

CS 540 Introduction to Artificial Intelligence Search III: Advanced Search (aka Optimization) University of Wisconsin-Madison

Spring 2025

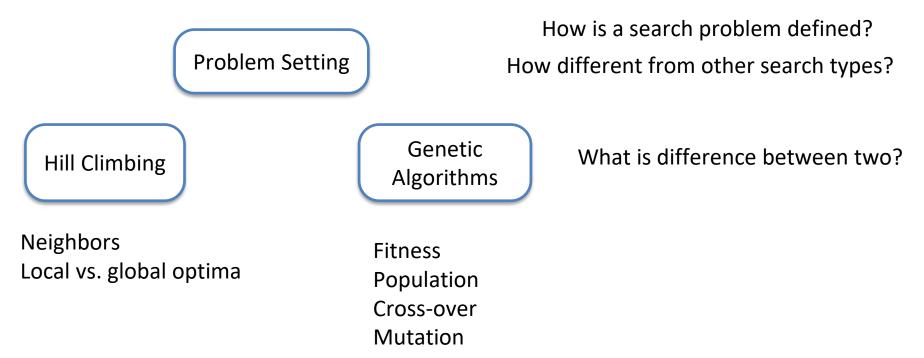
Announcements

- Homework:
 - HW10 due on Wednesday April 30th at 11:59 PM
- Final Exam:
 - May 7th 07:45 09:45 AM
 - Lecture 001 (MW 14:30 15:45): S429 Chemistry Building
 - Lecture 002 (TR 11:00 12:15): 1220 Microbial Sciences
 - Lecture 003 (TR 16:00 17:15): B10 Ingraham Hall
 - Students with Mc Burney accommodations or alternate requests will be notified about the exam time and location.
- Course evaluation
- Class roadmap:

Advanced Search

Ethics and Trust in AI

Advanced Search Overview



Outline

- Advanced Search & Hill-climbing
 - More difficult problems, basics, local optima, variations
- Simulated Annealing
 - Basic algorithm, temperature, tradeoffs
- Genetic Algorithms
 - Basics of evolution, fitness, natural selection

Search vs. Optimization

Before: wanted a **path** from start state to goal state

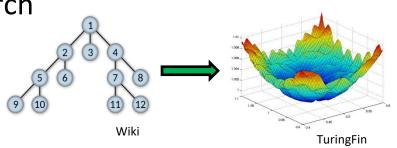
• Uninformed search, informed search

New setting: optimization

• States *s* have values *f*(*s*)

 \bullet

- Want: Find *s* with optimal value f(s) (i.e, optimize over states)
- Challenging settings: **too many states** for previous search approaches, but maybe not a differentiable function for gradient descent.

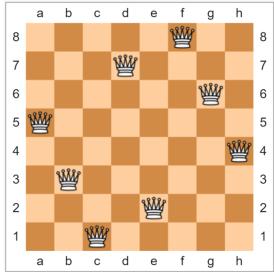


Examples: n Queens

A classic puzzle:

- Place 8 queens on 8 x 8 chessboard so that no two have same row, column, or diagonal.
- Can generalize to n x n chessboard.

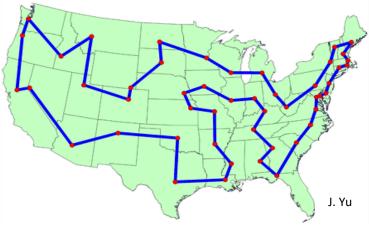
- What are states s? Values f(s)?
 - State: configuration of the board
 - f(s): # of non-conflicting queens



Examples: TSP

Famous graph theory problem.

- Get a graph G = (V,E). Goal: a path that visits each node exactly once and returns to the initial node (a tour).
 - State: a particular tour (i.e., ordered list of nodes)
 - f(s): total weight of the tour
 - (e.g., total miles traveled)



Examples: Satisfiability

Boolean satisfiability (e.g., 3-SAT)

• Recall our logic lecture. Conjunctive normal form

 $(A \lor \neg B \lor C) \land (\neg A \lor C \lor D) \land (B \lor D \lor \neg E) \land (\neg C \lor \neg D \lor \neg E) \land (\neg A \lor \neg C \lor E)$

- Goal: find if satisfactory assignment exists.
- State: assignment to variables
- f(s): # satisfied clauses

 $R(x,a,d) \wedge R(y,b,d) \wedge R(a,b,e) \wedge R(c,d,f) \wedge R(z,c,0)$

 $\begin{array}{l} R(0,a,d) \land R(0,b,d) \land R(a,b,e) \land R(c,d,f) \land R(0,c,0) \\ R(0,a,d) \land R(0,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(0,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(0,c,0) \\ R(0,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(0,c,0) \\ R(1,a,d) \land R(0,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(0,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(0,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(0,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(a,b,e) \land R(c,d,f) \land R(1,c,0) \\ R(1,a,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \\ R(1,b,d) \land R(1,b,d) \land R(1,b,d) \\ R(1,b,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \\ R(1,b,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \\ R(1,b,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \\ R(1,b,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \land R(1,b,d) \\ R(1,b,d) \land R(1,$

 $R(\neg x, a, b) \land R(b, y, c) \land R(c, d, \neg z)$

R(1,a,b)	٨	R(b,0,c)	٨	R(c,d,	1
R(1,a,b)	Λ	$R(\mathbf{b}, 0, \mathbf{c})$	Λ	R(c, d)	0
R(1,a,b)	Λ	$R(\mathbf{b}, 1, \mathbf{c})$	Λ	R(c,d)	1
R(1,a,b)	Λ	$R(\mathbf{b}, 1, \mathbf{c})$	٨	$R(\mathbf{c}, \mathbf{d})$	0
R(0,a,b)	٨	R(b, 1, c)	٨	R(c,d,	0
R(1,a,b) R(1,a,b) R(0,a,b) R(0,a,b) R(0,a,b) R(0,a,b)	V V V	R(b,1,c) R(b,1,c) R(b,0,c) R(b,0,c) R(b,1,c)	V V V	R(c,d, R(c,d, R(c,d, R(c,d, R(c,d,	1 0 1 0 1

Hill Climbing

One approach to such optimization problems

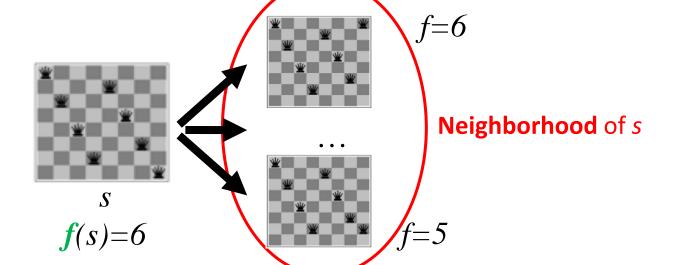
 Basic idea: start at one state, move to a neighbor with a better f(s) value, repeat until no neighbors have better f(s) value.

- **Q**: how do we define **neighbor**?
 - Not as obvious as our successors in search
 - Problem-specific
 - As we'll see, needs a careful choice

Defining Neighbors: n Queens

In n Queens, a simple possibility:

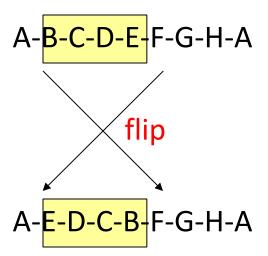
- Look at the **most-conflicting column** (ties? right-most one)
- Move queen in that column vertically to a different location

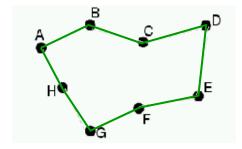


Defining Neighbors: TSP

For TSP, can do something similar:

- Define neighbors by small changes
- Example: 2-change: A-E and B-F





Defining Neighbors: SAT

For Boolean satisfiability,

• Define neighbors by flipping one assignment of one variable Starting state: (A=T, B=F, C=T, D=T, F=T)

Hill Climbing Neighbors

Q: What's a neighbor?

- Vague definition: for a given problem structure, neighbors are states that can be produced by a small change
- Tradeoff!
 - Neighborhood too small? Will get stuck.
 - Neighborhood too big? Not very efficient

- **Q**: how to pick a neighbor? Greedy
- **Q**: terminate? When no neighbor has better value

Hill Climbing Algorithm

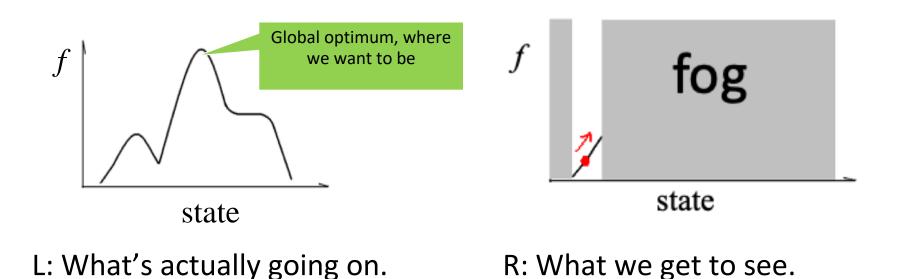
Pseudocode:

- 1. Pick initial state s
- 2. Pick t in **neighbors**(s) with the best f(t)
- 3. if f(t) is not better than f(s) THEN stop, return s
- 4. $s \leftarrow t$. goto 2.

What could happen? Local optima!

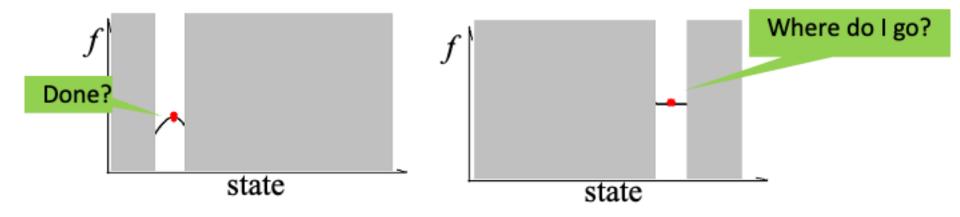
Hill Climbing: Local Optima

Q: Why is it called hill climbing?



Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?



Escaping Local Optima

Simple idea 1: random restarts

- Stuck: pick a random new starting point, re-run.
- Do *k* times, return best of the *k* runs.

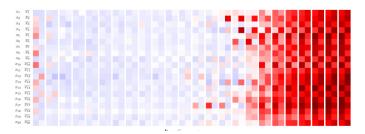
Simple idea 2: reduce greed

- "Stochastic" hill climbing: randomly select between neighbors.
- Probability of selecting a neighbor should be proportional to the value of that neighbor.

Hill Climbing: Variations

- **Q**: neighborhood too large?
- Generate random neighbors, **one at a time**. Take the better one.

- **Q**: relax requirement to always go up?
- Often useful for harder problems



Q 1.1: Hill climbing and stochastic gradient descent are related by

- (i) Both head towards optima
- (ii) Both require computing a gradient
- (iii) Both will find the global optimum for a convex problem (problem where all optima have the same value).
- A. (i)
- B. (i), (ii)
- C. (i), (iii)
- D. All of the above

Q 1.1: Hill climbing and stochastic gradient descent are related by

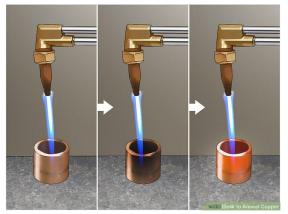
- (i) Both head towards optima
- (ii) Both require computing a gradient
- (iii) Both will find the global optimum for a convex problem (problem where all optima have the same value).
- A. (i)
- B. (i), (ii) (No: (ii) is false. Hill-climbing looks at neighbors only.)
- C. (i), (iii)
- D. All of the above

Simulated Annealing

A more sophisticated optimization approach.

- Idea: allow some downhill moves at first, then be pickier over time
- Pseudocode:

Pick initial state s; T=1 For k = 0 through K: $T \leftarrow T^*0.99$ (cool down) Pick a random neighbour $t \leftarrow$ neighbor(s) If f(t) better than f(s), then $s \leftarrow t$ Else with prob. P(f(s), f(t), T) still do $s \leftarrow t$ **Output**: the best state ever seen



wikihow.com

Simulated Annealing: Picking Probability

 $(| c() \rangle | c() |)$

How do we pick probability P? Note 3 parameters.

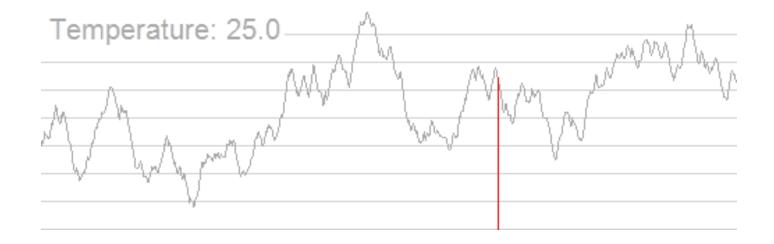
• Decrease with time

• Decrease with gap
$$|f(s) - f(t)|$$
: $exp\left(-\frac{|f(s) - f(t)|}{Temp}\right)$

- Temperature cools over time.
 - So: high temperature, accept any t
 - But, low temperature, behaves like hill-climbing
 - Still, |f(s) f(t)| plays a role: if big, replacement probability low.

Simulated Annealing: Visualization

What does it look like in practice?



Simulated Annealing: Picking Parameters

- Have to balance the various parts., e.g., cooling schedule.
 - Too fast: becomes hill climbing, stuck in local optima
 - Too slow: takes too long.
- Combines with variations (e.g., with random restarts)
 - Probably should try hill-climbing first though.

- Inspired by cooling of metals
 - We'll see one more alg. inspired by nature

Q 2.1: Which of the following is likely to give the best cooling schedule for simulated annealing?

- A. $\text{Temp}_{t+1} = \text{Temp}_t * 1.25$
- B. $Temp_{t+1} = Temp_t$
- C. $Temp_{t+1} = Temp_t * 0.8$
- D. $Temp_{t+1} = Temp_t^* 0.0001$

Q 2.1: Which of the following is likely to give the best cooling schedule for simulated annealing?

- A. $\text{Temp}_{t+1} = \text{Temp}_t * 1.25$
- B. $Temp_{t+1} = Temp_t$
- C. $Temp_{t+1} = Temp_t * 0.8$
- D. $Temp_{t+1} = Temp_t^* 0.0001$

Q 2.1: Which of the following is likely to give the best cooling schedule for simulated annealing?

- A. Temp_{t+1}= Temp_t* 1.25 (No, temperate is increasing)
- B. Temp_{t+1}= Temp_t (No, temperature is constant)
- C. $Temp_{t+1} = Temp_t * 0.8$
- D. Temp_{t+1}= Temp_t* 0.0001 (Cools too fast---basically hill climbing)

Q 2.2: Which of the following would be better to solve with hill climbing rather than A* search?

- i. Finding the smallest set of vertices in a graph that involve all edges
- ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
- iii. Finding the fastest way through a maze
- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Q 2.2: Which of the following would be better to solve with hill climbing rather than A* search?

- i. Finding the smallest set of vertices in a graph that involve all edges
- ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
- iii. Finding the fastest way through a maze
- A. (i)
- B. (ii)
- C. (i) and (ii)
- D. (ii) and (iii)

Q 2.2: Which of the following would be better to solve with hill climbing rather than A* search?

- i. Finding the smallest set of vertices in a graph that involve all edges
- ii. Finding the fastest way to schedule jobs with varying runtimes on machines with varying processing power
- iii. Finding the fastest way through a maze
- A. (i) (No, (ii) better: huge number of states, don't care about path)
- B. (ii) (No, (i) complete graph might have too many edges for A*)
- C. (i) and (ii)
- D. (ii) and (iii) (No, (iii) is good for A*: few successors, want path)

Genetic Algorithms

Optimization approach based on nature

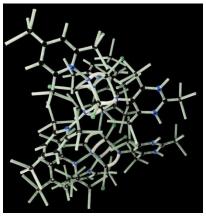
Survival of the fittest!

Evolution Review

Encode genetic information in DNA (four bases)

• A/C/T/G: nucleobases acting as symbols

- Two types of changes
 - Crossover: exchange between parents' codes
 - Mutation: rarer random process
 - Happens at individual level



Natural Selection

Competition for resources

- Organisms with better fitness → better probability of reproducing
- Repeated process: fit become larger proportion of population

Goal: use these principles for optimization

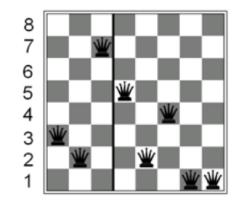
- New terminology: state is 'individual'
- Value *f*(*s*) is now the '*fitness*'

Genetic Algorithms Setup I

Keep around a fixed number of states/individuals

• Call this the **population**

For our n Queens game example, an individual:

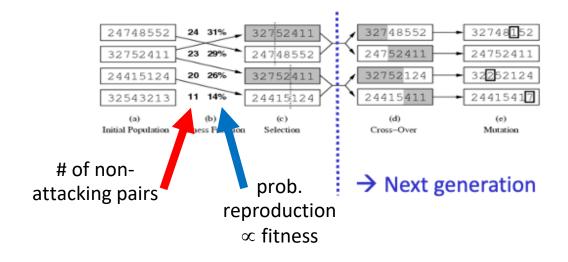


(32752411)

Genetic Algorithms Setup II

Goal of genetic algorithms: optimize using principles inspired by mechanism for evolution

• Analogous to **natural selection, cross-over**, and **mutation**



Genetic Algorithms Pseudocode

Just one variant:

- 1. Let $s_1, ..., s_N$ be the current population
- 2. Let $p_i = f(s_i) / \sum_j f(s_j)$ be the reproduction probability
- 3. for *k* = 1; *k*<*N*; *k*+=2
 - parent1 = randomly pick according to p
 - parent2 = randomly pick another
 - randomly select a crossover point, swap strings of parents 1, 2 to generate children t[k], t[k+1]
- 4. for *k* = 1; *k*<=*N*; *k*++
 - Randomly mutate each position in *t*[*k*] with a small probability (mutation rate)
- 5. The new generation replaces the old: $\{s\} \leftarrow \{t\}$. Repeat

Reproduction: Proportional Selection

Reproduction probability: $p_i = f(s_i) / \sum_j f(s_j)$

- **Example**: $\Sigma_j f(s_j) = 5+20+11+8+6=50$
- *p*₁=5/50=10%

Individual	Fitness	Prob.
Α	5	10%
В	20	40%
С	11	22%
D	8	16%
E	6	12%

Let's run through an example:

- 5 courses: A,B,C,D,E
- *3 time slots:* <u>Mon/Wed,</u> <u>Tue/Thu,</u> <u>Fri/Sat</u>
- Students wish to enroll in three courses
- Goal: maximize student enrollment

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Let's run through an example:

• State: course assignment to time slot

Μ	М	F	Т	М	
A	В	С	D	E	= MMFTM

- Here:
 - Courses A, B, E scheduled Mon/Wed
 - Course D scheduled Tue/Thu
 - Course C scheduled Fri/Sat

Courses	Students
ABC	2
ABD	7
A D E	3
BCD	4
B D E	10
C D E	5

Value of a state? Say MMFTM

Courses	Students	Can enroll?
A B C	2	No
A B D	7	No
A D E	3	No
BCD	4	Yes
B D E	10	No
C D E	5	Yes

• Here 4+5=9 students can enroll in desired courses

First step:

• Randomly initialize and evaluate states

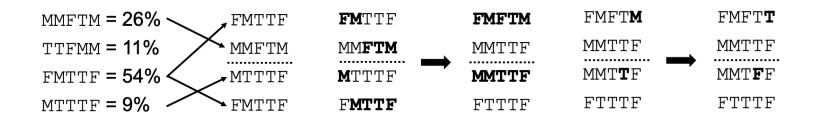
MMFTM = 9	MMFTM = 26%
TTFMM = 4	TTFMM = 11%
FMTTF = 19	FMTTF = 54%
MTTTF = 3	MTTTF = 9%

• Calculate reproduction probabilities

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Next steps:

- Select parents using reproduction probabilities
- Perform crossover
- Randomly mutate new children



Continue:

- Now, get our function values for updated population
- Calculate reproduction probabilities

FMFTT = 11 FMFTT = 39%

- MMTTF = 13 MMTTF = 46%
- MMTFF = 4 MMTFF = 14%

FTTTF = 0 FTTTF = 0%

Courses	Students
A B C	2
A B D	7
A D E	3
B C D	4
B D E	10
C D E	5

Variations & Concerns

Many **possibilities**:

- Parents survive to next generation
- Use ranking instead of exact value of *f*(*s*) for reproduction probabilities (reduce influence of extreme f values)

Some challenges

- Formulating a good state encoding
- Lack of diversity: converge too soon
- Must pick a lot of parameters

Summary

- Challenging optimization problems
 - First, try hill climbing. Simplest solution
- Simulated annealing
 - More sophisticated approach; helps with local optima
- Genetic algorithms
 - Biology-inspired optimization routine