
CS540 Introduction to Artificial Intelligence
Neural Networks: Review

University of Wisconsin-Madison
Spring 2025

Announcements

• Homework:
– HW7 is due on Monday Apr. 7th at 11:59 PM

• Class roadmap: Deep Learning and Neural
Network's Summary

Search I: Un-Informed
search

Search II: Informed search

How to classify

Cats vs. dogs?

Single-layer
Perceptron

Multi-layer
Perceptron

Training of neural
networks

Convolutional
neural networksNeural networks can also be used for regression.

- Typically, no activation on outputs, mean squared error loss function.

https://courses.d2l.ai/berkeley-stat-157/index.html

Inspiration from neuroscience
- Inspirations from human brains
- Networks of simple and homogenous units (a.k.a neuron)

(wikipedia)

Perceptron
• Given input , weight and bias , perceptron outputs:

𝑜𝑜 = 𝜎𝜎 𝐰𝐰⊤𝐱𝐱 + 𝑏𝑏 𝜎𝜎(𝑥𝑥) = {1 if 𝑥𝑥 > 0
0 otherwise

𝐱𝐱 𝐰𝐰 𝑏𝑏

Input

Cats vs. dogs?

Activation function

Output (0 or 1)

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑑𝑑

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑑𝑑

Perceptron
• Goal: learn parameters 𝐰𝐰 = {𝑤𝑤1,𝑤𝑤2, . . . ,𝑤𝑤𝑑𝑑} and b to

minimize the classification error

Input Output (0 or 1)

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑑𝑑

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑑𝑑

Cats vs. dogs?

Example 2: Predict whether a user likes a song or
not

model

User Sharon

Tempo

Intensity

Relaxed Fast

DisLike

Like

Example 2: Predict whether a user likes a song or
not using Perceptron

𝑦𝑦 = 1

𝑦𝑦 = 0

Learning logic functions using perceptron

The perceptron can learn an AND function

0 1

1

𝑥𝑥1 = 1, 𝑥𝑥2 = 1,𝑦𝑦 = 1

𝑥𝑥1 = 1, 𝑥𝑥2 = 0,𝑦𝑦 = 0

𝑥𝑥1 = 0, 𝑥𝑥2 = 1,𝑦𝑦 = 0

𝑥𝑥1 = 0, 𝑥𝑥2 = 0,𝑦𝑦 = 0

𝑥𝑥1

𝑥𝑥2

The perceptron can learn an AND function

0 1

1

𝑤𝑤1
𝜎𝜎(𝑥𝑥1𝑤𝑤1 + 𝑥𝑥2𝑤𝑤2 + 𝑏𝑏)

𝜎𝜎(𝑥𝑥) = {1 if 𝑥𝑥 > 0
0 otherwise

𝑤𝑤1 = 1,𝑤𝑤2 = 1, 𝑏𝑏 = −1.5

𝑥𝑥1

𝑥𝑥2

Learning logic functions using perceptron

Output

𝑤𝑤2

Learning OR function using perceptron
The perceptron can learn an OR function

0 1

1

Output

𝑤𝑤2

𝑤𝑤1
𝜎𝜎(𝑥𝑥1𝑤𝑤1 + 𝑥𝑥2𝑤𝑤2 + 𝑏𝑏)

𝜎𝜎(𝑥𝑥) = {1 if 𝑥𝑥 > 0
0 otherwise

𝑤𝑤1 = 1,𝑤𝑤2 = 1, 𝑏𝑏 = −0.5

𝑥𝑥1

𝑥𝑥2

XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function
(neurons can only generate linear separators)

This contributed to the first AI winter

𝑥𝑥1 = 1, 𝑥𝑥2 = 1,𝑦𝑦 = 0

𝑥𝑥1 = 1, 𝑥𝑥2 = 0,𝑦𝑦 = 1

𝑥𝑥1 = 0, 𝑥𝑥2 = 1,𝑦𝑦 = 1

𝑥𝑥1 = 0, 𝑥𝑥2 = 0,𝑦𝑦 = 0

Quiz break
Which one of the following is NOT true about perceptron?

A. Perceptron only works if the data is linearly separable.
B. Perceptron can learn AND function
C. Perceptron can learn XOR function
D. Perceptron is a supervised learning algorithm

Quiz break
Which one of the following is NOT true about perceptron?

A. Perceptron only works if the data is linearly separable.
B. Perceptron can learn AND function
C. Perceptron can learn XOR function
D. Perceptron is a supervised learning algorithm

Multilayer
Perceptron

Single Hidden Layer

Output

Hidden layer

Input
m neurons

Cats vs. dogs?
How to classify

Single Hidden Layer

• Input
• Hidden
• Intermediate output

𝐱𝐱 ∈ ℝ𝑑𝑑

𝐡𝐡 = 𝜎𝜎(𝐖𝐖𝐖𝐖 + 𝐛𝐛)

is an element-wise
activation function

𝐖𝐖 ∈ ℝ𝑚𝑚×𝑑𝑑 ,𝐛𝐛 ∈ ℝ𝑚𝑚

𝜎𝜎

Hidden layer

Input
m neurons

𝑚𝑚 × 𝑑𝑑
𝑑𝑑 × 1

𝑚𝑚 × 1 𝑚𝑚 × 1

𝐱𝐱 ∈ ℝ𝑑𝑑

𝐖𝐖 𝐛𝐛

Neural networks with one hidden layer

𝑚𝑚 × 𝑑𝑑
𝑑𝑑 × 1

𝑚𝑚 × 1 𝑚𝑚 × 1

𝐱𝐱 ∈ ℝ𝑑𝑑

𝐖𝐖 𝐛𝐛

Element-wise
activation function

Key elements: linear operations + Nonlinear activations

Neural networks with one hidden layer

Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

𝐱𝐱 ∈ ℝ𝑑𝑑

𝑝𝑝(𝑦𝑦|𝐱𝐱) = softmax(𝐟𝐟)

=
exp𝑓𝑓𝑦𝑦(𝑥𝑥)
∑𝑖𝑖𝑘𝑘exp𝑓𝑓𝑖𝑖(𝑥𝑥)

Hidden layer

Input
m neurons

Output

𝑓𝑓𝑘𝑘

…
𝑓𝑓1

Classify MNIST handwritten digits

Output

Hidden layer

Input
m neurons

How to train a neural network?

Loss function: 1
|𝐷𝐷|

∑
𝑖𝑖
ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)

ℓ(𝐱𝐱,𝑦𝑦) = ∑
𝑗𝑗=1

𝐾𝐾
− 𝑦𝑦𝑗𝑗log𝑝𝑝𝑗𝑗

Per-sample loss:

Also known as cross-entropy loss
or softmax loss

Cross-Entropy Loss

0.8
Neural Networks

softmax
(model prediction)

0.2

True label

1

𝑝𝑝 𝑌𝑌

𝐿𝐿𝐶𝐶𝐶𝐶 = ∑
𝑗𝑗
− 𝑦𝑦𝑗𝑗log(𝑝𝑝𝑗𝑗)

= −log(0.8)

Goal: push p and Y to be identical

How to train a neural network?

Update the weights W to minimize the loss function

𝐿𝐿 =
1

|𝐷𝐷|
∑
𝑖𝑖
ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)

Use gradient descent!
Output

Hidden layer

Input
m neurons

Gradient Descent

• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1, 2, …

• Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕𝐰𝐰𝑡𝑡−1

= 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐷𝐷|
∑
𝐱𝐱∈𝐷𝐷

𝜕𝜕ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat until converges

D can be very
large. Expensive

per iteration

𝐰𝐰0

𝐰𝐰1
𝐰𝐰2

Minibatch Stochastic Gradient Descent

• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1, 2, …

• Randomly sample a subset (mini-batch) 𝐵𝐵 ⊂ 𝐷𝐷
Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐵𝐵|
∑
𝐱𝐱∈𝐵𝐵

𝜕𝜕𝜕(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat

Calculate gradient: backpropagation with chain rule

• Define a loss function L, must compute
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 for all
weights and biases.

𝐚𝐚 = sigmoid(𝐖𝐖𝐖𝐖 + 𝐛𝐛)

• Gradient to a variable =
gradient on the top x gradient from the current operation

𝑧𝑧1 𝑧𝑧2
L

Non-convex
Optimization

[Gao and Li et al., 2018]

How to classify
Cats vs. dogs?

36M floats in a RGB image!

Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output

Hidden layer

Input
100 neurons

Fully Connected Networks

Convolutions come to rescue!

Where is
Waldo?

• Translation
Invariance

• Locality

Why Convolution?

2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

2-D Convolution Layer

• input matrix
• kernel matrix
• b: scalar bias
• output matrix

• W and b are learnable parameters
𝐘𝐘 = 𝐗𝐗 ⋆𝐖𝐖 + 𝑏𝑏

𝐗𝐗:𝑛𝑛ℎ × 𝑛𝑛𝑤𝑤
𝐖𝐖: 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤

𝐘𝐘: (𝑛𝑛ℎ − 𝑘𝑘ℎ + 1) × (𝑛𝑛𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 1)

2-D Convolution Layer with Stride and Padding
• Stride is the #rows/#columns per slide
• Padding adds rows/columns around input
• Output shape

⌊(𝑛𝑛ℎ − 𝑘𝑘ℎ + 𝑝𝑝ℎ + 𝑠𝑠ℎ)/𝑠𝑠ℎ⌋ × ⌊(𝑛𝑛𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 𝑝𝑝𝑤𝑤 + 𝑠𝑠𝑤𝑤)/𝑠𝑠𝑤𝑤⌋

StridePad

Kernel/filter size

Input size

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a kernel for each channel, and then sum results over

channels
(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)

+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Have a 2D kernel for each channel, and then sum results over

channels

One 3D kernel

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels
• Also call each 3D kernel a “filter”, which produce only one

output channel (due to summation over channels)

One filter
(3 channels)

RGB (3 input channels)

Multiple filters (in one layer)
• Apply multiple filters on the input
• Each filter may learn different features about the input
• Each filter (3D kernel) produces one output channel

RGB (3 input channels)
A different filter

Conv1 Filters in AlexNet
• 96 filters (each of size 11x11x3)
• Gabor filters

Figures from Visualizing and Understanding Convolutional Networks
by M. Zeiler and R. Fergus

Multiple Output Channels
• The # of output channels = # of filters
• Input
• Kernel
• Output

𝐗𝐗: 𝑐𝑐𝑖𝑖 × 𝑛𝑛ℎ × 𝑛𝑛𝑤𝑤
𝐖𝐖: 𝑐𝑐𝑜𝑜 × 𝑐𝑐𝑖𝑖 × 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤
𝐘𝐘: 𝑐𝑐𝑜𝑜 × 𝑚𝑚ℎ × 𝑚𝑚𝑤𝑤

𝐘𝐘𝑖𝑖,:,: = 𝐗𝐗 ⋆𝐖𝐖𝑖𝑖,:,:,:

for 𝑖𝑖 = 1, … , 𝑐𝑐𝑜𝑜

Convolutional Neural Networks

gluon-cv.mxnet.io

LeNet Architecture

Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

Quiz break
Which one of the following is NOT true?

A. LeNet has two convolutional layers
B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB
input
C. Pooling is performed right after convolution
D. Pooling layer does not have learnable parameters

Quiz break
Which one of the following is NOT true?

A. LeNet has two convolutional layers
B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB
input
C. Pooling is performed right after convolution
D. Pooling layer does not have learnable parameters

Pooling is performed after ReLU: conv -> relu -> pooling

Evolution of neural net architectures

LeNet
(1989)

AlexNet
(2012)

VGG
(2014)

Inception Net
(2014)

ResNet
(2015)

DenseNet
(2016)

56

Deng et al. 2009

AlexNet

[Krizhevsky et al. 2012]

AlexNet vs LeNet Architecture

LeNetAlexNet

Larger kernel size, stride
because of the increased
image size, and more
output channels.

Larger pool size, change
to max pooling

AlexNet Architecture

LeNet

AlexNet

More output channels.

3 additional
convolutional layers

ResNet: Going deeper in depth

[He et al. 2015]ImageNet Top-5 error%

Other neural network architectures

• Convolutional neural networks are one of many special types of layers.

• Main use is for processing images.

• Also can be useful for handling time series.

• Other common architectures:

• Recurrent neural networks: hidden activations are a function of input and
activations from previous inputs. Designed for sequential data such as text.

• Graph neural networks: take graph data as input.

• Transformers: take sequences as input and learn what parts of input to pay
attention to.

64

Brief history of neural networks

What we’ve learned today…
• Modeling a single neuron

• Linear perceptron

• Limited power of a single neuron

• Multi-layer perceptron

• Training of neural networks

• Loss function (cross entropy)

• Backpropagation and SGD

• Convolutional neural networks

• Convolution, pooling, stride, padding

• Basic architectures (LeNet etc.)

• More advanced architectures (AlexNet, ResNet etc)

Thank you!

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html

https://courses.d2l.ai/berkeley-stat-157/index.html

	CS540 Introduction to Artificial Intelligence
Neural Networks: Review
	Announcements
	How to classify
	Inspiration from neuroscience
	Perceptron
	Perceptron
	Example 2: Predict whether a user likes a song or not
	Example 2: Predict whether a user likes a song or not using Perceptron
	Learning logic functions using perceptron
	Learning logic functions using perceptron
	Learning OR function using perceptron
	XOR Problem (Minsky & Papert, 1969)
	Quiz break
	Quiz break
	Multilayer
Perceptron
	Single Hidden Layer
	Single Hidden Layer
	Neural networks with one hidden layer
	Neural networks with one hidden layer
	Slide Number 21
	Multi-class classification
	Slide Number 24
	Classify MNIST handwritten digits
	How to train a neural network?
	Cross-Entropy Loss
	How to train a neural network?
	Gradient Descent
	Minibatch Stochastic Gradient Descent
	Calculate gradient: backpropagation with chain rule
	Non-convex
Optimization
	How to classify
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Why Convolution?
	2-D Convolution
	2-D Convolution Layer
	2-D Convolution Layer with Stride and Padding
	Multiple Input Channels
	Multiple Input Channels
	Multiple Input Channels
	Multiple filters (in one layer)
	Conv1 Filters in AlexNet
	Multiple Output Channels
	Convolutional Neural Networks
	LeNet Architecture
	Slide Number 52
	Quiz break
	Quiz break
	Evolution of neural net architectures
	Slide Number 58
	AlexNet
	AlexNet vs LeNet Architecture
	AlexNet Architecture
	Slide Number 62
	Other neural network architectures
	Brief history of neural networks
	What we’ve learned today…
	Slide Number 67

