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Outline

* Probability
* Basics: definitions and axioms
* Random Variables (RVs) and joint distributions

* Independence, conditional probability, chain rule
* Bayes’ Rule and Inference




Basics: Outcomes & Events

« Outcomes: possible results of an experiment

0 ={1,2,3,4,5,6)

N

outcomes

« Events: subsets of outcomes we’re interested in
0,{1},{2},...,{1,2},...,9

events

~+ Always include 0,



Basics: Probability Distribution

« We have outcomes and events
« Assign probabilities: for each event E, P(E) € [0,1]
« Back to our example

0. {11 {2} {12},

events

P({1,3,5}) = 0.2, P({2,4,6}) = 0.8




Basics: Axioms

« Rules for probability:
— Forallevents £, P(E) > 0
— Always, P(0)=0,P(Q) =1
— For disjoint events, P(F;U Ey) = P(E1) + P(Ey)

« Easy to derive other laws. Ex: non-disjoint events

P(E,UE,) = P(Ey) + P(Es) — P(E; N Ey)



Basics: Random Variables

* Intuitively: a number X that’s random
 Mathematically:
function that maps random outcomes to real values

X: Q=R
e Why?

. oy 2
— Previously, everything is a set. { w }
— Real values are easier to work with —



B

asics: Random Variables

1 — P(X

2 —— P(X

3 = P(X



Basics: CDF

Cumulative Distribution Function (CDF)

FX (Qj) = P(X S gj) CDF for discrete

probability distribution

FX(3) B 05 CDF for probability
FX(6) — 1 distribution with both

CDF for continuous
probability distribution

discrete and continuous 0

parts

1
o——O
e—O
0—=©oO
1 /
0
: /
0

Wikipedia CDF



Basics: PDF/PMF

Probability density / mass function px(x):

A mathematical function that tells you how likely different outcomes are.

px () 7 px ()

(NN

1 2 3 4 5 6 7
exampl.e. ofa cor_mtinuous. example of a discrete
probability density function probability mass function




Basics: Expectation

Another advantage of RVs are summaries”

* Expectation:
— The “average” E|X|=)  ax P(X=a)

« Example of a single toss of a fair coin:

— Success (Heads) is assigned the value 1.

— Failure (Tails) is assigned the value O.

EX)=(1xPX=1)+ (0 x P(X=0))
E(X)= (1x0.5) + (0x0.5)
E(X) = 0.5



Basics: Variance

* Variance:
— A measure of “spread”

Var[X] = E[(X - E[X])*

« Example of a single toss of a fair coin:

Var(X) = ((1 - E[X])?x P(X =1)) + ((0— E[X])?%X P(X =0))
E(X) = (0.25 X 0.5) + (025><05)
E(X) = 0.25



Break & Quiz

Q 1.1: Consider a fair six-sided die where the probability of
landing on any specific face (1, 2, 3, 4, 5, or 6) is exactly

P(x) = Z Based on these probabilities, what is the
expected6value E|X] for a single roll?:

A. 3.0
B. 3.5
C. 40
D. 21.0



Break & Quiz

Q 1.1: Consider a fair six-sided die where the probability of
landing on any specific face (1, 2, 3, 4, 5, or 6) is exactly
P(x) = Z Based on these probabilities, what is the
expected6value E|X] for a single roll?:

A. 3.0 E(X)=(1 X§)+(2 x§)+(3 x§)+(4 x%)+(5 x§)+(6 x%)=3.5
B. 3.5

C. 4.0

D. 21.0



Basics: Joint Distributions

e Move from one variable to several
* Joint distribution: P(X =a,Y =)

— Why? Work with multiple types of uncertainty that
correlate with each other




Basics: Marginal Probability
* Given a joint distribution P(X =a,Y =)

— Get the distribution in just one variable:

P(X =a)=Y, P(X =a,Y =b)

— This is the “marginal” distribution.




Example: super blurry camera

. One pixel, 1-bit color sensor (green=trees,
white=snow)

. Model T: comes with 1-bit temperature
sensor (hot, cold)



Basics: Marginal Probability

P(X =a)=Y, P(X =a,Y =b)

oreen | white

hot | 150/365 | 45/365

cold |50/365 [120/365

'P(hot), P(cold)| = | égg, égg]



Probability Tables

e Write our distributions as tables

e # of entries? 4.
— If we haven variables with k values, we get k™ entries
— Big! For a 1080p screen, 12 bit color, size of table: 17490589
— No way of writing down all terms




Independence
Independence between RVs:

P(X,Y) = P(X)P(Y)

Example: simultaneously toss a coin and roll a die
Why useful? Go from k™ entries in a table to ~ kn
Expresses joint as product of marginals

requires domain knowledge



Conditional Probability

For when we know something (i.e. Y=Db)

P(X =a,Y =)
P(Y = b)

P(X =alY =b) =

oreen | white

hot | 150/365 | 45/365

cold [50/3651120/365

P(cold,white) _ 120
P(white) 45+120

P(cold|white) = =0.73




Conditional independence

Same as independence, but conditioned on something

— It requires domain knowledge

P(X,Y|Z) = P(X|Z)P(Y|Z)



Chain Rule

* Apply repeatedly,
P(A1,As,..., A))

= P(A1)P(A5|A1)P(A3]|As, A1) ... P(AL|An_1, ..., A7)
* Note: still big!
— |f some conditional independence, can factor!

a



Chain Rule

Example drawing 3 Aces from a 52-card deck:

®* Event A;: The 1st card is an Ace.
®* EventA,: The 2nd card is an Ace.
®* Event A;: The 3rd card is an Ace.

P(A1;A2;A3) — P(A1)P(A2| A1)P(A3|A1:A2)

““‘ » -



Chain Rule

4
Probability of the 1st Ace: P(4;) = 57

3
Probability of the 2" Ace : P(4;|A;) = =

2
Probability of the 3rd Ace: P(45|44,4,) = =

Probability of drawing 3 Aces:
P(Aq, Az, A3) = P(A1)P(Az| A1)P(A3]|Aq,A3)

4 3 2 24
P(Ay, Az, A3) = = X =X == ———~0.00018




Break & Quiz

Q 2.1: Given joint distribution table:

Sunny Cloudy Rainy
hot 150/365 40/365 5/365
cold 50/365 60/365 60/365

What is the probability the temperature is hot given the
weather is cloudy?

A. 40/365
B. 2/5

C. 3/5

D. 195/365



Break & Quiz

Q 2.1: Back to our joint distribution table:

Sunny Cloudy Rainy
hot 150/365 40/365 5/365
cold 50/365 60/365 60/365

What is the probability the temperature is hot given the
weather is cloudy?

A. 40/365
B. 2/5

C. 3/5

D. 195/365



Break & Quiz

Q 2.2: Of a company’s employees, 30% are women and
6% are married women. Suppose an employee is selected
at random. If the employee selected is a woman, what is
the probability that she is married?

A. 0.3
B. 0.06
C. 0.24

D. 0.2



Break & Quiz

Q 2.2: Of a company’s employees, 30% are women and
6% are married women. Suppose an employee is selected
at random. If the employee selected is a woman, what is
the probability that she is married?

A. 0.3
B. 0.06
C. 0.24

D. 0.2



Bayes’ Rule

Theorem: For any events A and B we have

P(B|A) - P(4)
P(B)

P(A|B) =

Proof: Apply the chain rule two different ways:
P(A,B) =P(A|B) - P(B) P(B|A4) - P(A)

= P(B|A)-PA) | "= rm



Reasoning With Conditional Distributions

o go
(o]
é o

* Evaluating probabilities:
— Wake up with a sore throat.
— Do | have the flu?

* Logic approach:§ — F

— Too strong.

* Inference: compute probability given evidence p(F|S)
— Can be much more complex!



Using Bayes’ Rule

* Want: P(F|S)

* Bayes’ Rule: P(F|S) = P]gf(*g) _ P<S1’3129€)(F>

* Parts:
- P(S)=0.1 Sorethroatrate

-  P(F)=0.01 Flurate
— P(S‘F) — (0.9 Sorethroat rate among flu sufferers

So: P(F|S) = 0.09



Using Bayes’ Rule

* Interpretation P(F|S) = 0.09
— Much higher chance of flu than normal rate (0.01).
— Very different from P(S|F) = 0.9

* 90% of folks with flu have a sore throat

e But, only 9% of folks with a sore throat have flu

* |dea: update probabilities from
evidence




Bayesian Inference

* Fancy name for what we just did. Terminology:

E|H)P(H)
P(E)

pE) = 2

 Histhe hypothesis
e Eisthe evidence




Bayesian Inference

* Terminology:

P(E|H)P(H)
P(E)

P(H|E) = Prior

* Prior: estimate of the probability without evidence



Bayesian Inference

* Terminology: -
e Likelihood

P(E|H)P(H)
P(E)

P(H|E) =

* Likelihood: probability of evidence given a hypothesis



Bayesian Inference

* Terminology:

E|H)P(H)
P(E)

P(H|FE) = P
1
Posterior

e Posterior: probability of hypothesis given evidence.



Two Envelopes Problem

* We have two envelopes:
— E, has two black balls, E, has one black, one red
— The red one is worth $100. Others, zero
— Open an envelope, see one ball. Then, can switch (or not).
— You see a black ball. Switch?

<] X



Two Envelopes Solution

P(Black ball|Fy)P(FEy)
P(Black ball)

* Let'ssolveit. P(E;|Black ball) =

Now plug in:  P(E,|Black ball L x 5
i ow IN: —
PTHE (Br[Black ball) = & hall
1,1
P(E;[Black ball) = ——2_2
2‘ atk ba Black ball

o @ @



Nailve Bayes

* Conditional Probability & Bayes:
P(Ey,...,E,|H)P(H)
P(Ey,Es, ..., E,)

P(H|Ey, Es,....E,) =

* If we further make the conditional independence assumption
(a.k.a. Naive Bayes)

E\|H)P(Es|H) --- P(E,|H)P(H)
P(E\, Es,. .., Ey,)

p
P(H|E,.By.....E,) = 2\



Nailve Bayes

* EXxpression
F\|H)P(Es|H)--- ,P(E,|H)P(H)

P(H|FE1,Es, ..., E,) = il 2
(E1, Es, ..., Ep)
* H:some class we’d like to infer from evidence
— We know prior P(H)
— Estimate P(E;|H) from data! (“training”)
— Very similar to envelopes problem.



Break & Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter
spam. A certain brand of software claims that it can detect 99% of
spam emails, and the probability for a false positive (a non-spam email
detected as spam) is 5%. Now if an email is detected as spam, then
what is the probability that it is in fact a nonspam email?

A. 5/104
B. 95/100
C. 1/100
D. 1/2



Break & Quiz

Q 3.1: 50% of emails are spam. Software has been applied to filter
spam. A certain brand of software claims that it can detect 99% of
spam emails, and the probability for a false positive (a non-spam email
detected as spam) is 5%. Now if an email is detected as spam, then
what is the probability that it is in fact a nonspam email?
S:Spam

. 5/104 gg Sg':escrzsgqas Spam
95/100 P(S) =50 % spam email
1/100 P(NS) = 50% not spam email

P(

P(

DS|NS) = 5% false positive, detected as spam but not spam
1/2 DS|S) = 99% detected as spam and it is spam

o0 ®mp

Applying Bayes Rule
P(NS|DS) = (P(DS|NS)*P(NS)) / P(DS) = (P(DS|NS)*P(NS)) / (P(DS,NS) + P(DS,S)) = (P(DS|NS)*P(NS)) /
(P(DS|NS)*P(NS) + P(DS|S)*P(S)) = 5/104



Break & Quiz

Q 3.2: A fair coin is tossed three times. Find the
probability of getting 2 heads and a tail

A. 1/8
B. 2/8
C. 3/8
D. 5/8



Break & Quiz

Q 3.2: A fair coin is tossed three times. Find the
probability of getting 2 heads and a tail

A. 1/8
B. 2/8
S={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
C. 3/8 P(2H, 1T)=(1/8) + (1/8) + (1/8) = 3/8
D. 5/8



Readings

Suggested reading:

Probability and Statistics: The Science of Uncertainty,
Michael J. Evans and Jeff S. Rosenthal
http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf

(Chapters 1-3, excluding “advanced” sections)


http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf
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