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CS 540 Introduction to Artificial Intelligence
Probability

University of Wisconsin-Madison
Spring 2025



Announcements

- HW 1:
— Writing assignment---nothing too stressful

__

<

Wednesday Jan. 29 Linear Algebra §

<

Monday Feb. 3 Linear Algebra and &

PCA 5

o

. Class roadmap:  wednesdayFeb.5  Logic — 5
wn

Monday Feb. 10 NLP



Probability: What is it good for?

e Language to express uncertainty




* Quantify predictions

[p(lion), p(tiger)] = [0.98,0.02]

- .- - - [ M e A, - >
=i ’ R ay <"
Bl e o a2 Capalaiiske > . o~

[p(lio_n;, p(tlger)] = [E)‘.'43, 057]

[p(lion), p(tiger)| = |0.01, 0.99]

* If we know for sure the photo must contain either a lion or a tiger



Model Data Generation

 Model complex distributions

StyleGAN2 (Kerras et al ’20)



Win At Poker

* Wisconsin Ph.D. student Ye Yuan 5t in WSOP
Not unusual: probability began
as study of gambling techniques

Cardano

Liber de ludo aleae
Book on Games of Chance
1564!

pokernews.com




Outline

* Basics: definitions, axioms, RVs, joint distributions

* Independence, conditional probability, chain rule

 Bayes’ Rule and Inference




Basics: Outcomes & Events

* Outcomes: possible results of an experiment
Q0 ={1,2,3,4,5,6

WV
outcomes

e Events: subsets of outcomes we’re interested in

0.1 {2}, {12}

events

« Always include ().




Basics: Probability Distribution

». We have outcomes and events.
* Assign probabilities: for each event E, P(E) € [0,1]

Back to our example:

0.1 {2}, {12}

events

P({1,3,5})) =02, P({2,4,6}) = 0.8




Basics: Axioms

* Rules for probability:
— Forall events £, P(E) > ()
— Always, P(()) =0,P(Q) =1
— For disjoint events, P(E; U Ey) = P(Ey) + P(Es)

* Easy to derive other laws. Ex: non-disjoint events

P(El UEQ) = P(E1> —|—P<E2) —P(El ﬂEQ)



Visualizing the Axioms: |

* Axiom 1: for all events £, P(E) >0

4 )




Visualizing the Axioms: Il

* Axiom 2: P(0)=0,P(Q) =1




Visualizing the Axioms: llI

e Axiom 3: dISJOlnt P(El U E2> = P(E1) + P(EQ)
I

E, or E,

P(E1UEy) = P(Ey) + P(E>)




Visualizing the Axioms

* Also, other laws:

-

~

U

P(E,UE,) = P(E)) + P(E) — P(E, 1 Es)

E; and E




Break & Quiz

Q 1.1: We toss a biased coin. If P(heads) = 0.7, then
P(tails) =7

A.0.4

B.0.3

C.0.6

D. 0.5



Break & Quiz

Q 1.1: We toss a biased coin. If P(heads) = 0.7, then
P(tails) =7

A.0.4
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Break & Quiz

Q 1.2: There are exactly 3 candidates for a presidential
election. We know X has a 30% chance of winning, B has
a 35% chance. What’s the probability that C wins?

A. 0.35
B.0.23
C.0.333
D.0.8



Break & Quiz

Q 1.2: There are exactly 3 candidates for a presidential
election. We know X has a 30% chance of winning, B has
a 35% chance. What’s the probability that C wins?

A.0.35
B.0.23
C.0.333
D.0.8



Break & Quiz

Q 1.3: What’s the probability of selecting a black
card or a number 6 from a standard deck of 52
cards?

A.26/52
B.4/52

C. 30/52
D. 28/52



Break & Quiz

Q 1.3: What’s the probability of selecting a black
card or a number 6 from a standard deck of 52
cards?

A.26/52
B.4/52

C. 30/52
D. 28/52



Basics: Random Variables

*. Intuitively: a number X that’s random
 Mathematically: map random outcomes to real values

X: Q=R

P N

(eSS

. Why? _l: ﬁ ' }
— Previously, everything is a set. —

— Real values are easier to work with



Basics: CDF & PDF

* Can still work with probabilities: 1

P(X =3) —o——

. Cumulative Distribution Func. (CDF) /

Fx(r) = P(X <)

e Density / mass function px()

0 )

Wikipedia CDF



Basics: Expectation & Variance

 Another advantage of RVs are summaries”

* Expectation: E[X]=) ax P(z=a)
— The “average”

e Variance: Var[X] = E[(X - E[X])?]
— A measure of “spread”



Basics: Joint Distributions

e Move from one variable to several
* Joint distribution: P(X =a,Y =)

— Why? Work with multiple types of uncertainty that
correlate with each other




Basics: Marginal Probability
* Given a joint distribution P(X =a,Y =b)

— Get the distribution in just one variable:

P X=a)=),P(X=aY ="

— This is the “marginal” distribution.



Jerry’s super blurry camera

. One pixel, 1-bit color sensor (green=trees,
white=snow)

. Model T: comes with 1-bit temperature
sensor (hot, cold)



Basics: Marginal Probability

PX=a)=),PX=0aY=0

green | white

hot |150/365 | 45/365

cold |50/365 |120/365

[P(hot), P(cold)] = [522, 5]



Probability Tables

e Write our distributions as tables

e # of entries? 4.
— If we haven variables with k values, we get k" entries
— Big! For a 1080p screen, 12 bit color, size of table: 17490589
— No way of writing down all terms




Independence
Independence between RVs:

P(X,Y) = P(X)P(Y)

Why useful? Go from k™ entries in a table to ~ kn
Expresses joint as product of marginals

requires domain knowledge



Conditional Probability

* For when we know something (i.e. Y=b),

P(X =a,Y =b)

PIX =alY =b) = =5

green | white
hot 150/365 | 45/365
cold |50/365 [120/365

P(cold,white) - 120
P(white) 45+ 120

P(cold|white) = = 0.73




Conditional independence

— require domain knowledge

P(X,Y|Z) = P(X|Z)P(Y|Z)



Chain Rule

* Apply repeatedly,
P(A17A27 JER aAn)

= P(A1)P(As| A1) P(As|Ag, Ay) ... P(Ap|Ap_y, ..., A1)

* Note: still big!
— If some conditional independence, can factor!
— Leads to probabilistic graphical models




Break & Quiz

Q 2.1: Given joint distribution table:

Sunny

Cloudy

Rainy

hot

150/365

40/365

5/365

cold

50/365

60/365

60/365

What is the probability the temperature is hot given the
weather is cloudy?

A. 40/365
B. 2/5

C. 3/5

D. 195/365



Break & Quiz

Q 2.1: Back to our joint distribution table:

Sunny

Cloudy

Rainy

hot

150/365

40/365

5/365

cold

50/365

60/365

60/365

What is the probability the temperature is hot given the
weather is cloudy?

A. 40/365
B. 2/5

C. 3/5

D. 195/365



Break & Quiz

Q 2.2: Of a company’s employees, 30% are women and
6% are married women. Suppose an employee is selected
at random. If the employee selected is a woman, what is
the probability that she is married?

A. 0.3
B. 0.06
C. 0.24

D. 0.2
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the probability that she is married?

A. 0.3
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C. 0.24

D. 0.2



Reasoning With Conditional Distributions

e Evaluating probabilities:
— Wake up with a sore throat.
— Do | have the flu?

* Logic approach:§ — F
— Too strong.

o 3o
. 4
=]

* Inference: compute probability given evidence P(F|S)
— Can be much more complex!



Using Bayes’ Rule

* Want: P(F|S)

* Bayes’ Rule: P(F|S) = % _ P(SIID}E?QI)D(F)

 Parts:
- P(S5)=0.1 Sorethroatrate

-  P(F)=0.01 Flurate
- P(S]F) — (0.9 Sorethroat rate among flu sufferers

So: P(F|S) = 0.09



Using Bayes’ Rule

* Interpretation P(F|S) = 0.09

— Much higher chance of flu than normal rate (0.01).

— Very different from P(S]F) = 0.9
* 90% of folks with flu have a sore throat
* But, only 9% of folks with a sore throat have fl

2
L
3

/"‘ ﬁ’ "-;"'%r i
[ ';", it A [

* |dea: update probabilities from
evidence




Bayesian Inference

* Fancy name for what we just did. Terminology:

E|H)P(H)
P(E)

paE) = 2L

 His the hypothesis
e Fisthe evidence




Bayesian Inference

 Terminology:

P(E|H)P(H)
P(E)

P(H|E) = Prior

* Prior: estimate of the probability without evidence



Bayesian Inference

e Terminology: -
e Likelihood

P(E|H)P(H)

P(HIE) = =5

* Likelihood: probability of evidence given a hypothesis



Bayesian Inference

 Terminology:

E|H)P(H)
P(E)

P(H|E) = P
1
Posterior

* Posterior: probability of hypothesis given evidence.



Two Envelopes Problem

* We have two envelopes:
— E, has two black balls, E, has one black, one red
— The red one is worth $100. Others, zero
— Open an envelope, see one ball. Then, can switch (or not).
— You see a black ball. Switch?

<] X



Two Envelopes Solution

: P(Black ball|E7)P(E
 Let’ssolveit. P(E;|Black ball) = (Black ball| ) P(F))

P(Black ball)
Now blugin:  P(E:|Black ball) = Lx 5
ow plugin:  P(E;|Black ba >_P(B1ack ball)
1 1
P(E,[Black ball) = —2 "2
(E|Black ba P(Black ball)

o @ g



Nalve Bayes

* Conditional Probability & Bayes:
P(Ey, ..., E, | H)P(H)

P(H|Ey,Es, ..., E,) = P(By. B> )
Y /R n

* If we further make the conditional independence assumption
(a.k.a. Naive Bayes)

Ei|H)P(Es|H) - P(E,|H)P(H)
P(E1,Es,...,E,)

P
P(H|E1,FEs,...,E,) = (



Nalve Bayes

* Expression
_ P(E7|H)P(Eq|H)---, P(En|H)P(H)

P(H|Ey, Es, ... Ey) = P(E1,Es,..., E,)

 H:some class we’d like to infer from evidence
— We know prior P(H)
— Estimate P(E;|H) from data! (“training”)
— Very similar to envelopes problem.



Break & Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter
spam. A certain brand of software claims that it can detect 99% of
spam emails, and the probability for a false positive (a non-spam email
detected as spam) is 5%. Now if an email is detected as spam, then
what is the probability that it is in fact a nonspam email?

A. 5/104
B. 95/100
C. 1/100
D. 1/2



Break & Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter
spam. A certain brand of software claims that it can detect 99% of
spam emails, and the probability for a false positive (a non-spam email
detected as spam) is 5%. Now if an email is detected as spam, then
what is the probability that it is in fact a nonspam email?

S:Spam
NS: Not Spam
A' 5/104 DS: Detected as Spam
B. 95/100 P(S) = 50 % spam email
C. 1/100 P(NS) = 50% not spam email
P(DS|NS) = 5% false positive, detected as spam but not spam
D. 1/2 P(DS|S) =99% detected as spam and itis spam

Applying Bayes Rule
P(NS|DS) = (P(DS|NS)*P(NS)) / P(DS) = (P(DS|NS)*P(NS)) / (P(DS|NS)*P(NS) + P(DS|S)*P(S)) =
5/104



Break & Quiz

Q 3.2: A fair coin is tossed three times. Find the
probability of getting 2 heads and a tail

A. 1/8
B. 2/8
C. 3/8
D. 5/8



Break & Quiz

Q 3.2: A fair coin is tossed three times. Find the
probability of getting 2 heads and a tail

A. 1/8
B. 2/8
C. 3/8
D. 5/8



Readings

* Vast literature on intro probability and statistics.
* Local classes: Math/Stat 431

* Suggested reading:
Probability and Statistics: The Science of Uncertainty,
Michael J. Evans and Jeff S. Rosenthal
http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf

(Chapters 1-3, excluding “advanced” sections)


http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf
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