



# CS 540 Introduction to Artificial Intelligence **Probability**

University of Wisconsin-Madison  
**Spring 2026 Sections 1 & 2**

# Outline

- Probability
  - Basics: definitions and axioms
  - Random Variables (RVs) and joint distributions
  - Independence, conditional probability, chain rule
  - Bayes' Rule and Inference



# Basics: Outcomes & Events

- **Outcomes:** possible results of an **experiment**

$$\Omega = \underbrace{\{1, 2, 3, 4, 5, 6\}}_{\text{outcomes}}$$

- **Events:** subsets of outcomes we're interested in

$$\underbrace{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega}_{\text{events}}$$

- Always include  $\emptyset, \Omega$



# Basics: Probability Distribution

- We have outcomes and events
- Assign **probabilities**: for each event  $E, P(E) \in [0,1]$
- Back to our example

$\underbrace{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega}_{\text{events}}$

$$P(\{1, 3, 5\}) = 0.2, P(\{2, 4, 6\}) = 0.8$$



# Basics: Axioms

- Rules for probability:
  - For all events  $E$ ,  $P(E) \geq 0$
  - Always,  $P(\emptyset) = 0, P(\Omega) = 1$
  - For disjoint events,  $P(E_1 \cup E_2) = P(E_1) + P(E_2)$
- Easy to derive other laws. Ex: non-disjoint events

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

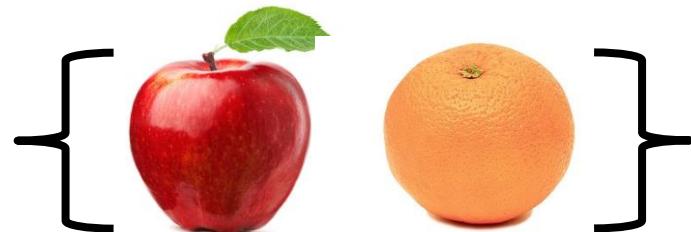
# Basics: Random Variables

- Intuitively: a number  $X$  that's random
- Mathematically:

*function that maps random outcomes to real values*

$$X : \Omega \rightarrow \mathbb{R}$$

- Why?
  - Previously, everything is a set.
  - Real values are easier to work with



# Basics: Random Variables



$$\longrightarrow X = 1 \longrightarrow P(X = 1)$$



$$\longrightarrow X = 2 \longrightarrow P(X = 2)$$



$$\longrightarrow X = 3 \longrightarrow P(X = 3)$$

# Basics: CDF

## Cumulative Distribution Function (CDF)

$$F_X(x) := P(X \leq x)$$



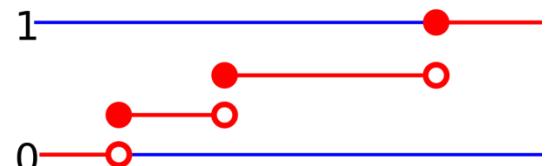
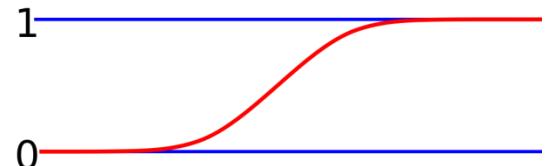
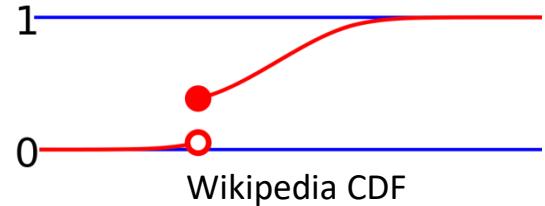
$$F_X(3) = 0.5$$

$$F_X(6) = 1$$

CDF for discrete probability distribution

CDF for continuous probability distribution

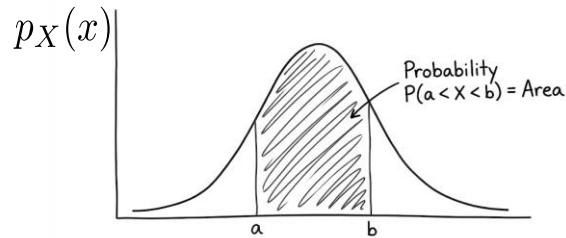
CDF for probability distribution with both discrete and continuous parts



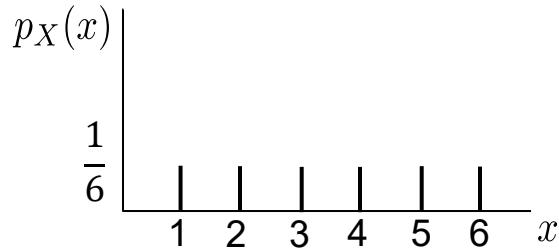
# Basics: PDF/PMF

Probability density / mass function  $p_X(x)$ :

A mathematical function that tells you how likely different outcomes are.



example of a continuous probability density function



example of a discrete probability mass function

# Basics: Expectation

Another advantage of RVs are ``summaries''

- Expectation:
  - The “average”  $E[X] = \sum_a a \times P(X=a)$
- Example of a single toss of a fair coin:
  - Success (**Heads**) is assigned the value 1.
  - Failure (**Tails**) is assigned the value 0.



$$E(X) = (1 \times P(X = 1)) + (0 \times P(X = 0))$$

$$E(X) = (1 \times 0.5) + (0 \times 0.5)$$

$$E(X) = 0.5$$

# Basics: Variance

- Variance:
  - A measure of “spread”

$$\text{Var}[X] = E[(X - E[X])^2]$$

- Example of a single toss of a fair coin:

$$\text{Var}(X) = ((1 - E[X])^2 \times P(X = 1)) + ((0 - E[X])^2 \times P(X = 0))$$

$$E(X) = (0.25 \times 0.5) + (0.25 \times 0.5)$$

$$E(X) = 0.25$$

# Break & Quiz

**Q 1.1:** Consider a fair six-sided die where the probability of landing on any specific face (1, 2, 3, 4, 5, or 6) is exactly  $P(x) = \frac{1}{6}$ . Based on these probabilities, what is the expected value  $E[X]$  for a single roll?:

- A. 3.0
- B. 3.5
- C. 4.0
- D. 21.0

# Break & Quiz

**Q 1.1:** Consider a fair six-sided die where the probability of landing on any specific face (1, 2, 3, 4, 5, or 6) is exactly

$P(x) = \frac{1}{6}$  Based on these probabilities, what is the expected value  $E[X]$  for a single roll?:

A. 3.0

$$E(X) = \left(1 \times \frac{1}{6}\right) + \left(2 \times \frac{1}{6}\right) + \left(3 \times \frac{1}{6}\right) + \left(4 \times \frac{1}{6}\right) + \left(5 \times \frac{1}{6}\right) + \left(6 \times \frac{1}{6}\right) = 3.5$$

B. 3.5

C. 4.0

D. 21.0

# Basics: Joint Distributions

- Move from one variable to several
- Joint distribution:  $P(X = a, Y = b)$ 
  - Why? Work with **multiple** types of uncertainty that correlate with each other



# Basics: Marginal Probability

- Given a joint distribution  $P(X = a, Y = b)$

- Get the distribution in just one variable:

$$P(X = a) = \sum_b P(X = a, Y = b)$$

- This is the “marginal” distribution.

| Eating We           |                       |                  |
|---------------------|-----------------------|------------------|
| 24                  |                       |                  |
| 1832                |                       |                  |
| Oct 1               | Ginger Beer           | 6                |
| 5                   | slice of orange and " | 10               |
| "                   | Rocking Egg 1/2 "     | 3                |
| Dec 11              | Dinner at Club        | 19               |
| "                   | Office                | 6                |
| 12                  | Breakfast             | 16               |
| 13                  | Breakfast             | 16               |
| "                   | Tea                   | 6                |
| 14                  | Breakfast             | 16               |
| 15                  | Breakfast             | 16               |
| 1833                |                       |                  |
| Jan 20              | Tea at Union Club     | 6                |
| 29                  | Breakfast             | 16               |
| "                   | Soup                  | 1                |
| Feb 10              | Soda Water            | 6                |
| 23                  | Oranges               | 16               |
| March 22            | 3rd Apples            | 8                |
| April 30            | Brinjals & Oranges    | 10               |
| May 1 <sup>st</sup> | Breakfast             | 16               |
| "                   | Water                 | 6                |
| 14                  | Tea &                 | 11               |
| June 1              | Tea                   | 1                |
|                     |                       | <u>£ 1 19 11</u> |

# Example: super blurry camera

- One pixel, 1-bit color sensor (green=trees, white=snow)
- Model T: comes with 1-bit temperature sensor (hot, cold)

# Basics: Marginal Probability

$$P(X = a) = \sum_b P(X = a, Y = b)$$

|      | green   | white   |
|------|---------|---------|
| hot  | 150/365 | 45/365  |
| cold | 50/365  | 120/365 |

$$[P(\text{hot}), P(\text{cold})] = [\frac{195}{365}, \frac{170}{365}]$$

# Probability Tables

- Write our distributions as tables
- # of entries? 4.
  - If we have  $n$  variables with  $k$  values, we get  $k^n$  entries
  - **Big!** For a 1080p screen, 12 bit color, size of table:  $10^{7490589}$
  - No way of writing down all terms



# Independence

- Independence between RVs:

$$P(X, Y) = P(X)P(Y)$$

- Example: simultaneously toss a coin and roll a die
- Why useful? Go from  $k^n$  entries in a table to  $\sim kn$
- Expresses joint as **product** of marginals
- requires domain knowledge

# Conditional Probability

For when we know something (i.e.  $Y=b$ )

$$P(X = a|Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$

|      | green   | white   |
|------|---------|---------|
| hot  | 150/365 | 45/365  |
| cold | 50/365  | 120/365 |

$$P(cold|white) = \frac{P(cold,white)}{P(white)} = \frac{120}{45+120} = 0.73$$

# Conditional independence

Same as independence, but conditioned on something

- It requires domain knowledge

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

# Chain Rule

- Apply repeatedly,

$$P(A_1, A_2, \dots, A_n)$$

$$= P(A_1)P(A_2|A_1)P(A_3|A_2, A_1) \dots P(A_n|A_{n-1}, \dots, A_1)$$

- Note: still big!

- If some **conditional independence**, can factor!



# Chain Rule

Example drawing 3 Aces from a 52-card deck:

- Event  $A_1$ : The 1st card is an Ace.
- Event  $A_2$ : The 2nd card is an Ace.
- Event  $A_3$ : The 3rd card is an Ace.

$$P(A_1, A_2, A_3) = P(A_1)P(A_2 | A_1)P(A_3 | A_1, A_2)$$



# Chain Rule

- Probability of the 1st Ace:  $P(A_1) = \frac{4}{52}$
- Probability of the 2<sup>nd</sup> Ace :  $P(A_2|A_1) = \frac{3}{51}$
- Probability of the 3rd Ace:  $P(A_3|A_1, A_2) = \frac{2}{50}$
- Probability of drawing 3 Aces:

$$P(A_1, A_2, A_3) = P(A_1)P(A_2|A_1)P(A_3|A_1, A_2)$$

$$P(A_1, A_2, A_3) = \frac{4}{52} \times \frac{3}{51} \times \frac{2}{50} = \frac{24}{132600} \approx 0.00018$$

# Break & Quiz

**Q 2.1:** Given joint distribution table:

|      | Sunny   | Cloudy | Rainy  |
|------|---------|--------|--------|
| hot  | 150/365 | 40/365 | 5/365  |
| cold | 50/365  | 60/365 | 60/365 |

What is the probability the temperature is hot given the weather is cloudy?

- A. 40/365
- B. 2/5
- C. 3/5
- D. 195/365

# Break & Quiz

**Q 2.1:** Back to our joint distribution table:

|      | Sunny   | Cloudy | Rainy  |
|------|---------|--------|--------|
| hot  | 150/365 | 40/365 | 5/365  |
| cold | 50/365  | 60/365 | 60/365 |

What is the probability the temperature is hot given the weather is cloudy?

- A. 40/365
- B. 2/5**
- C. 3/5
- D. 195/365

# Break & Quiz

**Q 2.2:** Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?

- A. 0.3
- B. 0.06
- C. 0.24
- D. 0.2

# Break & Quiz

**Q 2.2:** Of a company's employees, 30% are women and 6% are married women. Suppose an employee is selected at random. If the employee selected is a woman, what is the probability that she is married?

- A. 0.3
- B. 0.06
- C. 0.24
- D. 0.2**

# Bayes' Rule

**Theorem:** For any events A and B we have

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

**Proof:** Apply the chain rule two different ways:

$$\begin{aligned} P(A, B) &= P(A|B) \cdot P(B) \\ &= P(B|A) \cdot P(A) \end{aligned} \quad \left. \begin{aligned} P(A|B) &= \frac{P(B|A) \cdot P(A)}{P(B)} \end{aligned} \right\}$$

# Reasoning With Conditional Distributions

- Evaluating probabilities:
  - Wake up with a sore throat.
  - Do I have the flu?
- Logic approach:  $S \rightarrow F$ 
  - Too strong.
- **Inference:** compute probability given evidence  $P(F|S)$ 
  - Can be much more complex!



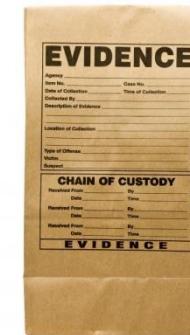
# Using Bayes' Rule

- Want:  $P(F|S)$
- **Bayes' Rule:**  $P(F|S) = \frac{P(F,S)}{P(S)} = \frac{P(S|F)P(F)}{P(S)}$
- Parts:
  - $P(S) = 0.1$  Sore throat rate
  - $P(F) = 0.01$  Flu rate
  - $P(S|F) = 0.9$  Sore throat rate among flu sufferers

**So:**  $P(F|S) = 0.09$

# Using Bayes' Rule

- Interpretation  $P(F|S) = 0.09$ 
  - Much higher chance of flu than normal rate (0.01).
  - Very different from  $P(S|F) = 0.9$ 
    - 90% of folks with flu have a sore throat
    - But, only 9% of folks with a sore throat have flu
- Idea: **update probabilities from evidence**

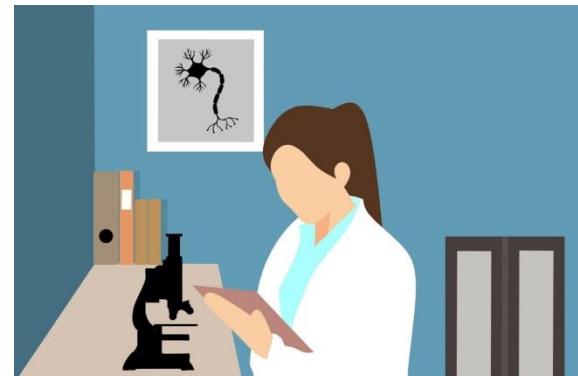


# Bayesian Inference

- Fancy name for what we just did. Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- $H$  is the hypothesis
- $E$  is the evidence



# Bayesian Inference

- Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} \longleftarrow \text{Prior}$$

- Prior: estimate of the probability **without** evidence

# Bayesian Inference

- Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

 **Likelihood**

- Likelihood: probability of evidence **given a hypothesis**

# Bayesian Inference

- Terminology:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

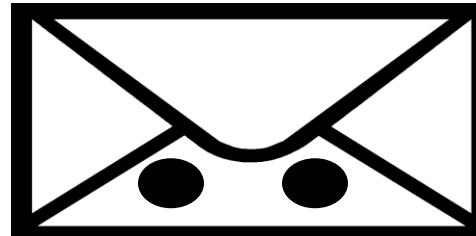
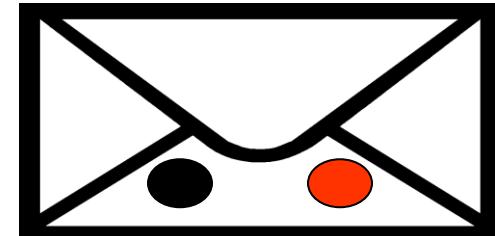
↑

**Posterior**

- Posterior: probability of hypothesis **given evidence**.

# Two Envelopes Problem

- We have two envelopes:
  - $E_1$  has two black balls,  $E_2$  has one black, one red
  - The **red** one is worth \$100. Others, zero
  - Open an envelope, see one ball. Then, can switch (or not).
  - You see a black ball. **Switch?**



# Two Envelopes Solution

- Let's solve it.

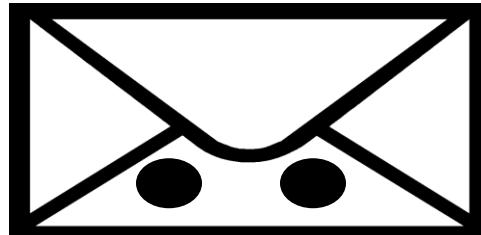
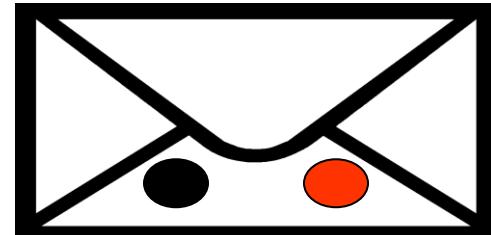
$$P(E_1|\text{Black ball}) = \frac{P(\text{Black ball}|E_1)P(E_1)}{P(\text{Black ball})}$$

- Now plug in:

$$P(E_1|\text{Black ball}) = \frac{1 \times \frac{1}{2}}{P(\text{Black ball})}$$

$$P(E_2|\text{Black ball}) = \frac{\frac{1}{2} \times \frac{1}{2}}{P(\text{Black ball})}$$

**So switch!**



# Naïve Bayes

- Conditional Probability & Bayes:

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1, \dots, E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

- If we further make the **conditional independence assumption (a.k.a. Naïve Bayes)**

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H) \cdots P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

# Naïve Bayes

- Expression

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H) \cdots P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

- $H$ : some class we'd like to infer from evidence
  - We know prior  $P(H)$
  - Estimate  $P(E_i|H)$  from data! (“training”)
  - Very similar to envelopes problem.

# Break & Quiz

**Q 3.1:** 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

- A.  $5/104$
- B.  $95/100$
- C.  $1/100$
- D.  $1/2$

# Break & Quiz

**Q 3.1:** 50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

- A. **5/104**
- B. 95/100
- C. 1/100
- D. 1/2

S : Spam

NS: Not Spam

DS: Detected as Spam

$P(S) = 50\%$  spam email

$P(NS) = 50\%$  not spam email

$P(DS|NS) = 5\%$  false positive, detected as spam but not spam

$P(DS|S) = 99\%$  detected as spam and it is spam

Applying Bayes Rule

$$P(NS|DS) = (P(DS|NS)*P(NS)) / P(DS) = (P(DS|NS)*P(NS)) / (P(DS,NS) + P(DS,S)) = (P(DS|NS)*P(NS)) / (P(DS|NS)*P(NS) + P(DS|S)*P(S)) = 5/104$$

# Break & Quiz

**Q 3.2:** A fair coin is tossed three times. Find the probability of getting 2 heads and a tail

- A.  $1/8$
- B.  $2/8$
- C.  $3/8$
- D.  $5/8$

# Break & Quiz

**Q 3.2:** A fair coin is tossed three times. Find the probability of getting 2 heads and a tail

- A.  $1/8$
- B.  $2/8$
- C.  $3/8$**
- D.  $5/8$

$$S = \{ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}$$
$$P(2H, 1T) = (1/8) + (1/8) + (1/8) = 3/8$$

# Readings

## **Suggested reading:**

Probability and Statistics: The Science of Uncertainty,

Michael J. Evans and Jeff S. Rosenthal

<http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf>

(Chapters 1-3, excluding “advanced” sections)