

CS 540 Introduction to Artificial Intelligence Reinforcement Learning I

University of Wisconsin-Madison Spring 2025

Announcements

- Homework:
 - HW9 due on Wednesday April 23rd at 11:59 PM

Introduction to Reinforcement Learning

Reinforcement Learning II

• Class roadmap:

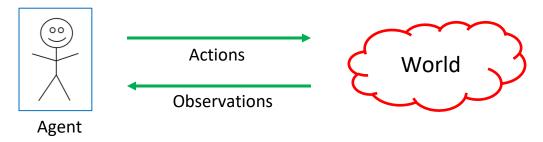
Advanced Search

Outline

- Introduction to reinforcement learning
 - Basic concepts, mathematical formulation, MDPs, policies.
- Learning policies
 - Q-learning, action-values, exploration vs exploitation.

Back to Our General Model

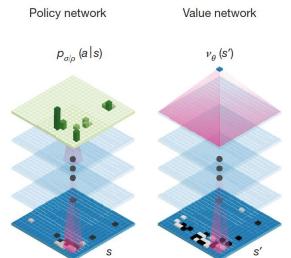
We have an **agent interacting** with the **world**



- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

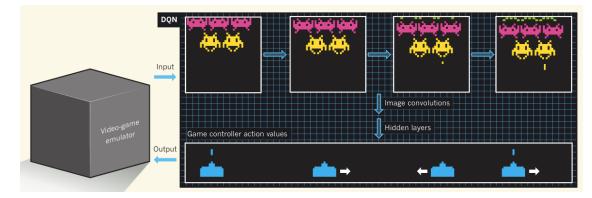
AlphaZero:



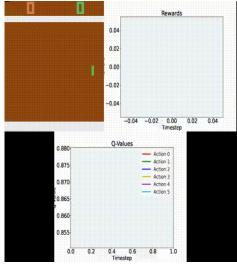
https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari



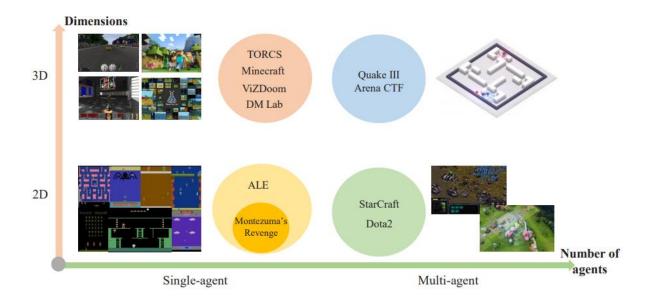
Mnih et al, "Human-level control through deep reinforcement learning"



A. Nielsen

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!



Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

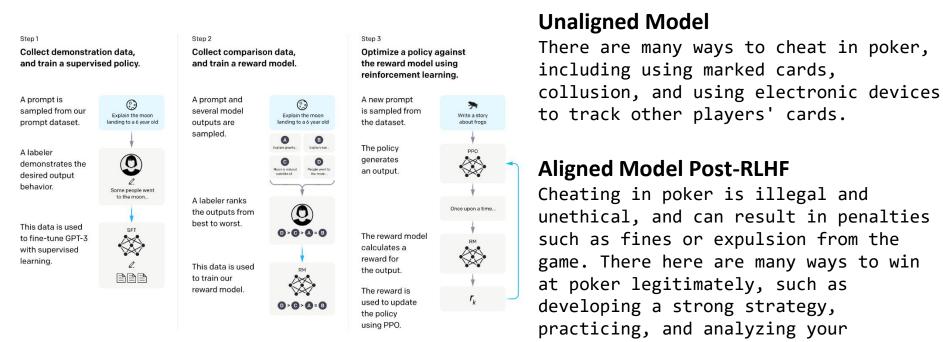
Examples: Robotics

Training robots to perform tasks (e.g., grasp objects!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning - Lessons We've Learned "

Examples: Large Language Models

RL used to "align" model outputs to human preferences



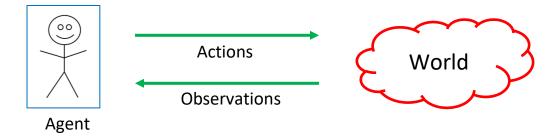
opponents' behavior.

C. Huyen, https://huyenchip.com/2023/05/02/rlhf.html

Building The Theoretical Model

Basic setup:

- Set of states, S
- Set of actions, A



- Information: at time *t*, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1_t} continue Goal: find a map from **states to actions** that maximize rewards.

Markov Decision Process (MDP)

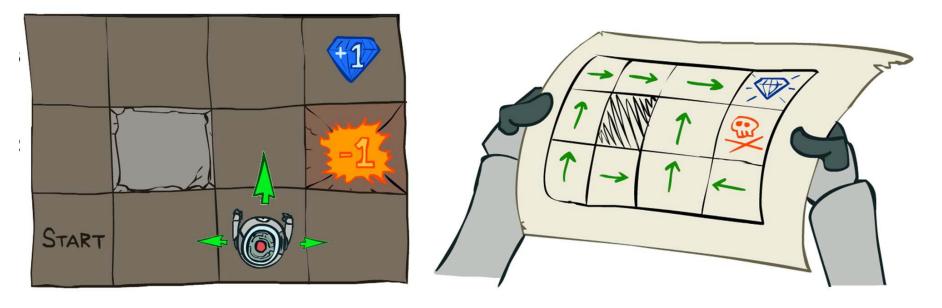
The formal mathematical model:

- State set S. Initial state s_{0.} Action set A
- Reward function: **r**(**s**_t)
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not earlier history (previous actions or states)
- More generally: $r(s_t, a_t)$, potentially random
- Policy: $\pi(s): S \to A$ action to take at a particular state

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

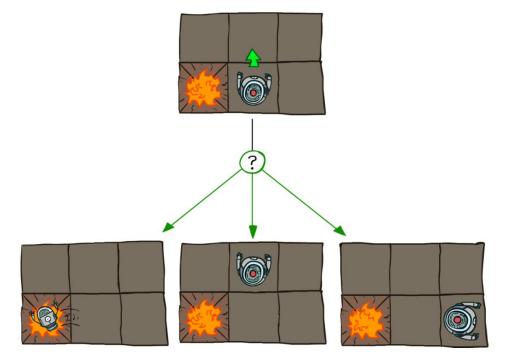
Example of MDP: Grid World

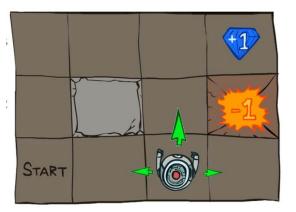
Robot on a grid; goal: find the best policy



Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

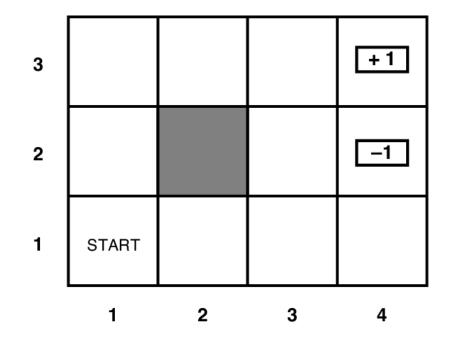


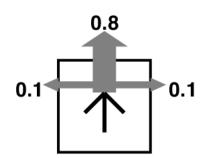


r(s) = -0.04 for every non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

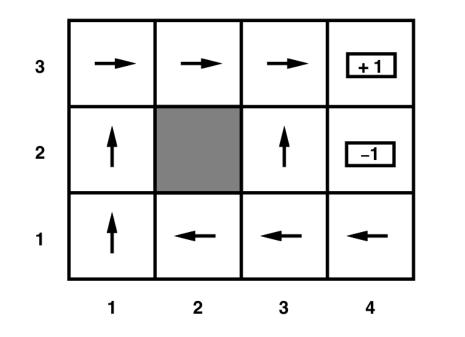


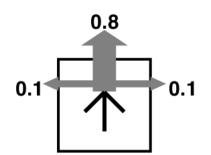


r(s) = -0.04 for every non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast





r(s) = -0.04 for every non-terminal state

Back to MDP Setup

The formal mathematical model:

- State set S. Initial state s_{0.} Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: **r**(**s**_t)

How do we find the best policy?

• Policy: $\pi(s): S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Reinforcement Learning Challenges

Credit-assignment:

- May take many actions before reward is received. Which ones were most important?
- <u>Example</u>: You study 15 minutes a day all semester. The morning of the final exam, you eat a bowl of yogurt. You receive an A on the final. Was it the studying or the yogurt that led to the A?

Exploration vs. Exploitation:

- Transition probabilities and reward may be unknown to the learner.
- Should you keep trying actions that led to reward in the past or try new actions that might lead to even more reward?

Q 1.1 Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value
- B. The policy maps states to actions
- C. The probability of next state can depend on current and previous states
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards

Q 1.1 Which of the following statement about MDP is **not** true?

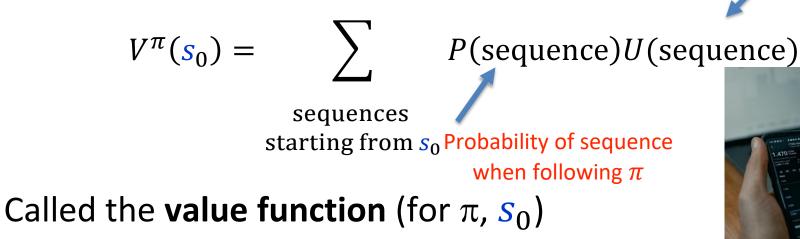
- A. The reward function must output a scalar value
- B. The policy maps states to actions
- C. The probability of next state can depend on current and previous states
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards

Q 1.1 Which of the following statement about MDP is not true?

- A. The reward function must output a scalar value (True: need to be able to compare)
- B. The policy maps states to actions (True: a policy tells you what action to take for each state).
- C. The probability of next state can depend on current and previous states (False: Markov assumption).
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards (True: want to maximize rewards overall).

Defining the Optimal Policy

For policy π , **expected utility** over all possible state sequences from S_0 produced by following that policy: Utility of sequence



Discounting Rewards

One issue: these are possibly infinite series. **Convergence**?

• Solution: discount future rewards.

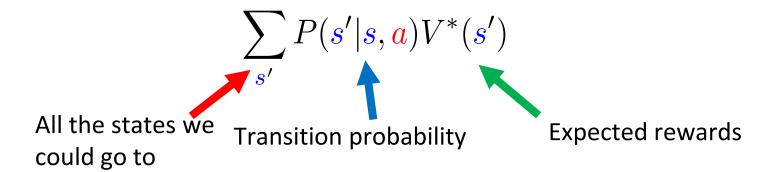
$$U(s_0, s_1...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + ... = \sum_{t>0} \gamma^t r(s_t)$$

- Discount factor γ between 0 and 1
 - Set according to how important present is versus future
 - Note: has to be less than 1 for convergence

From Value to Policy

Now that $V^{\pi}(s_0)$ is defined, what a should we take?

- First, let π^* be the **optimal** policy for $V^{\pi}(s_0)$, and $V^*(s_0)$ its expected utility.
- What's the expected utility following an action?
 - Specifically, action *a* in state s?



Slight Problem...

Now we can get the optimal policy by doing

$$\pi^*(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) V^*(s')$$

- So we need to know V*(s) (and P).
 - But it was defined in terms of the optimal policy!
 - So we need some other approach to get $V^*(s)$.
 - Instead, learn about the utility of actions directly.

Bellman Equation

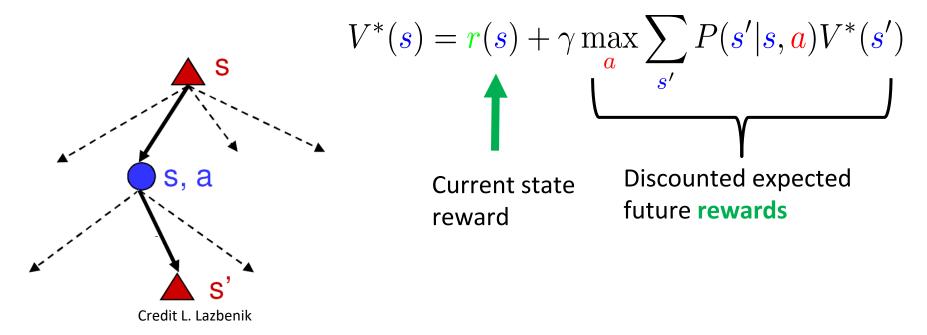
Let's walk over one step for the value function:

$$V^{*}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^{*}(s')$$
Current state
reward
Discounted expected
future rewards

Richard Bellman: inventor of dynamic programming

Bellman Equation

Let's walk over one step for the value function:

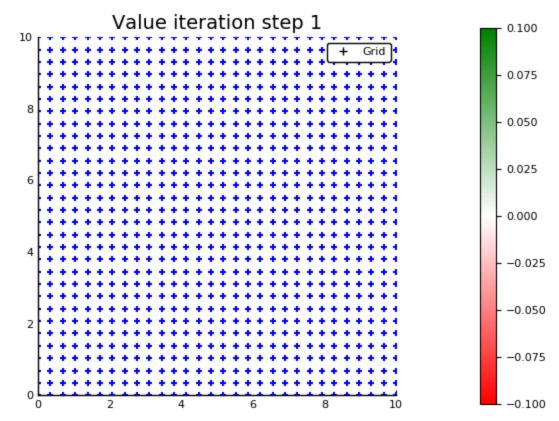


Value Iteration

- **Q**: how do we find $V^*(s)$?
- Why do we want it? Can use it to get the best policy
- Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
 - Knowing r and P is the "planning" problem. In reality r and P must be estimated from interactions : "reinforcement learning"
- Also know V*(s) satisfies Bellman equation (recursion above)
- **A**: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

Value Iteration: Demo



Source: POMDPBGallery Julia Package

Q 2.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Here, transitions are deterministic. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) =$ move (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1 / (1 -γ)
- C. 1 / (1 - γ^2)
- D. 1

Q 2.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Here, transitions are deterministic. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) =$ move (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1/(1-γ)
- C. 1/(1-γ²)
- D.1

Q 2.1 Consider an MDP with 2 states {*A*, *B*} and 2 actions: "stay" at current state and "move" to other state. Here, transitions are deterministic. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) =$ move (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1/(1-γ)
- **C. 1/(1-γ²)** (States: A,B,A,B,... rewards 1,0, γ²,0, γ⁴,0, ...)
- D. 1

Q-Learning

- Our **next** reinforcement learning algorithm.
- Does not require knowing r or P. Learn from data of the form:{(s_t, a_t, r_t, s_{t+1})}.
- Learns an action-value function Q*(s,a) that tells us the expected value of taking a in state s.

• Note:
$$V^*(s) = \max_a Q^*(s, a)$$
.

• Optimal policy is formed as $\pi^*(s) = \arg\max_a Q^*(s, a)$

The Q*(s,a) function

• Starting from state s, perform (perhaps suboptimal) action *a*. THEN follow the optimal policy

$$Q^{*}(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a) V^{*}(s')$$

• Equivalent to

$$Q^{*}(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^{*}(s',a')$$

Q-Learning Iteration

How do we get Q(*s*,*a*)?

- Iterative procedure
 - $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r(s_t) + \gamma \max_a Q(s_{t+1}, a) Q(s_t, a_t)]$ Learning rate

Idea: combine old value and new estimate of future value. Note: We are using a policy to take actions; based on the estimated Q!

Q-Learning

Estimate $Q^{*}(s,a)$ from data {(s_t, a_t, r_t, s_{t+1})}:

- 1. Initialize Q(.,.) arbitrarily (eg all zeros)
 - 1. Except terminal states Q(s_{terminal},.)=0
- 2. Iterate over data until Q(.,.) converges:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$$

Learning rate

Q-Learning

Estimate $Q^{*}(s,a)$ from data $\{(s_t, a_t, r_t, s_{t+1})\}$:

- 1. Initialize Q(.,.) arbitrarily (eg all zeros)
 - 1. Except terminal states Q(s_{terminal},.)=0
- 2. Iterate over data until Q(.,.) converges:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$$

Idea: update is an empirical version of our Q table recursion:

$$Q^{*}(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^{*}(s',a')$$

Exploration Vs. Exploitation

General question!

- **Exploration:** take an action with unknown consequences
 - Pros:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far
 - Cons:
 - When exploring, not maximizing your utility
 - Something bad might happen
- Exploitation: go with the best strategy found so far
 - Pros:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - Cons:
 - Might prevent you from discovering the true optimal strategy

Q-Learning: ε-Greedy Behavior Policy

Getting data with both **exploration and exploitation**

 With probability ε, take a random action; else the action with the highest (current) Q(s,a) value.

$$a = \begin{cases} \operatorname{argmax}_{a \in A} Q(s, a) & \operatorname{uniform}(0, 1) > \epsilon \\ \operatorname{random} a \in A & \operatorname{otherwise} \end{cases}$$

Q-learning Algorithm

Input: step size α , exploration probability ϵ

- 1. set Q(s,a) = 0 for all s, a.
- 2. For each episode:
- 3. Get initial state s.
- 4. While (s not a terminal state):

Explore: take action to see what happens.

5. Perform $a = \epsilon$ -greedy(*Q*, *s*), receive *r*, *s*'

6.
$$Q(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \max_{a'}Q(s',a'))$$

Update action-value based on result.

8. End While

7. $s \leftarrow s'$

9. End For

Q 3.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Prioritize exploitation over exploration.

Q 3.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations.
- C. Re-start with different random initial table values.
- D. Prioritize exploitation over exploration.

Q 3.1 For Q learning to converge to the true Q function, we must

- A. Visit every state and try every action
- B. Perform at least 20,000 iterations. (No: this is dependent on the particular problem, not a general constant).
- C. Re-start with different random initial table values. (No: this is not necessary in general).
- D. Prioritize exploitation over exploration. (No: insufficient exploration means potentially unupdated state action pairs).

Summary

- Reinforcement learning setup
- Mathematical formulation: MDP
- Bellman Equation
- Value Iteration Algorithm
- The Q-learning Algorithm