch, shear, etc)

Many more possibilities. Combine as well!

Q: how to deal with this at **test time**?

A: transform, test, average





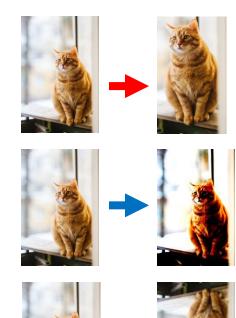
Combining & Automating Transformations

One way to automate the process:

- Apply every transformation and combinations
- Downside: most don't help...

Want a good policy, ie, $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$

- Active area of research: search for good policies
 - **1. Ratner et al**: "Learning to Compose Domain-Specific Transformations for Data Augmentation"
 - **2. Cubuk et al**: "AutoAugment: Learning Augmentation Strategies from Data"



Other Domains

Not just for image data. For example, on text:

- Substitution
 - E.g., "It is a great day" → "It is a wonderful day"
 - Use a thesaurus for particular words
 - Or, use a model. Pre-trained word embeddings, language models
- Back-translation
 - "Given the low budget and production limitations, this movie is very good."
 - → "There are few budget items and production limitations to make this film a really good one"

Importance of Augmentation

Data augmentation is critical for top performance!

- You should use it!
- AlexNet: used (many papers re-used as well)
 - Random crops, rotations, flips.

Krizhevsky et al: "ImageNet Classification with Deep Convolutional Neural Networks"

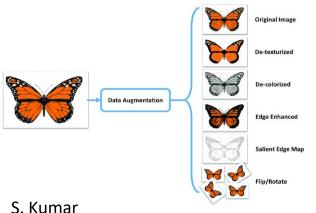
Other Forms of Regularization

Regularization has many interpretations

• **Goodfellow**: "any modification... to a learning algorithm that is intended to reduce its generalization error but not its training error."

A way of adding knowledge / side information to model

Enforcing parsimony/simplicity



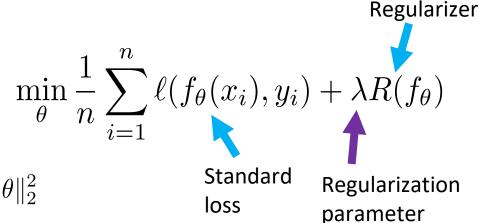
Other Forms of Regularization

Classic regularizations

Modify loss functions

Ex: regularized least squares LR

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (\theta_0 + x_i^T \theta - y_i)^2 + \lambda \|\theta\|_2^2$$



- Modify architecture/training/data
 - a) Dropout, batch normalization, augmentation

- **Q 2.1**: If we apply data augmentation blindly, we might
- (i) Change the label of the data point
- (ii) Produce a useless training point
- A. (i) but not (ii)
- B. (ii) but not (i)
- C. Neither
- D. Both

- **Q 2.1**: If we apply data augmentation blindly, we might
- (i) Change the label of the data point
- (ii) Produce a useless training point
- A. (i) but not (ii)
- B. (ii) but not (i)
- C. Neither
- D. Both

- **Q 2.1**: If we apply data augmentation blindly, we might
- (i) Change the label of the data point
- (ii) Produce a useless training point
- A. (i) but not (ii) (Can do (ii): imagine turning up the contrast till the image is completely black and is unusable).
- B. (ii) but not (i) (Can change label: rotate a 6 into a 9).
- C. Neither (Can do either).
- D. Both

- **Q 2.2**: What are some consequences of data augmentation?
- (i) We have to store a much bigger dataset in memory
- (ii) For a fixed batch size, there will be more batches per epoch

- A. (i) but not (ii)
- B. (ii) but not (i)
- C. Neither
- D. Both

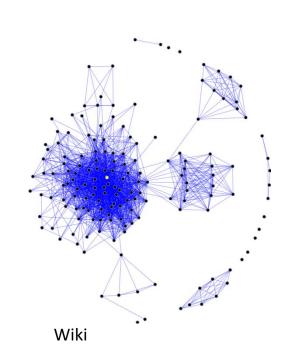
- **Q 2.2**: What are some consequences of data augmentation?
- (i) We have to store a much bigger dataset in memory
- (ii) For a fixed batch size, there will be more batches per epoch

- A. (i) but not (ii)
- B. (ii) but not (i)
- C. Neither
- D. Both

Relationships in Data

So far, all of our data consists of points

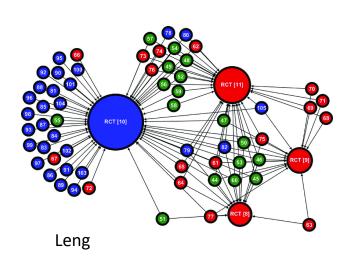
- Assume all are independent, "unrelated" in a sense $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$
- Pretty common to have relationships between points
 - Social networks: individuals related by friendship
 - Biology/chemistry: bonds between compounds, molecules
 - Citation networks: Scientific papers cite each other



Signal from Relationships

Suppose we are classifying scientific papers

- Features: title, abstract, authors. Labels: math/science/eng.
- Could build a reasonable classifier with the above data
- More signal from relationships
 - Cite each other, more likely from the same field
 - Note: citations are not features; they're links
 - Need a new type of network to handle



Graph Neural Networks

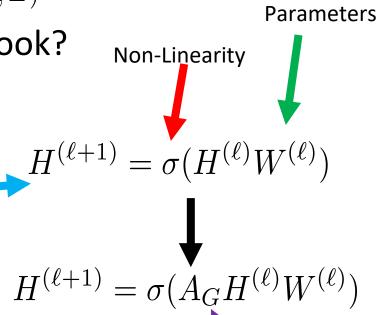
Have: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n), G = (V, E)$

How should our new architecture look?

- Still want layers
 - linear transformation + non-linearity

Hidden Layer Representation

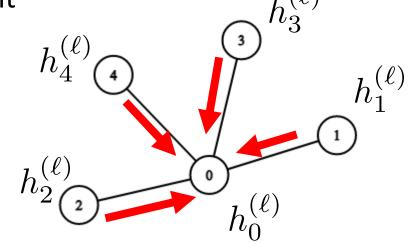
- Now want to integrate neighbors
- Bottom: graph convolutional network



Graph Convolutional Networks

Let's examine the GCN architecture in more detail

- Difference: "graph mixing" component
- At each layer, get representation at each node
- Combine node's representation with neighboring nodes

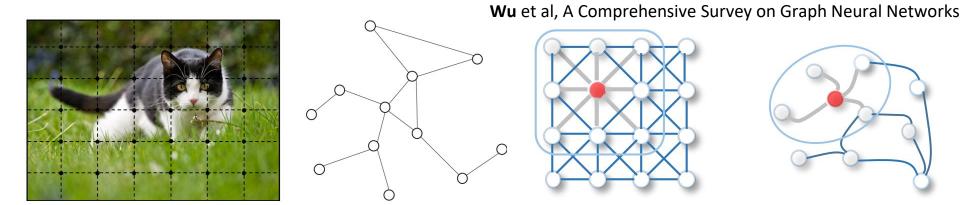


"Aggregate" and "Update" rules

Graph Convolutional Networks

Note the resemblance to CNNs:

- Pixels: arranged as a very regular graph
- Want: more general configurations (less regular)



Zhou et al, Graph Neural Networks: A Review of Methods and Applications

Summary

- Intro to deeper networks (resnets)
 - Dealing with problems by adding skip connections
- Intro to regularization
 - Data augmentation + other regularizers
- Basic graph neural networks

Acknowledgements: Inspired by materials by Fei-Fei Li, Ranjay Krishna, Danfei Xu (Stanford CS231n)