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Announcements
• Homework: 

– HW10 due on Friday May 2nd at 11:59 PM 

• Office hours: Monday May 5th 10:30 AM – 12:30 PM

• Course evaluation ending tomorrow May 2nd

– If participation reaches 50%, 

we’ll reveal more information for the final



Final Information
• Time: May 7th 07:45 AM - 09:45 AM
• Location (by section**):

– Lecture 003 (Instructor Blerina Gkotse): B10 Ingraham Hall

• All alternate and McBurney exams have been set up,
you should have received an email with the time and location.

• Format: The final exam will be entirely multiple choice.
• Cheat Sheet: You will be allowed a cheat sheet of a single piece of paper (8.5" x 11", front and back). The 

exam will focus on conceptual and applied AI reasoning. 
• Calculator: Calculators are allowed if they don't have an internet connection. A calculator will not be 

necessary though it may be useful to double check simple arithmetic.
• Detailed topic list + practice + past exams: https://piazza.com/class/m5zvrf0clyo3sl/post/449

https://piazza.com/class/m5zvrf0clyo3sl/post/449


Neural Networks



How to classify 

Cats vs. dogs?

Single-layer 

Perceptron

Multi-layer 

Perceptron

Training of neural 

networks

Convolutional 

neural networksNeural networks can also be used for regression.

- Typically, no activation on outputs, mean squared error loss function.



Perceptron

• Given input    , weight     and bias    , perceptron outputs:

𝑜 = 𝜎 𝐰⊤𝐱 + 𝑏 𝜎(𝑥) = {
1 if 𝑥 > 0
0 otherwise

𝐱 𝐰 𝑏

Input 

Cats vs. dogs?

Activation function

Output (0 or 1)

𝑤1
𝑤2

𝑤𝑑

𝑥1

𝑥2

𝑥𝑑



Single Hidden Layer

Output 

Hidden layer 

Input 
m neurons

Cats vs. dogs?

How to classify 



𝑚 × 𝑑
𝑑 × 1

𝑚 × 1 𝑚 × 1

𝐱 ∈ ℝ𝑑

𝐖 𝐛

Element-wise 

activation function

Key elements: linear operations + Nonlinear activations

Neural networks with one hidden layer





Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

𝐱 ∈ ℝ𝑑

𝑝(𝑦|𝐱) = softmax(𝐟)

=
exp𝑓𝑦(𝑥)

∑𝑖
𝑘exp𝑓𝑖(𝑥)

Hidden layer 

Input 

m neurons

Output 

𝑓𝑘

…

𝑓1





Output 

Hidden layer 

Input 
m neurons

How to train a neural network?

Loss function: 1

|𝐷|
∑
𝑖
ℓ(𝐱𝑖 , 𝑦𝑖)

ℓ(𝐱, 𝑦) = ∑
𝑗=1

𝐾

− 𝑦𝑗log𝑝𝑗

Per-sample loss:

Also known as cross-entropy loss 
or softmax loss





How to train a neural network?

Update the weights W to minimize the loss function

𝐿 =
1

|𝐷|
∑
𝑖
ℓ(𝐱𝑖 , 𝑦𝑖)

Use gradient descent! 

Output 

Hidden layer 

Input 
m neurons



Gradient Descent

• Choose a learning rate 𝛼 > 0
• Initialize the model parameters 𝑤0
• For t =1, 2, …

• Update parameters:

𝐰𝑡 = 𝐰𝑡−1 − 𝛼
𝜕𝐿

𝜕𝐰𝑡−1

= 𝐰𝑡−1 − 𝛼
1

|𝐷|
∑
𝐱∈𝐷

𝜕ℓ(𝐱𝑖, 𝑦𝑖)

𝜕𝐰𝑡−1

• Repeat until converges

D can be very 

large. Expensive 

per iteration

𝐰0

𝐰1
𝐰2



Minibatch Stochastic Gradient Descent

• Choose a learning rate 𝛼 > 0
• Initialize the model parameters 𝑤0
• For t =1, 2, …

• Randomly sample a subset (mini-batch) 𝐵 ⊂ 𝐷
Update parameters:

𝐰𝑡 = 𝐰𝑡−1 − 𝛼
1

|𝐵|
∑
𝐱∈𝐵

𝜕ℓ(𝐱𝑖 , 𝑦𝑖)

𝜕𝐰𝑡−1

• Repeat



Numerical Stability



Gradients for Neural Networks

• Compute the gradient of the loss    w.r.t. 

𝜕ℓ

𝜕𝐖𝑡
=

𝜕ℓ

𝜕𝐡𝑑
𝜕𝐡𝑑

𝜕𝐡𝑑−1
…
𝜕𝐡𝑡+1

𝜕𝐡𝑡
𝜕𝐡𝑡

𝜕𝐖𝑡

ℓ 𝐖𝑡

Multiplication of many 

matrices

{
Wikipedia



Two Issues for Deep Neural Networks
ෑ

𝑖=𝑡

𝑑−1
𝜕𝐡𝑖+1

𝜕𝐡𝑖

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10



Issues with Gradient Exploding

• Value out of range: infinity value (NaN)

• Sensitive to learning rate (LR)

• Not small enough LR → larger gradients

• Too small LR → No progress 

• May need to change LR dramatically during training



Gradient Vanishing 

• Use sigmoid as the activation function  

𝜎(𝑥) =
1

1 + 𝑒−𝑥
𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

Small 

gradients

Small 

gradients



Issues with Gradient Vanishing

• Gradients with value 0

• No progress in training

o No matter how to choose learning rate

• Severe with bottom layers (those near the input)

o Only top layers (near output) are well trained

o No benefit to make networks deeper



How to stabilize training?



Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range

• E.g. in [1e-6, 1e3]

•  Multiplication → plus

• Architecture change (e.g., ResNet)

• Normalize

• Batch Normalization, Gradient clipping 

• Proper activation functions 



Quiz. Which of the following are TRUE about the vanishing gradient problem in neural 

networks? Multiple answers are possible.

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the 

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if 

trained with the cross-entropy loss.
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A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.
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Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following 

statement is NOT true? 

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3 

D. The gradient of ReLU is constant for positive input



Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following 

statement is NOT true? 

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3 

D. The gradient of ReLU is constant for positive input



Generalization & 

Regularization



Training Error and Generalization Error

• Training error: model error on the training data

• Generalization error: model error on new data

• Example: practice a future exam with past exams

• Doing well on past exams (training error) doesn’t 

guarantee a good score on the future exam 

(generalization error)



Influence of Model Complexity

Also known as 

“Test loss”

* Recent research has challenged this view for some types of models. 



Quiz Break: When training a neural network, 

which one below indicates that the network has 

overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.



Quiz Break: When training a neural network, 

which one below indicates that the network has 

overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.



Quiz Break: Adding more layers to a multi-layer 

perceptron may cause ______.

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.



Quiz Break: Adding more layers to a multi-layer 

perceptron may cause ______. (Multiple 

answers)

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.



Convolutional Neural 

Networks (CNNs)



How to classify 
Cats vs. dogs?

36M floats in a RGB 
image!



Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output 

Hidden layer 
Input 

100 neurons

Fully Connected Networks



• Translation 

Invariance

• Locality

Why Convolution?



2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.



2-D Convolution Layer

•                   input matrix

•     kernel matrix

• b: scalar bias

•      output matrix

• W and b are learnable parameters 

𝐘 = 𝐗 ⋆𝐖+ 𝑏

𝐗: 𝑛ℎ × 𝑛𝑤
𝐖:𝑘ℎ × 𝑘𝑤

𝐘: (𝑛ℎ − 𝑘ℎ + 1) × (𝑛𝑤 − 𝑘𝑤 + 1)



2-D Convolution Layer with Stride and Padding

• Stride is the #rows/#columns per slide

• Padding adds rows/columns around input

• Output shape

⌊(𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 𝑠ℎ)/𝑠ℎ⌋ × ⌊(𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 𝑠𝑤)/𝑠𝑤⌋

StridePad

Kernel/filter size

Input size



Multiple Input Channels

• Input and kernel can be 3D, e.g., an RGB image have 3 

channels

• Have a kernel for each channel, and then sum results over 

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)

= 56



Multiple Input Channels

• Input and kernel can be 3D, e.g., an RGB image have 3 

channels

• Have a 2D kernel for each channel, and then sum results over 

channels

One 3D kernel



Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3 

channels

• Also call each 3D kernel a “filter”, which produce only one 

output channel (due to summation over channels)

One filter 

(3 channels)

RGB (3 input channels)



Multiple filters (in one layer)

• Apply multiple filters on the input

• Each filter may learn different features about the input

• Each filter (3D kernel) produces one output channel

RGB (3 input channels)

A different filter



Multiple Output Channels

• The # of output channels = # of filters 

• Input

• Kernel

• Output 

𝐗: 𝑐𝑖 × 𝑛ℎ × 𝑛𝑤
𝐖: 𝑐𝑜 × 𝑐𝑖 × 𝑘ℎ × 𝑘𝑤

𝐘: 𝑐𝑜 ×𝑚ℎ ×𝑚𝑤

𝐘𝑖,:,: = 𝐗 ⋆𝐖𝑖,:,:,:

for 𝑖 = 1,… , 𝑐𝑜
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⌊(𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 𝑠ℎ)/𝑠ℎ⌋ × ⌊(𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 𝑠𝑤)/𝑠𝑤⌋
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Convolutional Neural Network 

Architecture

Gradient-based learning applied to document recognition, by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner



Feature Learning

Early layers recognize simple patterns

Middle layers recognize parts of objects

Later layers recognize complete objects

Adaptive Neuron Apoptosis for Accelerating Deep Learning on Large Scale Systems. Seigel et al. 2016.



LeNet Architecture

(first convolutional neural net; 1989)

Gradient-based learning applied to document recognition, 
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

85



AlexNet

86



More Differences…

• Change activation function from sigmoid to ReLu

(no more vanishing gradient)

Saturating gradients

87



• Change activation function from sigmoid to ReLu

(no more vanishing gradient)

• Data augmentation

More Differences…

88



Simple Idea: Add More Layers

VGG: 19 layers. ResNet: 152 layers. Add more layers… 

sufficient?

• No! Some problems:

– i) Vanishing gradients: more layers ➔ more likely

– ii) Instability: deeper models are harder to optimize

Reflected in training error:

He et al: “Deep Residual Learning for Image Recognition”



Idea: Identity might be hard to learn, but zero is 

easy!

• Make all the weights tiny, produces zero for output

• Can easily transform learning identity to learning zero:

x

f(x)

Residual Connections

f(x)

x

+f(x) + x

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now 
need to learn f(x) = 0 ➔ easier



Uninformed Search



92

Breadth-first search (BFS)

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN)

→ [A] →

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN)

→ [CB] → A

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN)

→ [EDC] → B

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree
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Breadth-first search (BFS)

queue (fringe, OPEN)

[GFED] → C

If G is a goal, we've seen it, but we don't stop!

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree



97

Breadth-first search (BFS)

queue

[] →G 

... until much later we pop G.

 

Looking foolish? 

Indeed.  But let’s 

be consistent…

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile

Search tree
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Breadth-first search (BFS)

queue

[] →G 

... until much later we pop G.

We need back pointers to recover the solution path.

Looking foolish? 

Indeed.  But let’s 

be consistent…

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3.     s = de_queue()

4.     if (s==goal) success!

5.     T = succs(s)

6.     en_queue(T)

7. endWhile

Search tree
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Performance of search algorithms on trees

O(bd)O(bd)Y, if 1Y
Breadth-first 

search

spacetimeoptimalComplete

1.   Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth
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Uniform-cost search

• Find the least-cost goal

• Each node has a path cost from start (= sum of edge 

costs along the path).

• Expand the least cost node first.

• Use a priority queue instead of a normal queue

▪ Always take out the least cost item
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Example

S

A B C

D E G

1

5
8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

1: (S,0), [(A,1), (B,5), (C,8)]

2: (A,1), [(B,5), (C,8), (D,4), (E,8), 

(G,10)]

3: (D,4), [(B,5), (C,8), (E,8), (G,10)]

4: (B,5), [(C,8), (E,8), (G,9)]

5: (C,8), [(E,8), (G,9)]

6: (E,8), [(G,9)]

7: (G,9), []: Success!
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Performance of search algorithms on trees

O(bC*/)O(bC*/)YY
Uniform-cost 

search2

O(bd)O(bd)Y, if 1Y
Breadth-first 

search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth
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Depth-first search (DFS)

Use a stack (First-in Last-out)

1. push(Initial states)

2. While (stack not empty)

3.     s = pop()

4.     if (s==goal) success!

5.     T = succs(s)

6.     push(T)

7. endWhile

stack (fringe)

1. A, [B, C]

2. B, [D, E, C]

3. D, [E, C]

4. E, [C]

5. C, [F, G]

6. F, [G]

7. G
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Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first 

search

O(bC*/)O(bC*/)YY
Uniform-cost 

search2

O(bd)O(bd)Y, if 1Y
Breadth-first 

search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth
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Iterative deepening

• Search proceeds like BFS, but fringe is like DFS

▪ Complete, optimal like BFS

▪ Small space complexity like DFS

▪ Time complexity like BFS

• Preferred uninformed search method
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Example

S

A B C

D E G

1

5
8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)
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Nodes expanded by:

• Breadth-First Search: S A B C D E G

Solution found: S A G

• Uniform-Cost Search: S A D B C E G

Solution found: S B G (This is the only uninformed search that 

worries about costs.)

• Depth-First Search: S A D E G

Solution found: S A G

• Iterative-Deepening Search: S A B C S A D E G

Solution found: S A G 
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Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first 

search

O(bC*/)O(bC*/)YY
Uniform-cost 

search2

O(bd)O(bd)Y, if 1Y
Breadth-first 

search

O(bd)O(bd)Y, if 1Y
Iterative 

deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0.  C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth



Informed Search



Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to node s

• Successors.

Informed search. Know:
• All uninformed search properties, plus

• Heuristic h(s) from s to goal (recall game heuristic)

start
s

goal
g(s)

start s
goal

g(s) h(s)



Attempt 2: A Search

Next approach: use both g(s) + h(s)
• Specifically, expand state with smallest g(s) + h(s) 

• Again, use a priority queue

• Called “A” search

• Still not optimal! 

BA GC

h=3      h=1000    h=1        h=0
1             1            1

999



Attempt 3: A* Search

Same idea, use g(s) + h(s), with one 
requirement 

• Demand that h(s)  h*(s) where h*(s) is true cost 
from s to goal.

• If heuristic has this property, it is called 
“admissible”
– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

• This is A* search



Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=inf 



Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8 

h=7 h=4 h=3 

h=0 h=inf h=inf 

OPEN

S(0+8)

A(1+7) B(5+4) C(8+3)

B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)

C(8+3) D(4+inf) E(8+inf) G(9+0)

C(8+3) D(4+inf) E(8+inf)

CLOSED

-

S(0+8)

S(0+8) A(1+7)

S(0+8) A(1+7) B(5+4)

S(0+8) A(1+7) B(5+4) G(9+0)

G → B → S



Break & Quiz

Q 1.2: Which of the following are admissible heuristics?

i.  h(s) = h*(s)

ii.  h(s) = max(2, h*(s)) 

iii.  h(s) = min(2, h*(s))

iv.  h(s) = h*(s)-2

v.  h(s) = sqrt(h*(s))

• A. All of the above

• B. (i), (iii), (iv)

• C. (i), (iii)

• D. (i), (iii), (v)
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Break & Quiz

Q 1.2: Which of the following are admissible heuristics?

i.  h(s) = h*(s) 

ii.  h(s) = max(2, h*(s)) No: h(s) might be too big

iii.  h(s) = min(2, h*(s))

iv.  h(s) = h*(s)-2 No: h(s) might be negative

v.  h(s) = sqrt(h*(s)) No: if h*(s) < 1 then h(s) is bigger

• A. All of the above

• B. (i), (iii), (iv)

• C. (i), (iii)

• D. (i), (iii), (v)



Games



Games Setup

Games setup: multiple agents

– Now: interactions between agents

– Still want to maximize utility

– Strategic decision making.

World

Player 1

Player 2

Player 3



Mathematical description of simultaneous games. 

• n players {1,2,…,n}

• Player i chooses strategy ai from action space Ai. 

• Strategy profile: a = (a1, a2, …, an)

• Player i gets rewards ui (a)

– Note: reward depends on other players!

• We consider the simple case where all reward 
functions are common knowledge.

Normal Form Game



Ex: Prisoner’s Dilemma

•2 players, 2 actions: yields 2x2 payoff matrix

•Strategy set: {Stay silent, betray} 

Example of Normal Form Game

Player 2

Player 1

Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2



Let’s analyze such games. Some strategies are 

better than others!

• Strictly dominant strategy: if ai strictly better than b 

regardless of what other players do, ai is strictly 

dominant

• I.e., 𝑢𝑖 𝑎𝑖 , 𝑎−𝑖 > 𝑢𝑖(𝑏, 𝑎−𝑖), ∀𝑏 ≠ 𝑎𝑖 , ∀𝑎−𝑖

• Sometimes a dominant strategy does not exist!

Strictly Dominant Strategies

All of the other entries of a 

excluding i



a* is a (strictly) dominant strategy equilibrium 

(DSE), if every player i has a strictly dominant 

strategy 𝑎𝑖
∗

• Rational players will play at DSE, if one exists.

Dominant Strategy Equilibrium

Player 2

Player 1

Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2



Break & Quiz
Two firms, A and B, are deciding whether to launch a new product. Each firm can 
either launch or not launch. Their profits depend on their choices, and the payoff 
matrix is as follows:

What is the strictly dominant strategy for each firm:

i. A’s dominant strategy is to launch, and B’s dominant strategy is not to launch.

ii. A’s dominant strategy is to launch, and B’s dominant strategy is to launch.

iii. A’s dominant strategy is not to launch, and B’s dominant strategy is to launch.

iv. A’s dominant strategy is not to launch, and B’s dominant strategy is not to launch.

B: Launch B: Not Launch

A: Lauch (20, 20) (40, 10)

A: Not Lauch (10, 40) (30, 30)



Break & Quiz
Two firms, A and B, are deciding whether to launch a new product. Each firm can 
either launch or not launch. Their profits depend on their choices, and the payoff 
matrix is as follows:

What is the strictly dominant strategy for each firm:

i. A’s dominant strategy is to launch, and B’s dominant strategy is not to launch.

ii. A’s dominant strategy is to launch, and B’s dominant strategy is to launch.

iii. A’s dominant strategy is not to launch, and B’s dominant strategy is to launch.

iv. A’s dominant strategy is not to launch, and B’s dominant strategy is not to launch.

B: Launch B: Not Launch

A: Lauch (20, 20) (40, 10)

A: Not Lauch (10, 40) (30, 30)



Dominant Strategy Equilibrium does not always 

exist.

Dominant Strategy Equilibrium

Player 2

Player 1

L R

T 2, 1 0, 0

B 0, 0 1, 2



a* is a Nash equilibrium if no player has an 

incentive to unilaterally deviate

Nash Equilibrium

Player 2

Player 1

L R

T 2, 1 0, 0

B 0, 0 1, 2



a* is a Nash equilibrium: 

               ∀𝑖, ∀𝑏 ∈ 𝐴𝑖: 𝑢𝑖(𝑎𝑖
∗, 𝑎−𝑖

∗ ) ≥ 𝑢𝑖(𝑏, 𝑎−𝑖
∗ )

 (no player has an incentive to unilaterally deviate)

• Pure Nash equilibrium:

• A pure strategy is a deterministic choice (no 

randomness).

• Later: we will consider mixed strategies

• In pure Nash equilibrium, players can only play 

pure strategies.

Nash Equilibrium: Best Response to Each Other



So far, pure strategy: each player picks a 

deterministic strategy.  But:

Pure Nash Equilibrium may not exist

Player 2

Player 1

rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0



Can also randomize actions: “mixed”
• Player i assigns probabilities xi to each action

• Now consider expected rewards

Mixed Strategies

𝑢𝑖 𝑥𝑖 , 𝑥−𝑖 = 𝐸𝑎𝑖~𝑥𝑖,𝑎−𝑖~𝑥−𝑖𝑢𝑖 𝑎𝑖 , 𝑎−𝑖 =෍

𝑎𝑖

෍

𝑎−𝑖

𝑥𝑖 𝑎𝑖 𝑥−𝑖 𝑎−𝑖 𝑢𝑖 𝑎𝑖 , 𝑎−𝑖



Example:  𝑥1
∗(⋅) = 𝑥2

∗(⋅) =
1

3
,
1

3
,
1

3

Mixed Strategy Nash Equilibrium

Player 2

Player 1

rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0



Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form

• Represent with a tree

• Rewards at leaves

• Find strategies: perform search over the tree

• Nash equilibrium still well-defined
– Backward induction 

Wiki
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Minimax algorithm in execution
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Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves. 
Player B goes next and has 3 moves. Player A goes next and has 2 
moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination 
nodes (leaves)? 

• A. 23

• B. 65

• C. 41

• D. 2
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Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves. 
Player B goes next and has 3 moves. Player A goes next and has 2 
moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination 
nodes (leaves)? 

• A. 23

• B. 65 (1 + 4 + 4*3 + 4*3*2 + 4*3*2 = 65. Note the root and leaf 
nodes.)

• C. 41

• D. 2



Reinforcement Learning



Building The Theoretical Model

Basic setup:
• Set of states, S

• Set of actions A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”



Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at, 

and not previous actions or states. 

• Reward function: r(st)

• Policy:                           , action to take at a particular state. 



Discounting Rewards

One issue: these are infinite series. Convergence?

• Solution

• Discount factor γ between 0 and 1
– Set according to how important present is VS future

– Note: has to be less than 1 for convergence



Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we 
could go to

Transition 
probability 

Expected 
rewards

Credit L. Lazbenik



Bellman Equations

Let’s walk over one step for the value function:

Discounted expected 
future rewards

Current state 
reward

Credit L. Lazbenik

Richard Bellman: Inventor of dynamic programming.



Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at 

current state and “move” to  other state. Let r be the reward function 

such that r(A) = 1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) 

= π(B) = move (i.e., an “always move” policy). What is the value 

function 𝑉𝜋(𝐴)?

• A. 0

• B. 1 / (1 -𝛾)

• C. 1 / (1 -𝛾2)

• D. 1
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Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at 

current state and “move” to  other state. Let r be the reward function 

such that r(A) = 1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) 

= π(B) = move (i.e., an “always move” policy). What is the value 

function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2) (States: A,B,A,B,… rewards 1,0, 𝛾2,0, 𝛾4,0, …)

• D. 1



Example

A 10

B 20 C 20

G 100

Deterministic transitions; 𝛾 = 0.8; policy 

shown with red arrows.



Break & Quiz
Supposed you have the following information about an environment:

1. The discount factor is 0.8

2. The reward in s1 taking action α1 is 3

3. The transition probabilities are: P(s2|s1, α1) = 0.6 and P(s3|s1, α1) = 0.4 

Currently, V(s2) = 10 and V(s3) = 6

Remember the update for value iteration is 

After a single iteration of value iteration, what is the value for state s1 (what is V (s1))?

A. 8

B. 10

C. 12

D. 14

E. None of the above 



Break & Quiz
Supposed you have the following information about an environment:

1. The discount factor is 0.8

2. The reward in s1 taking action α1 is 3

3. The transition probabilities are: P(s2|s1, α1) = 0.6 and P(s3|s1, α1) = 0.4 
Currently, V(s2) = 10 and V(s3) = 6
Remember the update for value iteration is 

After a single iteration of value iteration, what is the value for state s1 (what is V(s1))?

Choose the closest option.

A. 8

B. 10                 V (s1) = 3 + 0.8(0.6 × 10 + 0.4 × 6) = 9.72 = 10

C. 12

D. 14

E. None of the above 



Q-Learning

• Our next reinforcement learning algorithm.

• Does not require knowing r or P. Learn from data of 

the form:{(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}.
• Learns an action-value function Q*(s,a) that tells us 

the expected value of taking a in state s.

• Note: 𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎).

• Optimal policy is formed as 𝜋∗(𝑠) = arg𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎)



Q-Learning

Learning rate



Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation
• With probability ε, take a random action; else the action with 

the highest (current) Q(s,a) value.



Thank you and good luck! 
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