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Announcements

• HW 1 released: 
– Writing assignment---nothing too stressful

– Deadline Tuesday Feb. 4th 11:59PM

• Class roadmap:

Statistics & Linear Algebra

Linear Algebra & PCA
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Review: Bayesian Inference

• Conditional Probability & Bayes Rule: 

• Evidence E: what we can observe

• Hypothesis H: what we’d like to infer from evidence
– Need to plug in prior, likelihood, etc.

• Usually do not know these probabilities. How to estimate?



Samples and Estimation

• Usually, we don’t know the distribution P
– Instead, we see a bunch of samples

• Typical statistics problem: estimate 
distribution from samples
– Estimate probabilities P(H), P(E), P(E|H)
– Estimate the mean 
– Estimate parameters



Samples and Estimation



Examples: Sample Mean

• Bernoulli with parameter p

• See samples 
– Estimate mean with sample mean

– That is, counting heads



Break & Quiz
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Estimating Multinomial Parameters

• k-sized die (special case: k=2 coin)

• Face i has probability pi, for i=1…k

• In n rolls, we observe face i showing up ni times

• Estimate (p1,…, pk) from this data (n1,…, nk) 



Maximum Likelihood Estimate (MLE)

• The MLE of multinomial parameters 

• Estimate using frequencies



Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random 
variable X that takes on 100 values. You see 50 samples. How 
many of your P(X=a) estimates might be 0?

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.
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Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random 
variable X that takes on 100 values. You see 50 samples. How 
many of your P(X=a) estimates might be 0?

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.

If you don’t see a 

number at all in the 50 

samples then the 

estimated probability of 

that number is 0.

You can see up to 50 

different values in 50 

samples. On the other 

hand, all 50 samples 

might have the same 

value in which case 99 

values were never 

seen.



Regularized Estimate

• Hyperparameter 

• Avoids zero when n is small 

• Biased, but has smaller variance

• Equivalent to a specific Maximum A Posteriori (MAP) 
estimate, or smoothing



Estimating 1D Gaussian Parameters

Wikipedia: Normal distribution



Estimating 1D Gaussian Parameters

• Mean estimate

• Variance estimates

– Unbiased

– MLE 



Estimation Theory

• Is the sample mean a good estimate of the true 
mean?
– Law of large numbers

– Central limit theorems

Wolfram Demo



Estimation Errors

Variance Bias



Bias / Variance



Correlation vs. Causation

• Conditional probabilities only define 
correlation (aka association)

• P(Y|X) “large” does not mean X causes Y

• Example: X=yellow finger, Y=lung cancer

• Common cause: smoking



https://www.nejm.or

g/doi/full/10.1056/N

EJMon1211064



Linear Algebra
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Linear Algebra: What is it good for?

• Study of Linear functions: simple, tractable

• In AI/ML: building blocks for all models

– e.g., linear regression; part of neural networks 

Stanford CS231nHieu Tran 25



Basics: Vectors
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Basics: Matrices
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Basics: Transposition
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Matrix & Vector Operations
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Matrix & Vector Operations

• Vector products
– Inner product (e.g., dot product)

– Outer product
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Matrix & Vector Operations
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Matrix & Vector Operations

• Matrices:
– Addition: Component-wise

– Commutative, Associative

– Scalar Multiplication

– “Stretching” the linear transformation 

32



Matrix & Vector Operations
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Matrix & Vector Operations

Ex: feedforward neural networks. Input x. 

• Output of layer k is 

Output of layer k-1: vector

Weight matrix for layer k: 
Note: linear transformation!

Output of layer k: vector

nonlinearity

Wikipedia
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Matrix & Vector Operations

Wikipedia
35



Identity Matrix
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Break & Quiz

• Q 1.1: What is                               ? 

• A. [-1 1 1]T

• B. [2 1 1]T

• C. [1 3 1]T

• D. [1.5 2 1]T
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Break & Quiz

• Q 1.2: Given matrices

What are the dimensions of 

• A. n x p

• B. d x p

• C. d x n

• D. Undefined
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Break & Quiz
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To rule out (D), check that for 

each pair of adjacent matrices 

XY, the # of columns of X = # of 

rows of Y

Then, B has d rows so solution 

must have d rows. C^T has p 

columns so solution has p 

columns. 



Break & Quiz

• Q 1.3: A and B are matrices, neither of which is the 
identity. Is AB = BA?

• A. Never

• B. Always

• C. Sometimes
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Break & Quiz
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Matrix multiplication is 

not necessarily 

commutative.



Thanks!
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