
CS 540 Introduction to Artificial Intelligence
Review

University of Wisconsin-Madison
Spring 2025

Announcements
• Homework:

– HW10 due on Friday May 2nd at 11:59 PM

• Office hours: Monday May 5th 10:30 AM – 12:30 PM

• Course evaluation ending tomorrow May 2nd

– If participation reaches 50%,

we’ll reveal more information for the final

Final Information
• Time: May 7th 07:45 AM - 09:45 AM
• Location (by section**):

– Lecture 003 (Instructor Blerina Gkotse): B10 Ingraham Hall

• All alternate and McBurney exams have been set up,
you should have received an email with the time and location.

• Format: The final exam will be entirely multiple choice.
• Cheat Sheet: You will be allowed a cheat sheet of a single piece of paper (8.5" x 11", front and back). The

exam will focus on conceptual and applied AI reasoning.
• Calculator: Calculators are allowed if they don't have an internet connection. A calculator will not be

necessary though it may be useful to double check simple arithmetic.
• Detailed topic list + practice + past exams: https://piazza.com/class/m5zvrf0clyo3sl/post/449

https://piazza.com/class/m5zvrf0clyo3sl/post/449

Neural Networks

How to classify

Cats vs. dogs?

Single-layer

Perceptron

Multi-layer

Perceptron

Training of neural

networks

Convolutional

neural networksNeural networks can also be used for regression.

- Typically, no activation on outputs, mean squared error loss function.

Perceptron

• Given input , weight and bias , perceptron outputs:

𝑜 = 𝜎 𝐰⊤𝐱 + 𝑏 𝜎(𝑥) = {
1 if 𝑥 > 0
0 otherwise

𝐱 𝐰 𝑏

Input

Cats vs. dogs?

Activation function

Output (0 or 1)

𝑤1
𝑤2

𝑤𝑑

𝑥1

𝑥2

𝑥𝑑

Single Hidden Layer

Output

Hidden layer

Input
m neurons

Cats vs. dogs?

How to classify

𝑚 × 𝑑
𝑑 × 1

𝑚 × 1 𝑚 × 1

𝐱 ∈ ℝ𝑑

𝐖 𝐛

Element-wise

activation function

Key elements: linear operations + Nonlinear activations

Neural networks with one hidden layer

Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

𝐱 ∈ ℝ𝑑

𝑝(𝑦|𝐱) = softmax(𝐟)

=
exp𝑓𝑦(𝑥)

∑𝑖
𝑘exp𝑓𝑖(𝑥)

Hidden layer

Input

m neurons

Output

𝑓𝑘

…

𝑓1

Output

Hidden layer

Input
m neurons

How to train a neural network?

Loss function: 1

|𝐷|
∑
𝑖
ℓ(𝐱𝑖 , 𝑦𝑖)

ℓ(𝐱, 𝑦) = ∑
𝑗=1

𝐾

− 𝑦𝑗log𝑝𝑗

Per-sample loss:

Also known as cross-entropy loss
or softmax loss

How to train a neural network?

Update the weights W to minimize the loss function

𝐿 =
1

|𝐷|
∑
𝑖
ℓ(𝐱𝑖 , 𝑦𝑖)

Use gradient descent!

Output

Hidden layer

Input
m neurons

Gradient Descent

• Choose a learning rate 𝛼 > 0
• Initialize the model parameters 𝑤0
• For t =1, 2, …

• Update parameters:

𝐰𝑡 = 𝐰𝑡−1 − 𝛼
𝜕𝐿

𝜕𝐰𝑡−1

= 𝐰𝑡−1 − 𝛼
1

|𝐷|
∑
𝐱∈𝐷

𝜕ℓ(𝐱𝑖, 𝑦𝑖)

𝜕𝐰𝑡−1

• Repeat until converges

D can be very

large. Expensive

per iteration

𝐰0

𝐰1
𝐰2

Minibatch Stochastic Gradient Descent

• Choose a learning rate 𝛼 > 0
• Initialize the model parameters 𝑤0
• For t =1, 2, …

• Randomly sample a subset (mini-batch) 𝐵 ⊂ 𝐷
Update parameters:

𝐰𝑡 = 𝐰𝑡−1 − 𝛼
1

|𝐵|
∑
𝐱∈𝐵

𝜕ℓ(𝐱𝑖 , 𝑦𝑖)

𝜕𝐰𝑡−1

• Repeat

Numerical Stability

Gradients for Neural Networks

• Compute the gradient of the loss w.r.t.

𝜕ℓ

𝜕𝐖𝑡
=

𝜕ℓ

𝜕𝐡𝑑
𝜕𝐡𝑑

𝜕𝐡𝑑−1
…
𝜕𝐡𝑡+1

𝜕𝐡𝑡
𝜕𝐡𝑡

𝜕𝐖𝑡

ℓ 𝐖𝑡

Multiplication of many

matrices

{
Wikipedia

Two Issues for Deep Neural Networks
ෑ

𝑖=𝑡

𝑑−1
𝜕𝐡𝑖+1

𝜕𝐡𝑖

Gradient Exploding Gradient Vanishing

1.5100 ≈ 4 × 1017 0.8100 ≈ 2 × 10−10

Issues with Gradient Exploding

• Value out of range: infinity value (NaN)

• Sensitive to learning rate (LR)

• Not small enough LR → larger gradients

• Too small LR → No progress

• May need to change LR dramatically during training

Gradient Vanishing

• Use sigmoid as the activation function

𝜎(𝑥) =
1

1 + 𝑒−𝑥
𝜎′(𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))

Small

gradients

Small

gradients

Issues with Gradient Vanishing

• Gradients with value 0

• No progress in training

o No matter how to choose learning rate

• Severe with bottom layers (those near the input)

o Only top layers (near output) are well trained

o No benefit to make networks deeper

How to stabilize training?

Stabilize Training: Practical Considerations

• Goal: make sure gradient values are in a proper range

• E.g. in [1e-6, 1e3]

• Multiplication → plus

• Architecture change (e.g., ResNet)

• Normalize

• Batch Normalization, Gradient clipping

• Proper activation functions

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural

networks? Multiple answers are possible.

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Which of the following are TRUE about the vanishing gradient problem in neural

networks? Multiple answers are possible?

A.Deeper neural networks tend to be more susceptible to vanishing gradients.

B.Using the ReLU function can reduce this problem.

C. If a network has the vanishing gradient problem for one training point due to the

sigmoid function, it will also have a vanishing gradient for every other training point.

D. Networks with sigmoid functions don’t suffer from the vanishing gradient problem if

trained with the cross-entropy loss.

Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following

statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following

statement is NOT true?

A. Sigmoid function is more expensive to compute

B. ReLU has non-zero gradient everywhere

C. The gradient of Sigmoid is always less than 0.3

D. The gradient of ReLU is constant for positive input

Generalization &

Regularization

Training Error and Generalization Error

• Training error: model error on the training data

• Generalization error: model error on new data

• Example: practice a future exam with past exams

• Doing well on past exams (training error) doesn’t

guarantee a good score on the future exam

(generalization error)

Influence of Model Complexity

Also known as

“Test loss”

* Recent research has challenged this view for some types of models.

Quiz Break: When training a neural network,

which one below indicates that the network has

overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.

Quiz Break: When training a neural network,

which one below indicates that the network has

overfit the training data?

A. Training loss is low and generalization loss is high.

B. Training loss is low and generalization loss is low.

C. Training loss is high and generalization loss is high.

D. Training loss is high and generalization loss is low.

E. None of these.

Quiz Break: Adding more layers to a multi-layer

perceptron may cause ______.

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.

Quiz Break: Adding more layers to a multi-layer

perceptron may cause ______. (Multiple

answers)

A. Vanishing gradients during back propagation.

B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.

Convolutional Neural

Networks (CNNs)

How to classify
Cats vs. dogs?

36M floats in a RGB
image!

Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output

Hidden layer
Input

100 neurons

Fully Connected Networks

• Translation

Invariance

• Locality

Why Convolution?

2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.

2-D Convolution Layer

• input matrix

• kernel matrix

• b: scalar bias

• output matrix

• W and b are learnable parameters

𝐘 = 𝐗 ⋆𝐖+ 𝑏

𝐗: 𝑛ℎ × 𝑛𝑤
𝐖:𝑘ℎ × 𝑘𝑤

𝐘: (𝑛ℎ − 𝑘ℎ + 1) × (𝑛𝑤 − 𝑘𝑤 + 1)

2-D Convolution Layer with Stride and Padding

• Stride is the #rows/#columns per slide

• Padding adds rows/columns around input

• Output shape

⌊(𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 𝑠ℎ)/𝑠ℎ⌋ × ⌊(𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 𝑠𝑤)/𝑠𝑤⌋

StridePad

Kernel/filter size

Input size

Multiple Input Channels

• Input and kernel can be 3D, e.g., an RGB image have 3

channels

• Have a kernel for each channel, and then sum results over

channels

(1 × 1 + 2 × 2 + 4 × 3 + 5 × 4)
+(0 × 0 + 1 × 1 + 3 × 2 + 4 × 3)

= 56

Multiple Input Channels

• Input and kernel can be 3D, e.g., an RGB image have 3

channels

• Have a 2D kernel for each channel, and then sum results over

channels

One 3D kernel

Multiple Input Channels
• Input and kernel can be 3D, e.g., an RGB image have 3

channels

• Also call each 3D kernel a “filter”, which produce only one

output channel (due to summation over channels)

One filter

(3 channels)

RGB (3 input channels)

Multiple filters (in one layer)

• Apply multiple filters on the input

• Each filter may learn different features about the input

• Each filter (3D kernel) produces one output channel

RGB (3 input channels)

A different filter

Multiple Output Channels

• The # of output channels = # of filters

• Input

• Kernel

• Output

𝐗: 𝑐𝑖 × 𝑛ℎ × 𝑛𝑤
𝐖: 𝑐𝑜 × 𝑐𝑖 × 𝑘ℎ × 𝑘𝑤

𝐘: 𝑐𝑜 ×𝑚ℎ ×𝑚𝑤

𝐘𝑖,:,: = 𝐗 ⋆𝐖𝑖,:,:,:

for 𝑖 = 1,… , 𝑐𝑜

80

⌊(𝑛ℎ − 𝑘ℎ + 𝑝ℎ + 𝑠ℎ)/𝑠ℎ⌋ × ⌊(𝑛𝑤 − 𝑘𝑤 + 𝑝𝑤 + 𝑠𝑤)/𝑠𝑤⌋

81

Convolutional Neural Network

Architecture

Gradient-based learning applied to document recognition, by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

Feature Learning

Early layers recognize simple patterns

Middle layers recognize parts of objects

Later layers recognize complete objects

Adaptive Neuron Apoptosis for Accelerating Deep Learning on Large Scale Systems. Seigel et al. 2016.

LeNet Architecture

(first convolutional neural net; 1989)

Gradient-based learning applied to document recognition,
by Y. LeCun, L. Bottou, Y. Bengio and P. Haffner

85

AlexNet

86

More Differences…

• Change activation function from sigmoid to ReLu

(no more vanishing gradient)

Saturating gradients

87

• Change activation function from sigmoid to ReLu

(no more vanishing gradient)

• Data augmentation

More Differences…

88

Simple Idea: Add More Layers

VGG: 19 layers. ResNet: 152 layers. Add more layers…

sufficient?

• No! Some problems:

– i) Vanishing gradients: more layers ➔ more likely

– ii) Instability: deeper models are harder to optimize

Reflected in training error:

He et al: “Deep Residual Learning for Image Recognition”

Idea: Identity might be hard to learn, but zero is

easy!

• Make all the weights tiny, produces zero for output

• Can easily transform learning identity to learning zero:

x

f(x)

Residual Connections

f(x)

x

+f(x) + x

Left: Conventional layers block

Right: Residual layer block

To learn identity f(x) = x, layers now
need to learn f(x) = 0 ➔ easier

Uninformed Search

92

Breadth-first search (BFS)

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

93

Breadth-first search (BFS)

queue (fringe, OPEN)

→ [A] →

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

94

Breadth-first search (BFS)

queue (fringe, OPEN)

→ [CB] → A

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

95

Breadth-first search (BFS)

queue (fringe, OPEN)

→ [EDC] → B

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

96

Breadth-first search (BFS)

queue (fringe, OPEN)

[GFED] → C

If G is a goal, we've seen it, but we don't stop!

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

97

Breadth-first search (BFS)

queue

[] →G

... until much later we pop G.

Looking foolish?

Indeed. But let’s

be consistent…

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Search tree

98

Breadth-first search (BFS)

queue

[] →G

... until much later we pop G.

We need back pointers to recover the solution path.

Looking foolish?

Indeed. But let’s

be consistent…

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Search tree

99

Performance of search algorithms on trees

O(bd)O(bd)Y, if 1Y
Breadth-first

search

spacetimeoptimalComplete

1. Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth

100

Uniform-cost search

• Find the least-cost goal

• Each node has a path cost from start (= sum of edge

costs along the path).

• Expand the least cost node first.

• Use a priority queue instead of a normal queue

▪ Always take out the least cost item

101

Example

S

A B C

D E G

1

5
8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

1: (S,0), [(A,1), (B,5), (C,8)]

2: (A,1), [(B,5), (C,8), (D,4), (E,8),

(G,10)]

3: (D,4), [(B,5), (C,8), (E,8), (G,10)]

4: (B,5), [(C,8), (E,8), (G,9)]

5: (C,8), [(E,8), (G,9)]

6: (E,8), [(G,9)]

7: (G,9), []: Success!

102

Performance of search algorithms on trees

O(bC*/)O(bC*/)YY
Uniform-cost

search2

O(bd)O(bd)Y, if 1Y
Breadth-first

search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth

103

Depth-first search (DFS)

Use a stack (First-in Last-out)

1. push(Initial states)

2. While (stack not empty)

3. s = pop()

4. if (s==goal) success!

5. T = succs(s)

6. push(T)

7. endWhile

stack (fringe)

1. A, [B, C]

2. B, [D, E, C]

3. D, [E, C]

4. E, [C]

5. C, [F, G]

6. F, [G]

7. G

104

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first

search

O(bC*/)O(bC*/)YY
Uniform-cost

search2

O(bd)O(bd)Y, if 1Y
Breadth-first

search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

105

Iterative deepening

• Search proceeds like BFS, but fringe is like DFS

▪ Complete, optimal like BFS

▪ Small space complexity like DFS

▪ Time complexity like BFS

• Preferred uninformed search method

106

Example

S

A B C

D E G

1

5
8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

107

Nodes expanded by:

• Breadth-First Search: S A B C D E G

Solution found: S A G

• Uniform-Cost Search: S A D B C E G

Solution found: S B G (This is the only uninformed search that

worries about costs.)

• Depth-First Search: S A D E G

Solution found: S A G

• Iterative-Deepening Search: S A B C S A D E G

Solution found: S A G

108

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first

search

O(bC*/)O(bC*/)YY
Uniform-cost

search2

O(bd)O(bd)Y, if 1Y
Breadth-first

search

O(bd)O(bd)Y, if 1Y
Iterative

deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

Informed Search

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to node s

• Successors.

Informed search. Know:
• All uninformed search properties, plus

• Heuristic h(s) from s to goal (recall game heuristic)

start
s

goal
g(s)

start s
goal

g(s) h(s)

Attempt 2: A Search

Next approach: use both g(s) + h(s)
• Specifically, expand state with smallest g(s) + h(s)

• Again, use a priority queue

• Called “A” search

• Still not optimal!

BA GC

h=3 h=1000 h=1 h=0
1 1 1

999

Attempt 3: A* Search

Same idea, use g(s) + h(s), with one
requirement

• Demand that h(s)  h*(s) where h*(s) is true cost
from s to goal.

• If heuristic has this property, it is called
“admissible”
– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

• This is A* search

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

Recap and Examples

Example for A*: S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0 h=inf h=inf

OPEN

S(0+8)

A(1+7) B(5+4) C(8+3)

B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)

C(8+3) D(4+inf) E(8+inf) G(9+0)

C(8+3) D(4+inf) E(8+inf)

CLOSED

-

S(0+8)

S(0+8) A(1+7)

S(0+8) A(1+7) B(5+4)

S(0+8) A(1+7) B(5+4) G(9+0)

G → B → S

Break & Quiz

Q 1.2: Which of the following are admissible heuristics?

i. h(s) = h*(s)

ii. h(s) = max(2, h*(s))

iii. h(s) = min(2, h*(s))

iv. h(s) = h*(s)-2

v. h(s) = sqrt(h*(s))

• A. All of the above

• B. (i), (iii), (iv)

• C. (i), (iii)

• D. (i), (iii), (v)

Break & Quiz

Q 1.2: Which of the following are admissible heuristics?

i. h(s) = h*(s)

ii. h(s) = max(2, h*(s))

iii. h(s) = min(2, h*(s))

iv. h(s) = h*(s)-2

v. h(s) = sqrt(h*(s))

• A. All of the above

• B. (i), (iii), (iv)

• C. (i), (iii)

• D. (i), (iii), (v)

Break & Quiz

Q 1.2: Which of the following are admissible heuristics?

i. h(s) = h*(s)

ii. h(s) = max(2, h*(s)) No: h(s) might be too big

iii. h(s) = min(2, h*(s))

iv. h(s) = h*(s)-2 No: h(s) might be negative

v. h(s) = sqrt(h*(s)) No: if h*(s) < 1 then h(s) is bigger

• A. All of the above

• B. (i), (iii), (iv)

• C. (i), (iii)

• D. (i), (iii), (v)

Games

Games Setup

Games setup: multiple agents

– Now: interactions between agents

– Still want to maximize utility

– Strategic decision making.

World

Player 1

Player 2

Player 3

Mathematical description of simultaneous games.

• n players {1,2,…,n}

• Player i chooses strategy ai from action space Ai.

• Strategy profile: a = (a1, a2, …, an)

• Player i gets rewards ui (a)

– Note: reward depends on other players!

• We consider the simple case where all reward
functions are common knowledge.

Normal Form Game

Ex: Prisoner’s Dilemma

•2 players, 2 actions: yields 2x2 payoff matrix

•Strategy set: {Stay silent, betray}

Example of Normal Form Game

Player 2

Player 1

Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2

Let’s analyze such games. Some strategies are

better than others!

• Strictly dominant strategy: if ai strictly better than b

regardless of what other players do, ai is strictly

dominant

• I.e., 𝑢𝑖 𝑎𝑖 , 𝑎−𝑖 > 𝑢𝑖(𝑏, 𝑎−𝑖), ∀𝑏 ≠ 𝑎𝑖 , ∀𝑎−𝑖

• Sometimes a dominant strategy does not exist!

Strictly Dominant Strategies

All of the other entries of a

excluding i

a* is a (strictly) dominant strategy equilibrium

(DSE), if every player i has a strictly dominant

strategy 𝑎𝑖
∗

• Rational players will play at DSE, if one exists.

Dominant Strategy Equilibrium

Player 2

Player 1

Stay silent Betray

Stay silent −1, −1 −3, 0

Betray 0, −3 −2, −2

Break & Quiz
Two firms, A and B, are deciding whether to launch a new product. Each firm can
either launch or not launch. Their profits depend on their choices, and the payoff
matrix is as follows:

What is the strictly dominant strategy for each firm:

i. A’s dominant strategy is to launch, and B’s dominant strategy is not to launch.

ii. A’s dominant strategy is to launch, and B’s dominant strategy is to launch.

iii. A’s dominant strategy is not to launch, and B’s dominant strategy is to launch.

iv. A’s dominant strategy is not to launch, and B’s dominant strategy is not to launch.

B: Launch B: Not Launch

A: Lauch (20, 20) (40, 10)

A: Not Lauch (10, 40) (30, 30)

Break & Quiz
Two firms, A and B, are deciding whether to launch a new product. Each firm can
either launch or not launch. Their profits depend on their choices, and the payoff
matrix is as follows:

What is the strictly dominant strategy for each firm:

i. A’s dominant strategy is to launch, and B’s dominant strategy is not to launch.

ii. A’s dominant strategy is to launch, and B’s dominant strategy is to launch.

iii. A’s dominant strategy is not to launch, and B’s dominant strategy is to launch.

iv. A’s dominant strategy is not to launch, and B’s dominant strategy is not to launch.

B: Launch B: Not Launch

A: Lauch (20, 20) (40, 10)

A: Not Lauch (10, 40) (30, 30)

Dominant Strategy Equilibrium does not always

exist.

Dominant Strategy Equilibrium

Player 2

Player 1

L R

T 2, 1 0, 0

B 0, 0 1, 2

a* is a Nash equilibrium if no player has an

incentive to unilaterally deviate

Nash Equilibrium

Player 2

Player 1

L R

T 2, 1 0, 0

B 0, 0 1, 2

a* is a Nash equilibrium:

 ∀𝑖, ∀𝑏 ∈ 𝐴𝑖: 𝑢𝑖(𝑎𝑖
∗, 𝑎−𝑖

∗) ≥ 𝑢𝑖(𝑏, 𝑎−𝑖
∗)

 (no player has an incentive to unilaterally deviate)

• Pure Nash equilibrium:

• A pure strategy is a deterministic choice (no

randomness).

• Later: we will consider mixed strategies

• In pure Nash equilibrium, players can only play

pure strategies.

Nash Equilibrium: Best Response to Each Other

So far, pure strategy: each player picks a

deterministic strategy. But:

Pure Nash Equilibrium may not exist

Player 2

Player 1

rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0

Can also randomize actions: “mixed”
• Player i assigns probabilities xi to each action

• Now consider expected rewards

Mixed Strategies

𝑢𝑖 𝑥𝑖 , 𝑥−𝑖 = 𝐸𝑎𝑖~𝑥𝑖,𝑎−𝑖~𝑥−𝑖𝑢𝑖 𝑎𝑖 , 𝑎−𝑖 =෍

𝑎𝑖

෍

𝑎−𝑖

𝑥𝑖 𝑎𝑖 𝑥−𝑖 𝑎−𝑖 𝑢𝑖 𝑎𝑖 , 𝑎−𝑖

Example: 𝑥1
∗(⋅) = 𝑥2

∗(⋅) =
1

3
,
1

3
,
1

3

Mixed Strategy Nash Equilibrium

Player 2

Player 1

rock paper scissors

rock 0, 0 -1, 1 1, -1

paper 1, -1 0, 0 -1, 1

scissors -1, 1 1, -1 0, 0

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form

• Represent with a tree

• Rewards at leaves

• Find strategies: perform search over the tree

• Nash equilibrium still well-defined
– Backward induction

Wiki

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

H
150

I
100

α=-∞

Minimax algorithm in execution

Minimax algorithm in execution

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-∞

β=+∞

H
150

I
100

S

A

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-∞

β=200

H
150

I
100

The execution on the

terminal nodes is omitted.

Minimax algorithm in execution

S

A
100

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=-∞

β=100

H
150

I
100

Minimax algorithm in execution

S

A
100

C
200

D
100

B

E
120

F
20

max

min

max

min

G

α=100

β=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

α=100

β=+∞A
100

C
200

D
100

H
150

I
100

Minimax algorithm in execution

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=120A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=-∞

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G

β=20A
100

C
200

D
100

α=100

H
150

I
100

α=150

Minimax algorithm in execution

S

B

E
120

F
20

max

min

max

min

G
150

β=20A
100

C
200

D
100

α=100

H
150

I
100

Minimax algorithm in execution

S

B
20

E
120

F
20

max

min

max

min

G
150

A
100

C
200

D
100

α=100

H
150

I
100

Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2
moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?

• A. 23

• B. 65

• C. 41

• D. 2

Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2
moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?

• A. 23

• B. 65

• C. 41

• D. 2

Break & Quiz

Q 2.1: We are playing a game where Player A goes first and has 4 moves.
Player B goes next and has 3 moves. Player A goes next and has 2
moves. Player B then has one move.

How many nodes are there in the minimax tree, including termination
nodes (leaves)?

• A. 23

• B. 65 (1 + 4 + 4*3 + 4*3*2 + 4*3*2 = 65. Note the root and leaf
nodes.)

• C. 41

• D. 2

Reinforcement Learning

Building The Theoretical Model

Basic setup:
• Set of states, S

• Set of actions A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: , action to take at a particular state.

Discounting Rewards

One issue: these are infinite series. Convergence?

• Solution

• Discount factor γ between 0 and 1
– Set according to how important present is VS future

– Note: has to be less than 1 for convergence

Obtaining the Optimal Policy

Assume, we know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards

Credit L. Lazbenik

Bellman Equations

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Credit L. Lazbenik

Richard Bellman: Inventor of dynamic programming.

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at

current state and “move” to other state. Let r be the reward function

such that r(A) = 1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A)

= π(B) = move (i.e., an “always move” policy). What is the value

function 𝑉𝜋(𝐴)?

• A. 0

• B. 1 / (1 -𝛾)

• C. 1 / (1 -𝛾2)

• D. 1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at

current state and “move” to other state. Let r be the reward function

such that r(A) = 1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A)

= π(B) = move (i.e., an “always move” policy). What is the value

function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2)

• D. 1

Break & Quiz

Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at

current state and “move” to other state. Let r be the reward function

such that r(A) = 1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A)

= π(B) = move (i.e., an “always move” policy). What is the value

function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2) (States: A,B,A,B,… rewards 1,0, 𝛾2,0, 𝛾4,0, …)

• D. 1

Example

A 10

B 20 C 20

G 100

Deterministic transitions; 𝛾 = 0.8; policy

shown with red arrows.

Break & Quiz
Supposed you have the following information about an environment:

1. The discount factor is 0.8

2. The reward in s1 taking action α1 is 3

3. The transition probabilities are: P(s2|s1, α1) = 0.6 and P(s3|s1, α1) = 0.4

Currently, V(s2) = 10 and V(s3) = 6

Remember the update for value iteration is

After a single iteration of value iteration, what is the value for state s1 (what is V (s1))?

A. 8

B. 10

C. 12

D. 14

E. None of the above

Break & Quiz
Supposed you have the following information about an environment:

1. The discount factor is 0.8

2. The reward in s1 taking action α1 is 3

3. The transition probabilities are: P(s2|s1, α1) = 0.6 and P(s3|s1, α1) = 0.4
Currently, V(s2) = 10 and V(s3) = 6
Remember the update for value iteration is

After a single iteration of value iteration, what is the value for state s1 (what is V(s1))?

Choose the closest option.

A. 8

B. 10 V (s1) = 3 + 0.8(0.6 × 10 + 0.4 × 6) = 9.72 = 10

C. 12

D. 14

E. None of the above

Q-Learning

• Our next reinforcement learning algorithm.

• Does not require knowing r or P. Learn from data of

the form:{(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1)}.
• Learns an action-value function Q*(s,a) that tells us

the expected value of taking a in state s.

• Note: 𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎).

• Optimal policy is formed as 𝜋∗(𝑠) = arg𝑚𝑎𝑥
𝑎

𝑄∗(𝑠, 𝑎)

Q-Learning

Learning rate

Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation
• With probability ε, take a random action; else the action with

the highest (current) Q(s,a) value.

Thank you and good luck!

	Slide 1: CS 540 Introduction to Artificial Intelligence Review
	Slide 2: Announcements
	Slide 3: Final Information
	Slide 4: Neural Networks
	Slide 5: How to classify
	Slide 6: Perceptron
	Slide 7: Single Hidden Layer
	Slide 8: Neural networks with one hidden layer
	Slide 9
	Slide 10: Multi-class classification
	Slide 11
	Slide 12: How to train a neural network?
	Slide 13
	Slide 14: How to train a neural network?
	Slide 15: Gradient Descent
	Slide 16: Minibatch Stochastic Gradient Descent
	Slide 28: Numerical Stability
	Slide 29: Gradients for Neural Networks
	Slide 30: Two Issues for Deep Neural Networks
	Slide 31: Issues with Gradient Exploding
	Slide 32: Gradient Vanishing
	Slide 33: Issues with Gradient Vanishing
	Slide 34: How to stabilize training?
	Slide 35: Stabilize Training: Practical Considerations
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 42: Generalization & Regularization
	Slide 44: Training Error and Generalization Error
	Slide 47: Influence of Model Complexity
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 60: Convolutional Neural Networks (CNNs)
	Slide 61: How to classify
	Slide 62
	Slide 64: Why Convolution?
	Slide 65: 2-D Convolution
	Slide 66: 2-D Convolution Layer
	Slide 67: 2-D Convolution Layer with Stride and Padding
	Slide 68: Multiple Input Channels
	Slide 69: Multiple Input Channels
	Slide 70: Multiple Input Channels
	Slide 71: Multiple filters (in one layer)
	Slide 72: Multiple Output Channels
	Slide 80
	Slide 81
	Slide 83: Convolutional Neural Network Architecture
	Slide 84: Feature Learning
	Slide 85: LeNet Architecture (first convolutional neural net; 1989)
	Slide 86: AlexNet
	Slide 87: More Differences…
	Slide 88: More Differences…
	Slide 89: Simple Idea: Add More Layers
	Slide 90: Residual Connections
	Slide 91: Uninformed Search
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109: Informed Search
	Slide 110: Uninformed vs Informed Search
	Slide 111: Attempt 2: A Search
	Slide 112: Attempt 3: A* Search
	Slide 113: Recap and Examples
	Slide 114: Recap and Examples
	Slide 115: Break & Quiz
	Slide 116: Break & Quiz
	Slide 117: Break & Quiz
	Slide 118: Games
	Slide 119: Games Setup
	Slide 120: Normal Form Game
	Slide 121: Example of Normal Form Game
	Slide 122: Strictly Dominant Strategies
	Slide 124: Dominant Strategy Equilibrium
	Slide 125: Break & Quiz
	Slide 126: Break & Quiz
	Slide 128: Dominant Strategy Equilibrium
	Slide 129: Nash Equilibrium
	Slide 130: Nash Equilibrium: Best Response to Each Other
	Slide 134: Pure Nash Equilibrium may not exist
	Slide 135: Mixed Strategies
	Slide 137: Mixed Strategy Nash Equilibrium
	Slide 138: Sequential-Move Games
	Slide 139
	Slide 140: Minimax algorithm in execution
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145: Minimax algorithm in execution
	Slide 146: Minimax algorithm in execution
	Slide 147: Minimax algorithm in execution
	Slide 148: Minimax algorithm in execution
	Slide 149: Minimax algorithm in execution
	Slide 150: Minimax algorithm in execution
	Slide 151: Minimax algorithm in execution
	Slide 154: Break & Quiz
	Slide 155: Break & Quiz
	Slide 156: Break & Quiz
	Slide 157: Reinforcement Learning
	Slide 158: Building The Theoretical Model
	Slide 159: Markov Decision Process (MDP)
	Slide 160: Discounting Rewards
	Slide 162: Obtaining the Optimal Policy
	Slide 163: Bellman Equations
	Slide 164: Break & Quiz
	Slide 165: Break & Quiz
	Slide 166: Break & Quiz
	Slide 167: Example
	Slide 168: Break & Quiz
	Slide 169: Break & Quiz
	Slide 170: Q-Learning
	Slide 172: Q-Learning
	Slide 174: Q-Learning: ε-Greedy Behavior Policy
	Slide 176: Thank you and good luck!

