
CS 540 Introduction to Artificial Intelligence
Reinforcement Learning II

University of Wisconsin-Madison
Spring 2025

Announcements
• Homework:

– HW9 due on Wednesday April 23rd at 11:59 PM

• Final Exam:
– May 7th 07:45 - 09:45 AM
– Lecture 001 (MW 14:30 - 15:45): S429 Chemistry Building
– Lecture 002 (TR 11:00 - 12:15): 1220 Microbial Sciences
– Lecture 003 (TR 16:00 - 17:15): B10 Ingraham Hall
– Students with Mc Burney accommodations or alternate requests will be notified about

the exam time and location.
– More information coming soon!

• Course evaluation

• Class roadmap:

Reinforcement Learning II

Advanced Search

Ethics and Trust in AI

Outline

• Review of reinforcement learning setting.
– MDPs, value functions

• Bellman equations and dynamic programming

• From dynamic programming to Q-learning

4

Key Ideas in Reinforcement Learning

Define RL Problem

Value IterationQ-learning

Bellman
Equation

Value
Functions

Exploration vs.
Exploitation

States, Actions, Transitions, Rewards,
Markov property, discounting

Writing the value of one state in terms of
successor states.

Using values to choose optimal actions.

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility

– Note: data consists of actions & observations
• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: , action to take at a particular state.

Defining the Optimal Policy

Discounting Rewards

One issue: these are infinite series. Convergence?

• Solution

• Discount factor γ between 0 and 1
– Set according to how important present is VS future

– Note: has to be less than 1 for convergence

Example

A 10

B 20 C 20

G 100

Deterministic transitions; 𝛾 = 0.8; policy

shown with red arrows.

Values and Policies

•

All the states we
could go to

Transition probability Expected rewards

Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards

Credit L. Lazbenik

Bellman Equations

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Credit L. Lazbenik

Richard Bellman: Inventor of dynamic programming.

Example

A 10

B 20 C 20

G 100

Deterministic transitions; 𝛾 = 0.8; policy

shown with red arrows.

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy

• Know: reward r(s), transition probability P(s’|s,a)

• Also know V*(s) satisfies Bellman equation:

A: Use the property. Start with V0(s)=0. Then, update

Q-Learning

• Our next reinforcement learning algorithm.

• Does not require knowing r or P. Learn from data of

the form:{(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}.
• Learns an action-value function Q*(s,a) that tells us

the expected value of taking a in state s.

• Note: 𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎).

• Optimal policy is formed as 𝜋∗(𝑠) = arg𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎)

The Q*(s,a) function

• Starting from state s, perform (perhaps suboptimal)
action a. THEN follow the optimal policy

• Equivalent to

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠) + 𝛾∑
𝑠′
𝑃(𝑠′|𝑠, 𝑎)𝑉∗(𝑠′)

𝑄∗(𝑠, 𝑎) = 𝑟(𝑠) + 𝛾∑
𝑠′
𝑃(𝑠′|𝑠, 𝑎)𝑚𝑎𝑥

𝑎′
𝑄∗(𝑠′, 𝑎′)

Q-Learning Iteration

How do we get Q(s,a)?
• Iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Learning rate

Q-Learning

Learning rate

Exploration Vs. Exploitation

General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might prevent you from discovering the true optimal strategy

Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation
• With probability ε, take a random action; else the action with

the highest (current) Q(s,a) value.

Q-learning Algorithm
Input: step size 𝛼, exploration probability 𝜖
1. set Q(s,a) = 0 for all s, a.

2. For each episode:

3. Get initial state s.

4. While (s not a terminal state):

5. Perform a = 𝜖-greedy(Q, s), receive r, s’

6. 𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑎′))

7. 𝑠 ← 𝑠′

8. End While

9. End For

Explore: take action to

see what happens.

Update action-value

based on result.

Q-Learning: SARSA

An alternative update rule:
• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)

• Can use with epsilon-greedy policy

Learning rate

Q-Learning Details

Note: if we have a terminal state, the process ends
• An episode: a sequence of states ending at a terminal state

• Want to run on many episodes

• Slightly different Q-update for terminal states

Deep Q-Learning

How do we get Q(s,a) with a large number of states?

Mnih et al, "Human-level control through deep reinforcement learning"

Deep Q-Learning
How do we get Q(s,a) with a large number of states?

• Deep Q-learning uses a neural network to approximate Q(s,a)

• Let 𝑄𝜃: 𝑆 × 𝐴 → ℝ be the neural network with weights and biases

denoted 𝜃.

• Training is similar to supervised regression:

• (𝑠, 𝑎) as input and 𝑦 = 𝑟(𝑠) + 𝛾𝑚𝑎𝑥
𝑎′

𝑄𝜃(𝑠
′, 𝑎′) as label.

• Note that output of the neural network is used in the label.

• Loss function: ℒ(𝜃) = (𝑦 − 𝑄𝜃(𝑠, 𝑎))
2

Break & Quiz

Q 2.2 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action infinitely often.

• B. Perform at least 20,000 iterations.

• C. Re-start with different random initial table values.

• D. Prioritize exploitation over exploration.

Summary of RL

• Reinforcement learning setup

• Mathematical formulation: MDP

• Value functions & the Bellman equation

• Value iteration

• Q-learning

	Slide 1: CS 540 Introduction to Artificial Intelligence Reinforcement Learning II
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Key Ideas in Reinforcement Learning
	Slide 5: Back to Our General Model
	Slide 6: Markov Decision Process (MDP)
	Slide 7: Defining the Optimal Policy
	Slide 8: Discounting Rewards
	Slide 9: Example
	Slide 10: Values and Policies
	Slide 11: Obtaining the Optimal Policy
	Slide 12: Bellman Equations
	Slide 13: Example
	Slide 14: Value Iteration
	Slide 18: Q-Learning
	Slide 19: The Q*(s,a) function
	Slide 20: Q-Learning Iteration
	Slide 21: Q-Learning
	Slide 22: Exploration Vs. Exploitation
	Slide 23: Q-Learning: ε-Greedy Behavior Policy
	Slide 24: Q-learning Algorithm
	Slide 33: Q-Learning: SARSA
	Slide 34: Q-Learning Details
	Slide 35: Deep Q-Learning
	Slide 36: Deep Q-Learning
	Slide 37: Break & Quiz
	Slide 40: Summary of RL

