CS 540 Introduction to Artificial Intelligence
Statistics and Linear Algebra

University of Wisconsin-Madison

Spring 2026 Sections 1 & 2



Announcements

HW 1 will be released tomorrow:
— Due Wednesday Feb 4 at 11:59PM

TA discussion (optional) — review session every
Wednesday at 5:30 PM in Morgridge Hall 3610

Class roadmap: Linear Algebra & PCA -
Logic

suonepuno- Ajsop

NLP



Outline

* Probability Review
* Statistics
* Linear Algebra




Review: Random Variables

* Intuitively: a number X that’s random
 Mathematically:
function that maps random outcomes to real values

X:Q—=R
e Why?

— Previously, everything is a set. {
— Real values are easier to work with




Review: Joint Distributions

e Move from one variable to several
* Joint distribution: P(X =a,Y =)

— Why? Work with multiple types of uncertainty that
correlate with each other




Review: Marginal Probability
* Given a joint distribution P(X =a,Y =)

— Get the distribution in just one variable:

P(X =a)=Y, P(X =a,Y =b)

— This is the “marginal” distribution.




Review: Conditional Probability

For when we know something (i.e. Y=Db)

P(X =alY =0) =

P(cold|white) =

P(X =a,Y =)
P(Y =)
green | white
hot 150/365 | 45/365
cold | 50/365 [120/365
P(cold,white) _ 120 =0.73

P(white)

45+120




Review:Bayes’ Rule

Theorem: For any events A and B we have

P(B|A) - P(A)

P(A|B) = )

Proof: Apply the chain rule two different ways:
P(A,B) =P(A|B) - P(B) P(B|A) - P(4)

= P(B|A)-PA) | " rm



Review: Bayesian Inference

Conditional Probability & Bayes Rule:
E|H)P(H)
P(E)

Evidence E: what we can observe

pE) = 2

Hypothesis H: what we’d like to infer from evidence
— Need to plug in prior, likelihood, etc.

Usually do not know these probabilities. How to estimate?



Break & Quiz

Q 1.1: Alice knows that for any email she receives, the probability it is
spam is 0.4, and the probability it has an all-capitalized subject line is 0.8.
She also knows that if an email is spam, the probability that the subject
line is all capitalized is 0.6. If she sees an email in her inbox with an all-
capitalized subject line, what is the probability that it is spam?

A. 6/25
B. 3/10
C. 2/5
D. 3/5



Break & Quiz

Q 1.1: Alice knows that for any email she receives, the probability it is
spam is 0.4, and the probability it has an all-capitalized subject line is 0.8.
She also knows that if an email is spam, the probability that the subject
line is all capitalized is 0.6. If she sees an email in her inbox with an all-
capitalized subject line, what is the probability that it is spam?

P(spam|capitalized) = —(capitalized|spam) xP(spam) _ o.6xo4

B. 3/10 P(capitalized) 08
C. 2/5
D. 3/5




Correlation vs. Causation

. Conditional probabilities only define
correlation (aka association)

. P(Y|X) “large” does not mean X causes Y
. Example: X=yellow finger, Y=lung cancer
. Common cause: smoking
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Statistics

14



Samples and Estimation

e Usually, we don’t know the distribution P
— Instead, we see a bunch of samples

* Typical statistics problem: estimate
distribution from samples
— Estimate probabilities P(H), P(E), P(E|H)
— Estimate the mean F[X]
— Estimate parameters Fy(X)




Samples and Estimation

* Example: Bernoulli with parameter p
(i.e. a weighted coin flip)

-P(X=1)=p
— Mean E[X]isp




Examples: Sample Mean

* Bernoulli with parameter p

e Seesamples T1,22,...,%y
— Estimate mean with sample mean

fX] = %zn:x
1=1

— That is, counting heads




Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate E[X?]

A. 9/8
B. 15/8
C. 15

D. There aren’t enough samples to estimate E[X?]



Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate E[X*]

9/8

15/8

1.5

. There aren’t enough samples to estimate E[X?]

o 0w



Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate E[X*]

1
B. 15/8 =§(02+1+1+4+4+0+1+4)=15/8
C. 15

D. There aren’t enough samples to estimate E[X?]



Estimating Multinomial Parameters

. k-sized die (special case: k=2 coin)
. Face i has probability p, for i=1...k

. In nrolls, we observe face i showing up n; times
k

n;,=n
i=1

- Estimate (p; _p,) from this data (n, n,)



Maximum Likelihood Estimate (MLE)

. The MLE of multinomial parameters (P1, .-, Px)
~
Pi = T

. Estimate using frequencies




Break & Quiz

Q 2.1: Acoiniis flipped 20 times, and it lands on heads 12
times. What is the Maximum Likelihood Estimate (MLE) for
the probability of the coin landing on heads, P (heads)?

0.4
0.5
0.6
12

o0 P



Break & Quiz

Q 2.1: Acoiniis flipped 20 times, and it lands on heads 12
times. What is the Maximum Likelihood Estimate (MLE) for
the probability of the coin landing on heads, P (heads)?

A- 04 . Number of Heads 12

B. 05 p= Total flips 20 06
C. 0.6

D. 12



Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0?

None.

Between 5 and 50, exclusive.
Between 50 and 100, inclusive.
Between 50 and 99, inclusive.

oo ®p



Break & Quiz

Q 2.2: You are empirically estimating P(X) for some random
variable X that takes on 100 values. You see 50 samples. How
many of your P(X=a) estimates might be 0? o
you dontsee a
number at all in the 50

samples then the
estimated probability of

#samples taking value a
50

For each a, your estimateis P(X = a) =

A. None. that number is 0.

B. Between 5 and 50, exclusive. You can see up to 50
. . different values in 50

C. Between 50 and 100, inclusive. samples. On the other

D. Between 50 and 99, inclusive. hand, all 50 samples

might have the same
value in which case 99
values were never
seen.



Regularized Estimate

Hyperparameter € > 0
R n; + €
Pi = ke

. Avoids zero when n is small

Biased, but has smaller variance

Equivalent to a specific Maximum A Posteriori (MAP)
estimate, or smoothing



Estimating 1D Gaussian Parameters

Gaussian (aka Normal) distribution N(u, 0%)

— True mean u, true variance o*

Observe n data points from this distribution
X1y ) Xp,

Estimate u, o2 from this data

34.19 34.1%
[} (o)
0.1% 2i1A) 13.6% 2.1% 0.1%

T T T
Wikipedia: Normal distribution M—30 HM—20 MP—O M M+0  p+20 p+30



Estimating 1D Gaussian Parameters

X, + e+ xp

. Mean estimate £ = m

. Variance estimates

2 — Z?=1(xl _ ﬁ)z
n—1
2 _ ?=1(xi _ﬁ)z
n

_ Unbiased s

- MLE

o



Estimation Theory

- Is the sample mean a good estimate of the true
mean?
~ Law of large numbers

aaaaaaaaaaa

— Central limit theorems

Wolfram Demo



Estimation Errors

With finite samples, likely error in the estimate.
Mean squared error

~ MSE[8] =E[(d—6)"]

Bias / Variance Decomposition

- MsE[8] = E[(6 - E[6])°] + (E[6] - 6)

Variance Bias



Bias / Variance

Low Bias High Bias
%
Low Variance %y
High Variance A \ ll

Wikipedia: Bias-variance tradeoff
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Linear Algebra
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Linear Algebra: What is it good for?

* Study of Linear functions: simple, tractable
* |n Al/ML: building blocks for all models

— e.g., linear regression; part of neural networks

Y
oo
MU
i

§
{

output layer

)
L

input layer

hidden layer 1 hidden layer 2
Hieu Tran Stanford CS231n

34



Basics: Vectors X2
x =|x3] € R®
* Many interpretations Z
— List of values (represents information) - _4
— Point in space 1 ,%ﬁ;,; g
* Dimension: number of values: x € R4 /L

* Al/ML: often use very high dimensions:

— Ex: images! | B
y
_.,( 'Q_* . —(—3 —+—> car

predicted
class

pooling convolutional pooling fully-connecte d

input image

Cezanne Camacho CNN



Basics: Matrices

* Many interpretations A1q
— Table of values; list of vectors A = Az

— Represent linear transformations Az
Agq

— Apply to a vector, get another vector -

* Dimensions: # rows x # columns, A € R™*"

— indexing

36



Basics: Transposition

* Transposes: flip rows and columns

— Vector: standard is a column. Transpose: row vector

— Matrix:gofromm Xnton xXm

$T:[QZ1 X9 333}

A:[All Ap Aiz| AT = [ A
Asp Age Ao




Matrix & Vector Operations

* Vectors
— Addition: component-wise T1+ Y1
* Commutative:x+y =y +x T+Y= |T2TY2
* Associative: (x+y)+z=x+ (y+ 2) T3 T Y3
— Scalar Multiplication cx |
* Uniform stretch / scaling CT = |CT2
_01173_




Matrix & Vector Operations

* Vector products
— Inner product (e.g., dot product)

Y1
< T,y >= Q?Ty — [Il Lo 333} Yo | = x1Y1 + T2Y2 + T3Y3
Y3
— Outer product
L1 L1Yr L1Y2 T1Y3
fyT = | X2 [?Jl Y2 ys] = | T2Y1 T2Y2 T2Y3
| L3 ] | L3Y1  X3Y2  X3Y3 |




Matrix & Vector Operations

* x and y are orthogonal if (x,y) = 0.
* Vector norms: “length”

mn
lzlle = | > 7
\&

* Asetof vectors {x, x,,..x,}is orthonormal if:
— For all pairs x;, Xj we have (xl-, xj) =0
— For all x;, we have HxHQ =1



Break & Quiz

Q 3.1: Given two vectorsu =(2, -3, 1]and v = [4, 5, -2],
what is the inner product {u, v)?

[8,-15,-2]
-9
25
. =5

oo ®p



Break & Quiz

Q 3.1: Given two vectorsu =(2, -3, 1]and v = [4, 5, -2],
what is the inner product {u, v)?

[8)_15)-2]

_9 <uv>=2X44+(-3)x5+1x(-2)=-9
25

. =5

o0 ®>



Matrix & Vector Operations

* Matrices:
— Addition: Component-wise A+ B=

A1+ Bi1 Aig+ B
Aoy + Bay Agg + Bao
As1 + Bs;  Ass + Bso

— Commutative, Associative

CAH CA12
— Scalar Multiplication cA= |cAy; Ay

— “Stretching” the linear transformation cAsz1 cAso




Matrix & Vector Operations

* Matrix-Vector multiplication:
— Linear transformation; plug in vector, get another vector
— Each entry in Ax is the inner product of a row of A with x

x € R* A € RM*"

(A, x) | [ A1axr + Appxy + o+ Ay
Ay = | (A20%) Az1Xx1 + AgpXy + -+ Agpy

_(Am;; x)- -Amlxl + Amzxz paliii o Amnxn-



Matrix & Vector Operations

Ex: feedforward neural networks. Input x.

* QOutput of layer k is

nonlinearity

lJ

f¥(@) = a(Wy 5V (x)))

* T
[ Output of layer k-1: vector Wikipedia

Output of layer k: vector Weight matrix for layer k:
Note: linear transformation!



Matrix & Vector Operations

* Matrix multiplication

— A € R™" B € R™P then AB € R™*P
— “Composition” of linear transformations

— Not commutative in general!

AB + BA

3,1 3,2

4,1 4,2

Wikipedia 46



Identity Matrix

— Like “1”
— Multiplying by it gets back
the same matrix or vector

— Rows & columns are the
“standard basis vectors” ¢;

J —




Q3.2: What s

A.[-111])
B.[211]
C.[131]
D.[1.521]

Break & Quiz

— O =
— = R




Q 3.2: What s

A [-111]
B.[211]
C.[131]
D.[1.521]

Break & Quiz

— O =
— = R

49



Q3.2: What s

A [-111]
B.[211]
C.[131]
D.[1.521]"

Break & Quiz

— O =

— = DO

Check dimensions: answer must be
3 x 1 matrix (i.e., column vector).

R

Ox14+1x%2
0*3+1=x1
O0x14+1x%1

I

50



Break & Quiz

Q 3.3: Given matrices 4 € R™*" B ¢ Rde’ (' € Rpxn
What are the dimensions of BAC”

A.nxp
B.dxp
C.dxn
D. Undefined



Break & Quiz

* Q3.3: Given matrices A € R™*" B € R¥*™ ( ¢ RPX"
What are the dimensions of BACT

A.nxp
B.dxp
C.dxn
D. Undefined



Break & Quiz

* Q3.3: Given matrices A € R™*" B € R¥*™ ( ¢ RPX"
What are the dimensions of BACT

To rule out (D), check that for
each pair of adjacent matrices

XY, the # of columns of X = # of
° A'nXp rows of Y

e B.dxp

Then, B has d rows so solution
e C.dxn must have d rows. CAT has p
columns so solution has p

e D. Undefined columns.



Break & Quiz

Q 3.4: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
B. Always
C. Sometimes



Break & Quiz

Q 3.4: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
B. Always
C. Sometimes

55



Break & Quiz

Q 3.4: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never

Matrix multiplication is

B. AIWayS not necessarily

commutative.

C. Sometimes

56



Readings

« Local classes: Math/Stat 431

- Suggested reading:

— Probability and Statistics: The Science of Uncertainty, Michael J.
Evans and Jeff S. Rosenthal
http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf

(Chapters 1-3, excluding “advanced” sections)

— Textbook: Artificial Intelligence: A Modern Approach (4th edition).
Stuart Russell and Peter Norvig. Pearson, 2020. Appendix A


http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf
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