
CS 540 Introduction to Artificial Intelligence

Reinforcement Learning I

University of Wisconsin-Madison
Spring 2025



Announcements

• Homework: 
– HW9 due on Wednesday April 23rd at 11:59 PM 

• Class roadmap:

Introduction to Reinforcement 

Learning

Reinforcement Learning II

Advanced Search



Outline

• Introduction to reinforcement learning
– Basic concepts, mathematical formulation, MDPs, policies.

• Learning policies
– Q-learning, action-values, exploration vs exploitation.



Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility

– Note: data consists of actions & observations
• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)



Examples: Gameplay Agents

AlphaZero:

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/


Examples: Video Game Agents

Pong, Atari

Mnih et al, “Human-level control through deep reinforcement learning”

A. Nielsen

https://holmdk.github.io/


Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more! 

Shao et al, "A Survey of Deep Reinforcement Learning in Video 
Games"



Examples: Robotics

Training robots to perform tasks (e.g., grasp objects!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We’ve Learned "



Examples: Large Language Models

RL used to “align” model outputs to human preferences

C. Huyen, https://huyenchip.com/2023/05/02/rlhf.html

Unaligned Model
There are many ways to cheat in poker, 
including using marked cards, 
collusion, and using electronic devices 
to track other players' cards. 

Aligned Model Post-RLHF
Cheating in poker is illegal and 
unethical, and can result in penalties 
such as fines or expulsion from the 
game. There here are many ways to win 
at poker legitimately, such as 
developing a strong strategy, 
practicing, and analyzing your 
opponents' behavior.



Building The Theoretical Model

Basic setup:
• Set of states, S

• Set of actions, A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions that maximize rewards.

World

Agent

Actions

Observations

A “policy”



Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• Reward function: r(st)

• State transition model:
– Markov assumption: transition probability only depends on st and at, 

and not earlier history (previous actions or states)

• More generally: 𝑟(𝑠𝑡 , 𝑎𝑡), potentially random 

• Policy:                            action to take at a particular state 



Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein 



Example of MDP: Grid World

Note: (i) Robot is unreliable    (ii) Reach target fast

𝒓(𝑠)  =  −0.04 for every 
non-terminal state



Grid World Abstraction

Note: (i) Robot is unreliable    (ii) Reach target fast

𝒓(𝑠)  =  −0.04 for every 
non-terminal state



Grid World Optimal Policy

Note: (i) Robot is unreliable    (ii) Reach target fast

𝒓(𝑠)  =  −0.04 for every 
non-terminal state



Back to MDP Setup

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at, 

and not previous actions or states. 

• Reward function: r(st)

• Policy:                            action to take at a particular state. 

How do we find 
the best policy?



Reinforcement Learning Challenges

Credit-assignment:

- May take many actions before reward is received. Which ones were most 
important?

- Example: You study 15 minutes a day all semester. The morning of the 
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it 
the studying or the yogurt that led to the A?

Exploration vs. Exploitation:

- Transition probabilities and reward may be unknown to the learner.

- Should you keep trying actions that led to reward in the past or try new 
actions that might lead to even more reward?



Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value

• B. The policy maps states to actions

• C. The probability of next state can depend on current and 
previous states

• D. The solution of MDP is to find a policy that maximizes the 
cumulative rewards



Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value

• B. The policy maps states to actions

• C. The probability of next state can depend on current and 
previous states

• D. The solution of MDP is to find a policy that maximizes the 
cumulative rewards



Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value (True: need to be able to 
compare)

• B. The policy maps states to actions (True: a policy tells you what action to 
take for each state).

• C. The probability of next state can depend on current and previous states 
(False: Markov assumption).

• D. The solution of MDP is to find a policy that maximizes the cumulative 
rewards (True: want to maximize rewards overall).



Defining the Optimal Policy

For policy , expected utility over all possible state 

sequences from 𝑠0 produced by following that policy:

Called the value function (for , 𝑠0)

𝑉𝜋 𝑠0 = 

sequences 
starting from 𝑠0

𝑃 sequence 𝑈(sequence)

Probability of sequence 

when following 𝜋

Utility of sequence



Discounting Rewards

One issue: these are possibly infinite series. 
Convergence?

• Solution: discount future rewards.

• Discount factor  between 0 and 1
– Set according to how important present is versus future

– Note: has to be less than 1 for convergence



From Value to Policy

Now that 𝑉𝜋 𝑠0  is defined, what 𝑎 should we take? 

• First, let 𝜋∗ be the optimal policy for 𝑉𝜋(𝑠0), and 𝑉∗(𝑠0) its 
expected utility.

• What’s the expected utility following an action?

– Specifically, action 𝑎 in state 𝑠?

All the states we 
could go to

Transition probability Expected rewards



Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s) (and P).
– But it was defined in terms of the optimal policy!

– So we need some other approach to get V*(s).

– Instead, learn about the utility of actions directly.



Bellman Equation

Let’s walk over one step for the value function:

• Richard Bellman: inventor of dynamic programming

Discounted expected 
future rewards

Current state 
reward



Bellman Equation

Let’s walk over one step for the value function:

Discounted expected 
future rewards

Current state 
reward

Credit L. Lazbenik



Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy

• Know: reward r(s), transition probability P(s’|s,a)
– Knowing r and P is the “planning” problem. In reality r and P must be 

estimated from interactions : “reinforcement learning”

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update



Value Iteration: Demo

Source: POMDPBGallery Julia Package



Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current 
state and “move” to other state. Here, transitions are deterministic. Let r be 
the reward function such that r(A) = 1, r(B) = 0. Let 𝛾 be the discounting 
factor. Let π: π(A) = π(B) = move (i.e., an “always move” policy). What is the 
value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1 / (1 -𝛾)

• C. 1 / (1 -𝛾2)

• D. 1



Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current 
state and “move” to other state. Here, transitions are deterministic. Let r be 
the reward function such that r(A) = 1, r(B) = 0. Let 𝛾 be the discounting 
factor. Let π: π(A) = π(B) = move (i.e., an “always move” policy). What is the 
value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2)

• D. 1



Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current 
state and “move” to other state. Here, transitions are deterministic. Let r be 
the reward function such that r(A) = 1, r(B) = 0. Let 𝛾 be the discounting 
factor. Let π: π(A) = π(B) = move (i.e., an “always move” policy). What is the 
value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2) (States: A,B,A,B,… rewards 1,0, 𝛾2,0, 𝛾4,0, …)

• D. 1



Q-Learning

• Our next reinforcement learning algorithm.
• Does not require knowing r or P. Learn from data of the 

form:{(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}.
• Learns an action-value function Q*(s,a) that tells us the 

expected value of taking a in state s.

• Note: 𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎).

• Optimal policy is formed as 𝜋∗(𝑠) = arg𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎)



The Q*(s,a) function

• Starting from state s, perform (perhaps suboptimal) 
action a.  THEN follow the optimal policy 

• Equivalent to

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠) + 𝛾∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑉∗(𝑠′)

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠) + 𝛾∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′, 𝑎′)



Q-Learning Iteration

How do we get Q(s,a)?
• Iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the 
estimated Q!

Learning rate



Q-Learning

Learning rate



Q-Learning

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠) + 𝛾∑
𝑠′

𝑃(𝑠′|𝑠, 𝑎)𝑚𝑎𝑥
𝑎′

𝑄∗(𝑠′, 𝑎′)

Idea: update is an empirical version of our Q table 
recursion:  



Exploration Vs. Exploitation

General question!
• Exploration: take an action with unknown consequences

– Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons: 
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons: 
• Might prevent you from discovering the true optimal strategy

 



Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation
• With probability ε, take a random action; else the action with 

the highest (current) Q(s,a) value.



Q-learning Algorithm
Input: step size 𝛼, exploration probability 𝜖
1. set Q(s,a) = 0 for all s, a.

2. For each episode:

3.   Get initial state s.

4.   While (s not a terminal state):

5.   Perform a = 𝜖-greedy(Q, s), receive r, s’

6.   𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′))

7.   𝑠 ← 𝑠′

8.   End While

9. End For

Explore: take action 
to see what happens.

Update action-value 
based on result.



Break & Quiz

Q 3.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action

• B. Perform at least 20,000 iterations.

• C. Re-start with different random initial table values.

• D. Prioritize exploitation over exploration.



Break & Quiz

Q 3.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action

• B. Perform at least 20,000 iterations.

• C. Re-start with different random initial table values.

• D. Prioritize exploitation over exploration.



Break & Quiz

Q 3.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action
• B. Perform at least 20,000 iterations. (No: this is dependent on the 

particular problem, not a general constant).
• C. Re-start with different random initial table values. (No: this is not 

necessary in general).
• D. Prioritize exploitation over exploration. (No: insufficient exploration 

means potentially unupdated state action pairs).



Summary

• Reinforcement learning setup

• Mathematical formulation: MDP

• Bellman Equation

• Value Iteration Algorithm

• The Q-learning Algorithm


	Slide 1: CS 540 Introduction to Artificial Intelligence Reinforcement Learning I
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Back to Our General Model
	Slide 5: Examples: Gameplay Agents
	Slide 6: Examples: Video Game Agents
	Slide 7: Examples: Video Game Agents
	Slide 8: Examples: Robotics
	Slide 9: Examples: Large Language Models
	Slide 10: Building The Theoretical Model
	Slide 11: Markov Decision Process (MDP)
	Slide 12: Example of MDP: Grid World
	Slide 13: Example of MDP: Grid World
	Slide 14: Grid World Abstraction
	Slide 15: Grid World Optimal Policy
	Slide 16: Back to MDP Setup
	Slide 17: Reinforcement Learning Challenges
	Slide 18: Break & Quiz
	Slide 19: Break & Quiz
	Slide 20: Break & Quiz
	Slide 21: Defining the Optimal Policy
	Slide 22: Discounting Rewards
	Slide 23: From Value to Policy
	Slide 24: Slight Problem…
	Slide 25: Bellman Equation
	Slide 26: Bellman Equation
	Slide 27: Value Iteration
	Slide 28: Value Iteration: Demo
	Slide 29: Break & Quiz
	Slide 30: Break & Quiz
	Slide 31: Break & Quiz
	Slide 32: Q-Learning
	Slide 33: The Q*(s,a) function
	Slide 34: Q-Learning Iteration
	Slide 35: Q-Learning
	Slide 36: Q-Learning
	Slide 37: Exploration Vs. Exploitation
	Slide 38: Q-Learning: ε-Greedy Behavior Policy
	Slide 39: Q-learning Algorithm
	Slide 41: Break & Quiz
	Slide 42: Break & Quiz
	Slide 43: Break & Quiz
	Slide 44: Summary

