CS 540 Introduction to Artificial Intelligence
Reinforcement Learning Il

University of Wisconsin-Madison
Spring 2025

Announcements

« Homework:
— HW9 due on Wednesday April 2379 at 11:59 PM

* Final Exam:
— May 7th 07:45 - 09:45 AM
— Lecture 001 (MW 14:30 - 15:45): S429 Chemistry Building
— Lecture 002 (TR 11:00 - 12:15): 1220 Microbial Sciences
— Lecture 003 (TR 16:00 - 17:15): B10 Ingraham Hall

— Students with Mc Burney accommodations or alternate requests will be notified about
the exam time and location.

— More information coming soon!

- Cowrseevalustion EEGIECEMESSRGNI

Advanced Search

 Class roadmap:
P Ethics and Trust in Al

Outline

* Review of reinforcement learning setting.
— MDPs, value functions

* Bellman equations and dynamic programming
* From dynamic programming to Q-learning

Key Ideas in Reinforcement Learning

States, Actions, Transitions, Rewards,
[Define RL Problem] Markov property, discounting
Writing the value of one state in terms of
Value Bellman successor states.
Functions Equation
[Q-learning] [Value Iteratior]

Exploration vs.
Exploitation

Using values to choose optimal actions.

Back to Our General Model

We have an agent interacting with the world

\;‘% Actions m
Observations

Agent

* Agent receives a reward based on state of the world
— Goal: maximize reward / utility ($$9)

— Note: data consists of actions & observations
* Compare to unsupervised learning and supervised learning

Markov Decision Process (MDP)

The formal mathematical model:

« State setS. Initial state s, Action set A
« State transition model: P(s;11|S¢,at)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

* Reward function: r(s,)
* Policy: 7T<8> . S — A, action to take at a particular state.

ao ai az
Sop —> 81 —=> 89 —> ...

Defining the Optimal Policy

For policy t, expected utility over all possible state
sequences from s, produced by following that policy:

VT (sg) = Z P(sequence)U(sequence)

"
sequences

starting from s,

Called the value function (for 7, s;)

Discounting Rewards

One issue: these are infinite series. Convergence?
e Solution

U(so,51---) = 1(s0) +77(s1) + 77 (=) 4r(se)

t>0
* Discount factory between O and 1

— Set according to how important present is VS future
— Note: has to be less than 1 for convergence

Example

. 7]

A 10 G 100

Deterministic transitions; y = 0.8; policy
shown with red arrows.

Values and Policies

*Now that V™ (s,) is defined what a should we take?

* First, set V*(s) to be expected utility for optimal policy from s
 What's the expected utility of an action?
— Specifically, action a in state s?

ZP(S’\S,@)V*(S’)

. A BN

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
* So, to get the optimal policy, compute

7 (s) = argmax,, Z P(s's,a)V*(s")

A,

All the states we Transition Expected ol A S:\
could go to probability rewards

Credit L. Lazbenik

Bellman Equations

Let’s walk over one step for the value function:

= r(s) +7 max Z P(s'|s,a)V*(s")

L I
T |

Current state Discounted expected
reward future rewards

-
A s

Credit L. Lazbenik

Richard Bellman: Inventor of dynamic programming.'

Example

. 7]

A 10 G 100

Deterministic transitions; y = 0.8; policy
shown with red arrows.

Value Iteration

Q: how do we find V*(s)?

* Why do we want it? Can use it to get the best policy
 Know: reward r(s), transition probability P(s’|s,a)

* Also know V*(s) satisfies Bellman equation:

V*(s) = r(s) + ymax) P(s'|s,a)V*(s)

A: Use the property. Start with V,(s)=0. Then, update
Vig1(s) = r(s) +ymax Yy P(s'|s,a)V;(s')

Q-Learning

Our next reinforcement learning algorithm.
Does not require knowing r or P. Learn from data of
the form:{(s¢, a¢, 15, S¢41) }-
Learns an action-value function Q*(s,a) that tells us
the expected value of taking a in state s.

« Note: IV'*(s) = mng*(s, a).

Optimal policy is formed as m*(s) = argmaxQ™ (s, a)
a

The Q*(s,a) function

e Starting from state s, perform (perhaps suboptimal)
action a. THEN follow the optimal policy

Q"(s,a) =71(s) +yXP(s'[s,a)V"(s")
S
* Equivalent to

Q*(s,a) =7r(s) + yz;P(S’|S, a)maqu*(s’, a’)

Q-Learning lteration

How do we get Q(s,a)?

* |terative procedure
Q(Sta at) — Q(Sta at) + 04[(St) + VmC?XQ(St—I—la CL) o Q(Sta at)]

Learning rate

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Q-Learning

Estimate Q*(s,a) from data {(s¢, as, 7%, S¢+1) }:

1. Initialize Q(.,.) arbitrarily (eg all zeros)
1. Except terminal states Q(Siorminars-)=0

2. Iterate over data until Q(.,.) converges:

Q(spar) « (1 — a)Q(sg,a) + a(ry + Yy max Q(st+1, b))

/

Learning rate

Exploration Vs. Exploitation

General question!
* Exploration: take an action with unknown consequences

— Pros:
* Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

— Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

— Pros:
* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

— Cons:
* Might prevent you from discovering the true optimal strategy

Q-Learning: e-Greedy Behavior Policy

Getting data with both exploration and exploitation

* With probability €, take a random action; else the action with
the highest (current) Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > €
a =
random a € A otherwise

Q-learning Algorithm

Input: step size a, exploration probability €

1. set Q(s,a) =0 for all s, a.

2. For each episode:

3. Getinitial state s. Explore: take action to
4. While (s not a terminal state): see what happens.

Perform a = e-greedy(Q, s), receiver, s’
Q(s,a) = (1 —a)Q(s,a) + a(r + ymaxQ(s',a’))
a

Update action-value

5

6

/. S & S, based on result.
8. End While

9. End For

Q-Learning: SARSA

An alternative update rule:
e Just use the next action, no max over actions:

Qst,a1) < Q(s4,a¢) + alr(ss) +7Q(St41, ar41) — Q8¢)]

Learning rate
e C(Called state—action—reward—state—action (SARSA)
* Can use with epsilon-greedy policy

Q-Learning Details

Note: if we have a terminal state, the process ends
* An episode: a sequence of states ending at a terminal state

 Want to run on many episodes
e Slightly different Q-update for terminal states

Deep Q-Learning

How do we get Q(s,a) with a large number of states?

Convolution Convolution Fully connected Fully connec ted
- v v v

=B

= B /m
! =

g +

of] @]/ -
‘
-DD Q@ E o6& } @ wen
2

"

DD Ei o
of] E| \= =Y

Mnih et al, "Human-level control through deep reinforcement learning"

Deep Q-Learning

How do we get Q(s,a) with a large number of states?
e Deep Q-learning uses a neural network to approximate Q(s,a)

e Let Qy:S X A — R be the neural network with weights and biases
denoted 6.

e Training is similar to supervised regression:

e (s,a)asinputandy =7(s) + ymaxQq(s’,a’) as label.
a

e Note that output of the neural network is used in the label.
e Loss function: L(8) = (v — Qg (s, a))?

Break & Quiz

Q 2.2 For Q learning to converge to the true Q function, we must

* A.Visit every state and try every action infinitely often.
 B. Perform at least 20,000 iterations.

e C. Re-start with different random initial table values.

* D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.2 For Q learning to converge to the true Q function, we must

* A. Visit every state and try every action infinitely often
 B. Perform at least 20,000 iterations.

e C. Re-start with different random initial table values.

* D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.2 For Q learning to converge to the true Q function, we must

e A. Visit every state and try every action infinitely often.

* B. Perform at least 20,000 iterations. (No: this is dependent on the
particular problem, not a general constant).

e C. Re-start with different random initial table values. (No: this is not
necessary in general).

* D. Prioritize exploitation over exploration. (No: insufficient exploration
means potentially unupdated state action pairs).

Summary of RL

Reinforcement learning setup
Mathematical formulation: MDP

Value functions & the Bellman equation
Value iteration

Q-learning

	Slide 1: CS 540 Introduction to Artificial Intelligence Reinforcement Learning II
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Key Ideas in Reinforcement Learning
	Slide 5: Back to Our General Model
	Slide 6: Markov Decision Process (MDP)
	Slide 7: Defining the Optimal Policy
	Slide 8: Discounting Rewards
	Slide 9: Example
	Slide 10: Values and Policies
	Slide 11: Obtaining the Optimal Policy
	Slide 12: Bellman Equations
	Slide 13: Example
	Slide 14: Value Iteration
	Slide 18: Q-Learning
	Slide 19: The Q*(s,a) function
	Slide 20: Q-Learning Iteration
	Slide 21: Q-Learning
	Slide 22: Exploration Vs. Exploitation
	Slide 23: Q-Learning: ε-Greedy Behavior Policy
	Slide 24: Q-learning Algorithm
	Slide 33: Q-Learning: SARSA
	Slide 34: Q-Learning Details
	Slide 35: Deep Q-Learning
	Slide 36: Deep Q-Learning
	Slide 37: Break & Quiz
	Slide 38: Break & Quiz
	Slide 39: Break & Quiz
	Slide 40: Summary of RL

