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Announcements

• Homework: 
– HW7 is due on Monday Apr. 7th at 11:59 PM

• Class roadmap: Deep Learning and Neural 
Network's Summary

Search I: Un-Informed 
search

Search II: Informed search



How to classify 

Cats vs. dogs?

Single-layer 
Perceptron

Multi-layer 
Perceptron

Training of neural 
networks

Convolutional 
neural networksNeural networks can also be used for regression.

- Typically, no activation on outputs, mean squared error loss function.

https://courses.d2l.ai/berkeley-stat-157/index.html


Inspiration from neuroscience
- Inspirations from human brains
- Networks of simple and homogenous units (a.k.a neuron)

(wikipedia)



Perceptron
• Given input    , weight     and bias    , perceptron outputs:

𝑜𝑜 = 𝜎𝜎 𝐰𝐰⊤𝐱𝐱 + 𝑏𝑏 𝜎𝜎(𝑥𝑥) = {1 if 𝑥𝑥 > 0
0 otherwise

𝐱𝐱 𝐰𝐰 𝑏𝑏

Input 

Cats vs. dogs?

Activation function

Output (0 or 1)

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑑𝑑

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑑𝑑



Perceptron
• Goal: learn parameters 𝐰𝐰 = {𝑤𝑤1,𝑤𝑤2, . . . ,𝑤𝑤𝑑𝑑} and b to 

minimize the classification error  

Input Output (0 or 1)

𝑤𝑤1
𝑤𝑤2

𝑤𝑤𝑑𝑑

𝑥𝑥1

𝑥𝑥2

𝑥𝑥𝑑𝑑

Cats vs. dogs?



Example 2: Predict whether a user likes a song or 
not

model



User Sharon

Tempo

Intensity

Relaxed Fast

DisLike

Like

Example 2: Predict whether a user likes a song or 
not using Perceptron

𝑦𝑦 = 1

𝑦𝑦 = 0



Learning logic functions using perceptron

The perceptron can learn an AND function

0 1

1

𝑥𝑥1 = 1, 𝑥𝑥2 = 1,𝑦𝑦 = 1

𝑥𝑥1 = 1, 𝑥𝑥2 = 0,𝑦𝑦 = 0

𝑥𝑥1 = 0, 𝑥𝑥2 = 1,𝑦𝑦 = 0

𝑥𝑥1 = 0, 𝑥𝑥2 = 0,𝑦𝑦 = 0

𝑥𝑥1

𝑥𝑥2



The perceptron can learn an AND function

0 1

1

𝑤𝑤1
𝜎𝜎(𝑥𝑥1𝑤𝑤1 + 𝑥𝑥2𝑤𝑤2 + 𝑏𝑏)

𝜎𝜎(𝑥𝑥) = {1 if 𝑥𝑥 > 0
0 otherwise

𝑤𝑤1 = 1,𝑤𝑤2 = 1, 𝑏𝑏 = −1.5

𝑥𝑥1

𝑥𝑥2

Learning logic functions using perceptron

Output 

𝑤𝑤2



Learning OR function using perceptron
The perceptron can learn an OR function

0 1

1

Output 

𝑤𝑤2

𝑤𝑤1
𝜎𝜎(𝑥𝑥1𝑤𝑤1 + 𝑥𝑥2𝑤𝑤2 + 𝑏𝑏)

𝜎𝜎(𝑥𝑥) = {1 if 𝑥𝑥 > 0
0 otherwise

𝑤𝑤1 = 1,𝑤𝑤2 = 1, 𝑏𝑏 = −0.5

𝑥𝑥1

𝑥𝑥2



XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function
(neurons can only generate linear separators)

This contributed to the first AI winter

𝑥𝑥1 = 1, 𝑥𝑥2 = 1,𝑦𝑦 = 0

𝑥𝑥1 = 1, 𝑥𝑥2 = 0,𝑦𝑦 = 1

𝑥𝑥1 = 0, 𝑥𝑥2 = 1,𝑦𝑦 = 1

𝑥𝑥1 = 0, 𝑥𝑥2 = 0,𝑦𝑦 = 0



Quiz break
Which one of the following is NOT true about perceptron?

A. Perceptron only works if the data is linearly separable.
B. Perceptron can learn AND function
C. Perceptron can learn XOR function
D. Perceptron is a supervised learning algorithm



Quiz break
Which one of the following is NOT true about perceptron?

A. Perceptron only works if the data is linearly separable.
B. Perceptron can learn AND function
C. Perceptron can learn XOR function
D. Perceptron is a supervised learning algorithm



Multilayer
Perceptron



Single Hidden Layer

Output 

Hidden layer 

Input 
m neurons

Cats vs. dogs?
How to classify 



Single Hidden Layer

• Input
• Hidden
• Intermediate output   

𝐱𝐱 ∈ ℝ𝑑𝑑

𝐡𝐡 = 𝜎𝜎(𝐖𝐖𝐖𝐖 + 𝐛𝐛)

is an element-wise 
activation function 

𝐖𝐖 ∈ ℝ𝑚𝑚×𝑑𝑑 ,𝐛𝐛 ∈ ℝ𝑚𝑚

𝜎𝜎

Hidden layer 

Input 
m neurons



𝑚𝑚 × 𝑑𝑑
𝑑𝑑 × 1

𝑚𝑚 × 1 𝑚𝑚 × 1

𝐱𝐱 ∈ ℝ𝑑𝑑

𝐖𝐖 𝐛𝐛

Neural networks with one hidden layer



𝑚𝑚 × 𝑑𝑑
𝑑𝑑 × 1

𝑚𝑚 × 1 𝑚𝑚 × 1

𝐱𝐱 ∈ ℝ𝑑𝑑

𝐖𝐖 𝐛𝐛

Element-wise 
activation function

Key elements: linear operations + Nonlinear activations

Neural networks with one hidden layer





Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

𝐱𝐱 ∈ ℝ𝑑𝑑

𝑝𝑝(𝑦𝑦|𝐱𝐱) = softmax(𝐟𝐟)

=
exp𝑓𝑓𝑦𝑦(𝑥𝑥)
∑𝑖𝑖𝑘𝑘exp𝑓𝑓𝑖𝑖(𝑥𝑥)

Hidden layer 

Input 
m neurons

Output 

𝑓𝑓𝑘𝑘

…
𝑓𝑓1





Classify MNIST handwritten digits



Output 

Hidden layer 

Input 
m neurons

How to train a neural network?

Loss function: 1
|𝐷𝐷|

∑
𝑖𝑖
ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)

ℓ(𝐱𝐱,𝑦𝑦) = ∑
𝑗𝑗=1

𝐾𝐾
− 𝑦𝑦𝑗𝑗log𝑝𝑝𝑗𝑗

Per-sample loss:

Also known as cross-entropy loss 
or softmax loss



Cross-Entropy Loss

0.8
Neural Networks

softmax
(model prediction)

0.2

True label 

1

𝑝𝑝 𝑌𝑌

𝐿𝐿𝐶𝐶𝐶𝐶 = ∑
𝑗𝑗
− 𝑦𝑦𝑗𝑗log(𝑝𝑝𝑗𝑗)

= −log(0.8)

Goal: push p and Y to be identical



How to train a neural network?

Update the weights W to minimize the loss function

𝐿𝐿 =
1

|𝐷𝐷|
∑
𝑖𝑖
ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)

Use gradient descent! 
Output 

Hidden layer 

Input 
m neurons



Gradient Descent

• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1, 2, …

• Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
𝜕𝜕𝜕𝜕

𝜕𝜕𝐰𝐰𝑡𝑡−1

= 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐷𝐷|
∑
𝐱𝐱∈𝐷𝐷

𝜕𝜕ℓ(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat until converges

D can be very 
large. Expensive 

per iteration

𝐰𝐰0

𝐰𝐰1
𝐰𝐰2



Minibatch Stochastic Gradient Descent

• Choose a learning rate 𝛼𝛼 > 0
• Initialize the model parameters 𝑤𝑤0
• For t =1, 2, …

• Randomly sample a subset (mini-batch) 𝐵𝐵 ⊂ 𝐷𝐷
Update parameters:

𝐰𝐰𝑡𝑡 = 𝐰𝐰𝑡𝑡−1 − 𝛼𝛼
1

|𝐵𝐵|
∑
𝐱𝐱∈𝐵𝐵

𝜕𝜕𝜕(𝐱𝐱𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝜕𝜕𝐰𝐰𝑡𝑡−1

• Repeat



Calculate gradient: backpropagation with chain rule

• Define a loss function L, must compute 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 for all 
weights and biases.

𝐚𝐚 = sigmoid(𝐖𝐖𝐖𝐖 + 𝐛𝐛)

• Gradient to a variable = 
gradient on the top  x  gradient from the current operation 

𝑧𝑧1 𝑧𝑧2
L



Non-convex
Optimization

[Gao and Li et al., 2018]



How to classify 
Cats vs. dogs?

36M floats in a RGB image!



Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output 

Hidden layer 

Input 
100 neurons

Fully Connected Networks



Convolutions come to rescue!



Where is 
Waldo?



• Translation 
Invariance

• Locality

Why Convolution?



2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.



2-D Convolution Layer

•                   input matrix
•     kernel matrix
• b: scalar bias
•      output matrix

• W and b are learnable parameters 
𝐘𝐘 = 𝐗𝐗 ⋆𝐖𝐖 + 𝑏𝑏

𝐗𝐗:𝑛𝑛ℎ × 𝑛𝑛𝑤𝑤
𝐖𝐖: 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤

𝐘𝐘: (𝑛𝑛ℎ − 𝑘𝑘ℎ + 1) × (𝑛𝑛𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 1)



2-D Convolution Layer with Stride and Padding
• Stride is the #rows/#columns per slide
• Padding adds rows/columns around input
• Output shape

⌊(𝑛𝑛ℎ − 𝑘𝑘ℎ + 𝑝𝑝ℎ + 𝑠𝑠ℎ)/𝑠𝑠ℎ⌋ × ⌊(𝑛𝑛𝑤𝑤 − 𝑘𝑘𝑤𝑤 + 𝑝𝑝𝑤𝑤 + 𝑠𝑠𝑤𝑤)/𝑠𝑠𝑤𝑤⌋

StridePad

Kernel/filter size

Input size



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels
• Have a kernel for each channel, and then sum results over 

channels
(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)

+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)
= 56



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels
• Have a 2D kernel for each channel, and then sum results over 

channels

One 3D kernel



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels
• Also call each 3D kernel a “filter”, which produce only one 

output channel (due to summation over channels)

One filter 
(3 channels)

RGB (3 input channels)



Multiple filters (in one layer)
• Apply multiple filters on the input
• Each filter may learn different features about the input
• Each filter (3D kernel) produces one output channel

RGB (3 input channels)
A different filter



Conv1 Filters in AlexNet
• 96 filters (each of size 11x11x3)
• Gabor filters

Figures from Visualizing and Understanding Convolutional Networks 
by M. Zeiler and R. Fergus 



Multiple Output Channels
• The # of output channels = # of filters 
• Input
• Kernel
• Output 

𝐗𝐗: 𝑐𝑐𝑖𝑖 × 𝑛𝑛ℎ × 𝑛𝑛𝑤𝑤
𝐖𝐖: 𝑐𝑐𝑜𝑜 × 𝑐𝑐𝑖𝑖 × 𝑘𝑘ℎ × 𝑘𝑘𝑤𝑤
𝐘𝐘: 𝑐𝑐𝑜𝑜 × 𝑚𝑚ℎ × 𝑚𝑚𝑤𝑤

𝐘𝐘𝑖𝑖,:,: = 𝐗𝐗 ⋆𝐖𝐖𝑖𝑖,:,:,:

for 𝑖𝑖 = 1, … , 𝑐𝑐𝑜𝑜



Convolutional Neural Networks



gluon-cv.mxnet.io

LeNet Architecture



Y. LeCun, L. 
Bottou, Y. Bengio, 
P. Haffner, 1998
Gradient-based 
learning applied to 
document 
recognition



Quiz break
Which one of the following is NOT true?

A. LeNet has two convolutional layers
B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB 
input
C. Pooling is performed right after convolution
D. Pooling layer does not have learnable parameters



Quiz break
Which one of the following is NOT true?

A. LeNet has two convolutional layers
B. The first convolutional layer in LeNet has 5x5x6x3 parameters, in case of RGB 
input
C. Pooling is performed right after convolution
D. Pooling layer does not have learnable parameters

Pooling is performed after ReLU: conv -> relu -> pooling



Evolution of neural net architectures

LeNet 
(1989)

AlexNet
(2012)

VGG 
(2014)

Inception Net 
(2014)

ResNet 
(2015)

DenseNet 
(2016)

56



Deng et al. 2009



AlexNet

[Krizhevsky et al. 2012]



AlexNet vs LeNet Architecture 

LeNetAlexNet

Larger kernel size, stride 
because of the increased
image size, and more
output channels.

Larger pool size, change 
to max pooling 



AlexNet Architecture 

LeNet

AlexNet

More output channels.

3 additional
convolutional  layers



ResNet: Going deeper in depth

[He et al. 2015]ImageNet Top-5 error%



Other neural network architectures

• Convolutional neural networks are one of many special types of layers.

• Main use is for processing images.

• Also can be useful for handling time series.

• Other common architectures:

• Recurrent neural networks: hidden activations are a function of input and 
activations from previous inputs. Designed for sequential data such as text.

• Graph neural networks: take graph data as input.

• Transformers: take sequences as input and learn what parts of input to pay 
attention to.

64



Brief history of neural networks



What we’ve learned today…
• Modeling a single neuron

• Linear perceptron

• Limited power of a single neuron

• Multi-layer perceptron

• Training of neural networks

• Loss function (cross entropy)

• Backpropagation and SGD 

• Convolutional neural networks

• Convolution, pooling, stride, padding 

• Basic architectures (LeNet etc.)

• More advanced architectures (AlexNet, ResNet etc)



Thank you!

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li: 

https://courses.d2l.ai/berkeley-stat-157/index.html

https://courses.d2l.ai/berkeley-stat-157/index.html
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