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Announcements

• HW 1 online: 
– Writing assignment---nothing too stressful
– Deadline Tuesday Feb. 4th 11:59PM

• HW 2: 
– Probability
– Deadline Thursday Feb. 6th 11:59PM

• Class roadmap:

Linear Algebra and PCA

Logic

NLP

Machine Learning: 

Introduction

Machine Learning: 

Unsupervised Learning I

M
o

s
tly

 

F
o

u
n

d
a

tio
n
s



Outline

• Basics: vectors, matrices, operations

• Dimensionality reduction

• Principal Components Analysis (PCA)
Lior Pachter

3



Matrix Inverses

• If for A there is a B such that
– Then A is invertible/nonsingular, B is its inverse

– Some matrices are not invertible!

– Usual notation: 
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Eigenvalues & Eigenvectors

• For a square matrix A, solutions to
– v (nonzero) is a vector: eigenvector

– is a scalar: eigenvalue

– Intuition: A is a linear transformation;

– Can stretch/rotate vectors;

– E-vectors: only stretched (by e-vals)
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Dimensionality Reduction

• Vectors store features. Lots of features!
• Document classification: thousands of words per doc

• Netflix surveys: 480189 users x 17770 movies

• MEG Brain Imaging: 120 locations x 500 time points x 20 objects
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Dimensionality Reduction

Reduce dimensions

• Why? 
– Lots of features redundant 

– Storage & computation costs

• Goal: take                                          for   
– But, minimize information loss
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Dimensionality Reduction

Examples: 3D to 2D

Andrew Ng
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Break & Quiz

Q 2.1: What is the inverse of 

A:

B:

C: Undefined / A is not invertible
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Break & Quiz
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Q 2.1: What is the inverse of 

A:

B:

C: Undefined / A is not invertible



Break & Quiz

Q 2.2: What are the eigenvalues of 

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1
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Break & Quiz

Q 2.2: What are the eigenvalues of 

A. -1, 2, 4
B. 0.5, 0.2, 1.0
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Solution #1: You may recall from a linear algebra 

course that the eigenvalues of a diagonal matrix (in 

which only diagonal entries are non-zero) are just the 

entries along the diagonal. Hence D is the correct 

answer.



Break & Quiz

Q 2.2: What are the eigenvalues of 

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1
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Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000 
samples with 100-dimensional binary feature vectors. 
Our storage device has a capacity of 50000 bits. What’s 
the lowest compression ratio we can use?

A. 20X

B. 100X

C. 5X

D. 1X
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Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000 
samples with 100-dimensional binary feature vectors. 
Our storage device has a capacity of 50000 bits. What’s 
the lower compression ratio we can use?

A. 20X

B. 100X

C. 5X

D. 1X
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50,000 bits / 10,000 samples 

means compressed version must 

have 5 bits / sample.

Dataset has 100 bits / sample.

Must compress 20x smaller to fit on 

device.



Principal Components Analysis (PCA)

• A type of dimensionality 
reduction approach

• For when data is 
approximately lower 
dimensional
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Principal Components Analysis (PCA)
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Projection: An Example
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Projection: An Example
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A random line that goes 
through the origin



Projection: An Example
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PCA projects data onto 
this line



Projection: An Example
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Projection: An Example
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The sum of squared distances gets 
smaller as the line fits better 

The optimal line is called Principal 
Component 1



PCA Procedure
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Victor Powell
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PCA Procedure



Many Variations

• PCA, Kernel PCA, ICA, CCA
– Extract structure from high dimensional dataset

• Uses:
– Visualization

– Efficiency

– Noise removal

– Downstream machine learning use
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Application: Image Compression

• Start with image; divide into 12x12 patches

– That is, 144-D vector

– Original image:
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Application: Image Compression

• 6 principal components (as an image)
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Application: Image Compression

• Project to 6D

Compressed Original
30



Application: Exploratory Data Analysis
• [Novembre et al. ’08]: Take top two singular vectors of 

people x SNP matrix (POPRES) 

31“Genes Mirror Geography in Europe” 



Readings

• Vast literature on linear algebra.

• Local class: Math 341

• More on PCA (and other matrix methods in ML): CS 532 

• Suggested reading: 
– Lecture notes on PCA by Roughgarden and Valiant

https://web.stanford.edu/class/cs168/l/l7.pdf
– 760 notes by Zhu https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf
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