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Announcements

HW 1 released:
— Writing assignment---nothing too stressful

— Deadline Tuesday Feb. 4" 11:59PM

Linear Algebra & PCA

Class roadmap: Logic _

NLP

suonepunod Ason



Review: Bayesian Inference

Conditional Probability & Bayes Rule:
E|H)P(H)
P(E)

Evidence E: what we can observe

pE) = 2

Hypothesis H: what we’d like to infer from evidence
— Need to plug in prior, likelihood, etc.

Usually do not know these probabilities. How to estimate?



Samples and Estimation

e Usually, we don’t know the distribution P
— Instead, we see a bunch of samples

* Typical statistics problem: estimate
distribution from samples
— Estimate probabilities P(H), P(E), P(E|H)
— Estimate the mean F[X]
— Estimate parameters Py(X)




Samples and Estimation

— Estimate probability P(H), P(E), P(E|H)
— Estimate the mean E|X]|
— Estimate parameters Py (X)

 Example: Bernoulli with parameter p
(i.e., a weighted coin flip)

-PX=1)=p
— Mean E[X]isp




Examples: Sample Mean

* Bernoulli with parameter p

e Seesamples Z1,%2,...,%y
— Estimate mean with sample mean

fX] = %zn:x
=1

— That is, counting heads




Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate E[X?]

A. 9/8
B. 15/8
C. 15

D. There aren’t enough samples to estimate E[X?]



Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate [E[X*]

9/8

15/8

1.5

. There aren’t enough samples to estimate E[X?]

o 0w



Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate [E[X*]

1
B. 15/8 =§(02+1+1+4+4+0+1+4)=15/8
C. 15

D. There aren’t enough samples to estimate E[X?]



Estimating Multinomial Parameters

. k-sized die (special case: k=2 coin)
. Face i has probability p, for i=1...k

. In nrolls, we observe face i showing up n; times
k

n;,=n
i=1

- Estimate (p; _p,) from this data (n; n,)



Maximum Likelihood Estimate (MLE)

. The MLE of multinomial parameters (P1, .-, Px)
~
Pi = T

. Estimate using frequencies




Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0?

None.

Between 5 and 50, exclusive.
Between 50 and 100, inclusive.
Between 50 and 99, inclusive.

oo w®p



Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0?

#samples taking value a
50

For each a, your estimate is P(X = a) =

None.

Between 5 and 50, exclusive.
Between 50 and 100, inclusive.
Between 50 and 99, inclusive.

oo w®p



Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0?

#samples taking value a
50

For each a, your estimateis P(X = a) =

None.

Between 5 and 50, exclusive.
Between 50 and 100, inclusive.
Between 50 and 99, inclusive.

o0 ®p



Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0? o
you aontsee a
number at all in the 50

samples then the
estimated probability of

#samples taking value a
50

For each a, your estimateis P(X = a) =

A. None. that number is O.

B. Between 5 and 50, exclusive. You can see up to 50
. . different values in 50

C. Between 50 and 100, inclusive. samples. On the other

D. Between 50 and 99, inclusive. hand, all 50 samples

might have the same
value in which case 99
values were never
seen.



Regularized Estimate

Hyperparameter € > 0

. hyte
Pi = ke

. Avoids zero when n is small

Biased, but has smaller variance

Equivalent to a specific Maximum A Posteriori (MAP)
estimate, or smoothing



Estimating 1D Gaussian Parameters

Gaussian (aka Normal) distribution N(u, 0%)

— True mean u, true variance o*

Observe n data points from this distribution
X1y ) X,

Estimate u, o2 from this data

34.1% 34.1%
0, (o)
0.1% “i <BERLY 6% 2:1% 0 1%

| | | [
Wikipedia: Normal distribution M—30 HM—20 M-O M M+0  p+20 p+30



Estimating 1D Gaussian Parameters
X1+ -+ xp,
n

. Mean estimate i =

. Variance estimates

2 — Z?=1(xl _ ﬁ)z
n—1
2 _ ?=1(xi _ﬁ)z
n

_ Unbiased s

- MLE

o



Estimation Theory

- Is the sample mean a good estimate of the true
mean?
— Law of large numbers
— Central limit theorems

Wolfram Demo



Estimation Errors

With finite samples, likely error in the estimate.
Mean squared error

~ MSE[8] =E[(d—6)"]

Bias / Variance Decomposition

- MsE[8] = E[(6 - E[6])°] + (E[6] - 6)

Variance Bias



Bias / Variance

Low Bias High Bias
&
Low Variance %y
High Variance A \ ll

Wikipedia: Bias-variance tradeoff



Correlation vs. Causation

. Conditional probabilities only define
correlation (aka association)

. P(Y[|X) “large” does not mean X causes Y
. Example: X=yellow finger, Y=lung cancer
. Common cause: smoking
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https://www.nejm.or
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Linear Algebra

24



Linear Algebra: What is it good for?

* Study of Linear functions: simple, tractable
* |n Al/ML: building blocks for all models

— e.g., linear regression; part of neural networks

Hieu Tran

WX

>
o0
N
i

)

input layer
hidden layer 1 hidden layer 2

Stanford CS231n

output layer

25



Basics: Vectors

* Many interpretations

— List of values (represents information)

— Point in a space

* Dimension: number of values: x € R¢

* Al/ML: often use very high dimensions:

— Ex: images!

input image

X2
x=|X3|€R
Xa
w
1 ’4
of _
> @by vt
y/
. > ) — _’,,‘,,¥_. ] 7 / —bﬁ T car
4 =
predicted
P— pooling convolutional pooling fully-connected class
convolutional layer layer layer layer
layer
CNN

Cezanne Camacho



Basics: Matrices

| | A A
* Many interpretations - >
- . A21 AZZ

— Table of values; list of vectors A= A A
— Represent linear transformations A31 A33
eV | 43

— Apply to a vector, get another vector

Dimensions: #rows X #columns, A € R™M*"
— Indexing!

27



Basics: Transposition

* Transposes: flip rows and columns
— Vector: standard is a column. Transpose: row vector

— Matrix: gofromm Xnton xXm

X

T

:[331 X9 333}

i Ay A Azl AT = [ A
Asp Aga Ao




Matrix & Vector Operations

* Vectors
— Addition: component-wise T1+ Y1
e Commutative:x +y =y +x T+Yy= |T2+ Y2
* Associative: (x+y)+z=x+ (y + 2) T3 T Y3
— Scalar Multiplication x|
* Uniform stretch / scaling cxr = | cxo
_6273_




Matrix & Vector Operations

* Vector products
— Inner product (e.g., dot product)

h
<zy>=z'y= [5171 T2 373] Y2 | = T1Y1 + T2Y2 + T3Y3
Y3
— Outer product
E2 _Ilyl L1Y2 mlys_
fyT — |22 [?Jl Y2 ys] = [T2Y1  T2Y2 T2Y3
| L3 ] | X3Y1  L3Y2  X3Y3_




Matrix & Vector Operations

* x and y are orthogonal if (x, y)=0
X

* Vector norms: “length”

n
el = | > 23
\ 1=1



Matrix & Vector Operations

* Matrices:
— Addition: Component-wise A+ B=

A1+ Bi1 Aje + B
Aoy + Ba1 Agg + Boo
As1 + Bs1 Ass + Bso

— Commutative, Associative

CA11 CA12
— Scalar Multiplication cA= |cAy; Ao

— “Stretching” the linear transformation cAz1  cAsz




Matrix & Vector Operations

* Matrix-Vector multiplication
— Linear transformation; plug in vector, get another vector
— Each entry in Ax is the inner product of a row of A with x

x € R* A € RM*"

(A, x) | [ A1axr + Appxy + o+ Ay
Ay = | (A20%) Az1Xx1 + AgpXy + -+ Agpy

_(Am;; x)- -Amlxl + Amzxz paliii o Amnxn-



Matrix & Vector Operations

Ex: feedforward neural networks. Input x.

N =
J
\ =

* QOutput of layer k is

— nonlinearity

"\\_
- /
9 (@) = WL 5 D))
N W ()
[ Output of layer k-1: vector Wikipedia

Output of layer k: vector Weight matrix for layer k:
Note: linear transformation!



Matrix & Vector Operations

* Matrix multiplication B
— A € R™" B € R"™¥P, then AB € R™*P T - b_
— “Composition” of linear transformations b, |b,
— Not commutative in general! _ R B =
AB # BA O
A a, |a,
— Lots of interpretations : : T==©

Wikipedia
35



Identity Matrix

— Like “1”
— Multiplying by it gets back
the same matrix or vector

— Rows & columns are the
“standard basis vectors” ¢;

J —




Q1.1: Whatiis

A.[-111]
B.[211]
C.[131])
D.[1.521]

Break & Quiz

— Y =
— = N




Q1.1: Whatiis

A [-111]
B.[211]
C.[131])
D.[1.521]

Break & Quiz

1 2
3 1
I 1

38



Q1.1: Whatiis

A [-111]
B.[211]
C.[131])
D.[1.521]

Break & Quiz

— Y =

— = DO

Check dimensions: answer must be
3 x 1 matrix (i.e., column vector).

R

Ox14+1x%2
0*3+1=x1
O0x14+1x%1

I

39



Break & Quiz

Q 1.2: Given matrices A € R™*" B € R™X™ ( € RP*"
What are the dimensions of BAC”

A.nxp
B.dxp
C.dxn
D. Undefined



Break & Quiz

* Q1.2: Given matrices A € R™*" B € R&™ (' ¢ RPX"
What are the dimensions of BACT

A.nxp
B.dxp
C.dxn
D. Undefined



Break & Quiz

* Q1.2: Given matrices A € R™*" B € R&™ (' ¢ RPX"
What are the dimensions of BACT

To rule out (D), check that for
each pair of adjacent matrices
XY, the # of columns of X = # of
rows of Y

* A.nxp
e B.dxp

Then, B has d rows so solution
e C.dxn must have d rows. CAT has p
columns so solution has p

e D. Undefined columns.



Break & Quiz

Q 1.3: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
B. Always
C. Sometimes



Break & Quiz

Q 1.3: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
B. Always
C. Sometimes

44



Break & Quiz

Q 1.3: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never

Matrix multiplication is

B . Alwa yS not necessarily

commutative.

C. Sometimes

45



Thanks!

46
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