

CS 540 Introduction to Artificial Intelligence **Statistics and Linear Algebra**

University of Wisconsin-Madison

Spring 2026 Sections 1 & 2

Announcements

- **HW 1 will be released tomorrow:**
 - Due **Wednesday Feb 4 at 11:59PM**
- TA discussion (optional) – review session every Wednesday at 5:30 PM in Morgridge Hall 3610

Statistics and Linear Algebra
Linear Algebra & PCA
Logic
NLP

Mostly Foundations

Outline

- Probability Review
- Statistics
- Linear Algebra

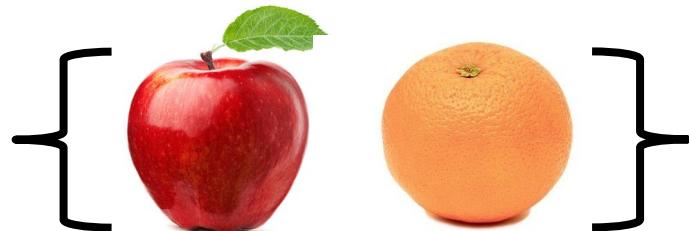
Review: Random Variables

- Intuitively: a number X that's random
- Mathematically:

function that maps random outcomes to real values

$$X : \Omega \rightarrow \mathbb{R}$$

- Why?
 - Previously, everything is a set.
 - Real values are easier to work with



Review: Joint Distributions

- Move from one variable to several
- Joint distribution: $P(X = a, Y = b)$
 - Why? Work with **multiple** types of uncertainty that correlate with each other

Review: Marginal Probability

- Given a joint distribution $P(X = a, Y = b)$

- Get the distribution in just one variable:

$$P(X = a) = \sum_b P(X = a, Y = b)$$

- This is the “marginal” distribution.

Eating W ^e		
24		
1832		
Oct 1	Ginger Beer	6
5	slice of orange w/ " 16 "	
"	Rocking w/ " 3 " } 19 "	
Dec 11	Dinner at Club	26
"	Office	6
12	Breakfast	16
13	Breakfast	16
"	Soda	6
14	Breakfast	16
15	Breakfast	16
1833		
Jan 29	Soda at Union Club	6
29	Breakfast	16
"	Soup	1
Feb 10	Soda Water	6
23	Oranges	16
March 22	3rd tables 8	1
April 30	Brinjals w/ oranges	10
May 1 st	Breakfast	16
"	Waffles	6 2
14	Soda w/	11
June 1	Soda	1
		<u>£ 1 19 11</u>

Review: Conditional Probability

For when **we know something** (i.e. $Y=b$)

$$P(X = a|Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$

	green	white
hot	150/365	45/365
cold	50/365	120/365

$$P(cold|white) = \frac{P(cold,white)}{P(white)} = \frac{120}{45+120} = 0.73$$

Review: Bayes' Rule

Theorem: For any events A and B we have

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Proof: Apply the chain rule two different ways:

$$\begin{aligned} P(A, B) &= P(A|B) \cdot P(B) \\ &= P(B|A) \cdot P(A) \end{aligned} \quad \left. \begin{aligned} P(A|B) &= \frac{P(B|A) \cdot P(A)}{P(B)} \end{aligned} \right\}$$

Review: Bayesian Inference

- Conditional Probability & Bayes Rule:

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)}$$

- Evidence E : what we can observe
- Hypothesis H : what we'd like to infer from evidence
 - Need to plug in prior, likelihood, etc.
- Usually do not know these probabilities. How to estimate?

Break & Quiz

Q 1.1: Alice knows that for any email she receives, the probability it is spam is 0.4, and the probability it has an all-capitalized subject line is 0.8. She also knows that if an email is spam, the probability that the subject line is all capitalized is 0.6. If she sees an email in her inbox with an all-capitalized subject line, what is the probability that it is spam?

- A. $6/25$
- B. $3/10$
- C. $2/5$
- D. $3/5$

Break & Quiz

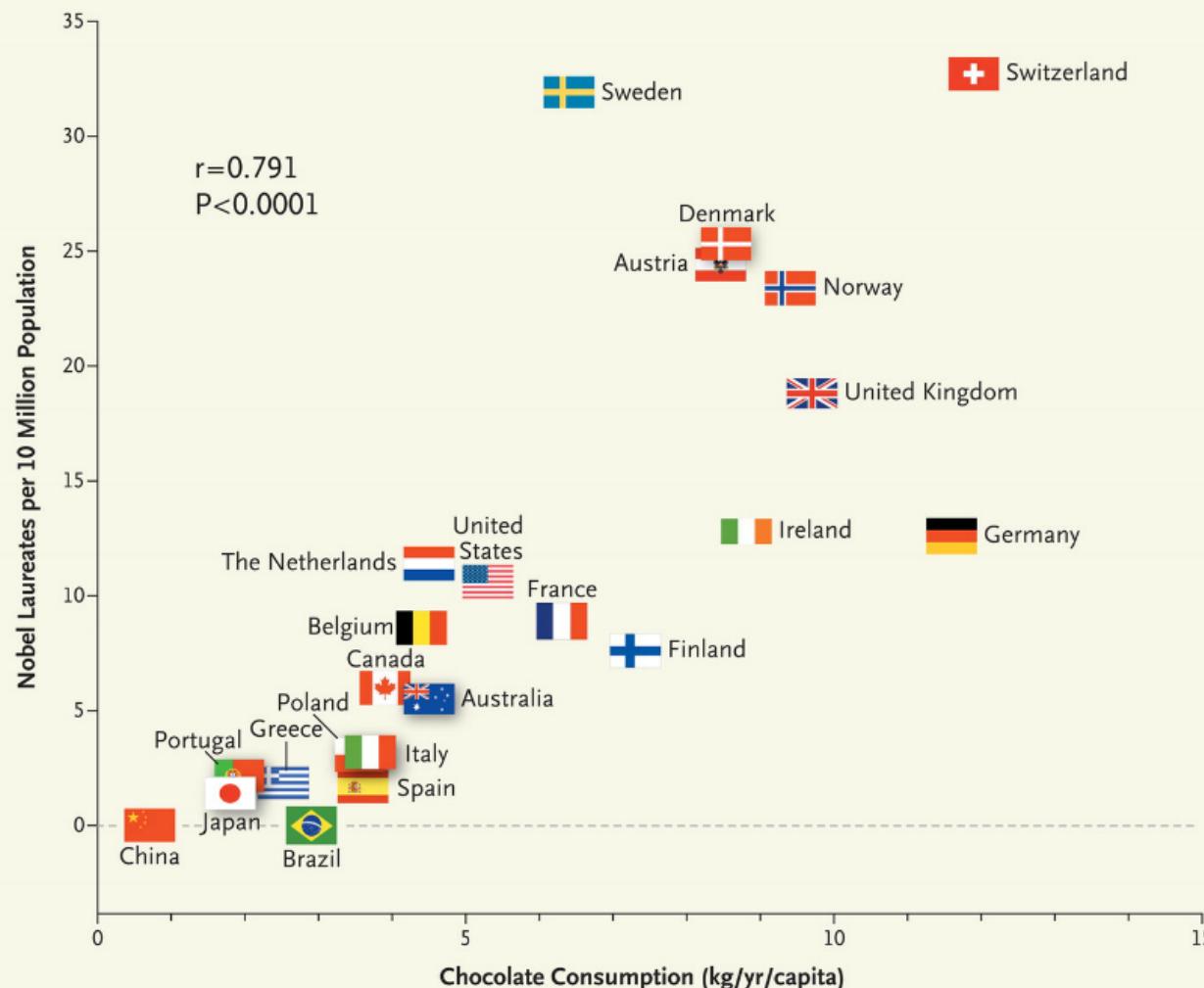
Q 1.1: Alice knows that for any email she receives, the probability it is spam is 0.4, and the probability it has an all-capitalized subject line is 0.8. She also knows that if an email is spam, the probability that the subject line is all capitalized is 0.6. If she sees an email in her inbox with an all-capitalized subject line, what is the probability that it is spam?

- A. 6/25
- B. 3/10**
- C. 2/5
- D. 3/5

$$P(\text{spam}|\text{capitalized}) = \frac{P(\text{capitalized}|\text{spam}) \times P(\text{spam})}{P(\text{capitalized})} = \frac{0.6 \times 0.4}{0.8}$$

Correlation vs. Causation

- Conditional probabilities only define correlation (aka association)
- $P(Y|X)$ “large” does not mean X causes Y
- Example: X=yellow finger, Y=lung cancer
- Common cause: smoking



Statistics

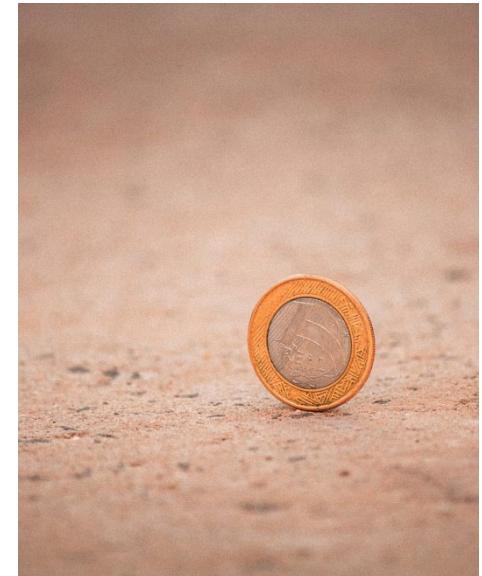
Samples and Estimation

- Usually, we don't know the distribution P
 - Instead, we see a bunch of samples
- Typical statistics problem: **estimate distribution** from samples
 - Estimate probabilities $P(H)$, $P(E)$, $P(E|H)$
 - Estimate the mean $E[X]$
 - Estimate parameters $P_\theta(X)$

Samples and Estimation

- Example: Bernoulli with parameter p
(i.e. a weighted coin flip)

- $P(X = 1) = p$
- Mean $E[X]$ is p



Examples: Sample Mean

- Bernoulli with parameter p
- See samples x_1, x_2, \dots, x_n
 - Estimate mean with **sample mean**

$$\hat{\mathbb{E}}[X] = \frac{1}{n} \sum_{i=1}^n x_i$$

- That is, counting heads

Break & Quiz

Q 2.1: You see samples of X given by
[0,1,1,2,2,0,1,2]. Empirically estimate $\mathbb{E}[X^2]$

- A. 9/8
- B. 15/8
- C. 1.5
- D. There aren't enough samples to estimate $\mathbb{E}[X^2]$

Break & Quiz

Q 2.1: You see samples of X given by $[0,1,1,2,2,0,1,2]$. Empirically estimate $\mathbb{E}[X^2]$

- A. $9/8$
- B. $15/8$**
- C. 1.5
- D. There aren't enough samples to estimate $\mathbb{E}[X^2]$

Break & Quiz

Q 2.1: You see samples of X given by $[0,1,1,2,2,0,1,2]$. Empirically estimate $\mathbb{E}[X^2]$

- A. $9/8$
- B. $15/8$**
- C. 1.5
- D. There aren't enough samples to estimate $\mathbb{E}[X^2]$

$$\begin{aligned} E[X^2] &\approx \frac{1}{n} \sum_i X_i^2 \\ &= \frac{1}{8} (0^2 + 1 + 1 + 4 + 4 + 0 + 1 + 4) = 15/8 \end{aligned}$$

Estimating Multinomial Parameters

- k -sized die (special case: $k=2$ coin)
- Face i has probability p_i , for $i=1\dots k$
- In n rolls, we observe face i showing up n_i times

$$\sum_{i=1}^k n_i = n$$

- Estimate (p_1, \dots, p_k) from this data (n_1, \dots, n_k)

Maximum Likelihood Estimate (MLE)

- The MLE of multinomial parameters $(\hat{p}_1, \dots, \hat{p}_k)$

$$\hat{p}_i = \frac{n_i}{n}$$

- Estimate using frequencies

Break & Quiz

Q 2.1: A coin is flipped 20 times, and it lands on heads 12 times. What is the Maximum Likelihood Estimate (MLE) for the probability of the coin landing on heads, P (heads)?

- A. 0.4
- B. 0.5
- C. 0.6
- D. 12

Break & Quiz

Q 2.1: A coin is flipped 20 times, and it lands on heads 12 times. What is the Maximum Likelihood Estimate (MLE) for the probability of the coin landing on heads, P (heads)?

- A. 0.4
- B. 0.5
- C. 0.6**
- D. 12

$$\hat{p} = \frac{\text{Number of Heads}}{\text{Total flips}} = \frac{12}{20} = 0.6$$

Break & Quiz

Q 2.2: You are empirically estimating $P(X)$ for some random variable X that takes on 100 values. You see 50 samples. How many of your $P(X=a)$ estimates might be 0?

- A. None.
- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- D. Between 50 and 99, inclusive.

Break & Quiz

Q 2.2: You are empirically estimating $P(X)$ for some random variable X that takes on 100 values. You see 50 samples. How many of your $P(X=a)$ estimates might be 0?

For each a , your estimate is $P(X = a) = \frac{\text{\#samples taking value } a}{50}$

- A. None.
- B. Between 5 and 50, exclusive.
- C. Between 50 and 100, inclusive.
- D. Between 50 and 99, inclusive.**

If you don't see a number at all in the 50 samples then the estimated probability of that number is 0.

You can see up to 50 different values in 50 samples. On the other hand, all 50 samples might have the same value in which case 99 values were never seen.

Regularized Estimate

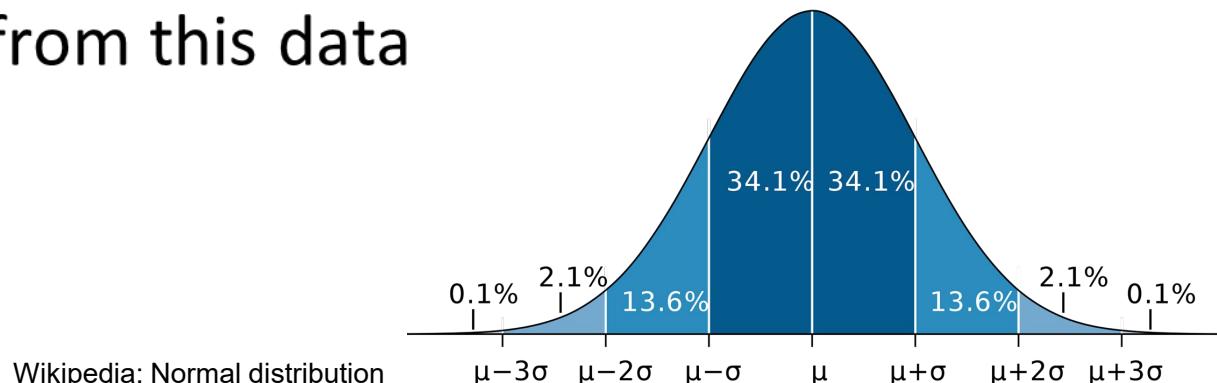
- Hyperparameter $\epsilon > 0$

$$\hat{p}_i = \frac{n_i + \epsilon}{n + k\epsilon}$$

- Avoids zero when n is small
- Biased, but has smaller variance
- Equivalent to a specific Maximum A Posteriori (MAP) estimate, or smoothing

Estimating 1D Gaussian Parameters

- Gaussian (aka Normal) distribution $N(\mu, \sigma^2)$
 - True mean μ , true variance σ^2
- Observe n data points from this distribution
$$x_1, \dots, x_n$$
- Estimate μ, σ^2 from this data

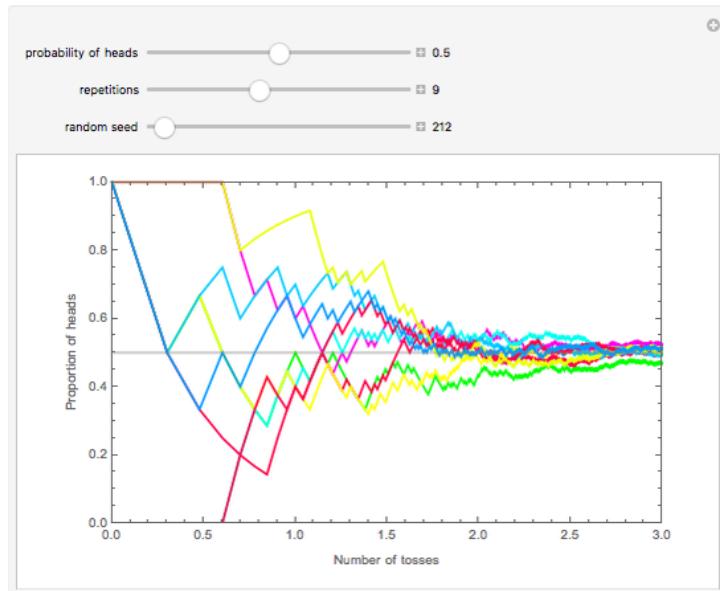


Estimating 1D Gaussian Parameters

- Mean estimate $\hat{\mu} = \frac{x_1 + \cdots + x_n}{n}$
- Variance estimates
 - Unbiased $s^2 = \frac{\sum_{i=1}^n (x_i - \hat{\mu})^2}{n - 1}$
 - MLE $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (x_i - \hat{\mu})^2}{n}$

Estimation Theory

- Is the sample mean a good estimate of the true mean?
 - Law of large numbers
 - Central limit theorems



Wolfram Demo

Estimation Errors

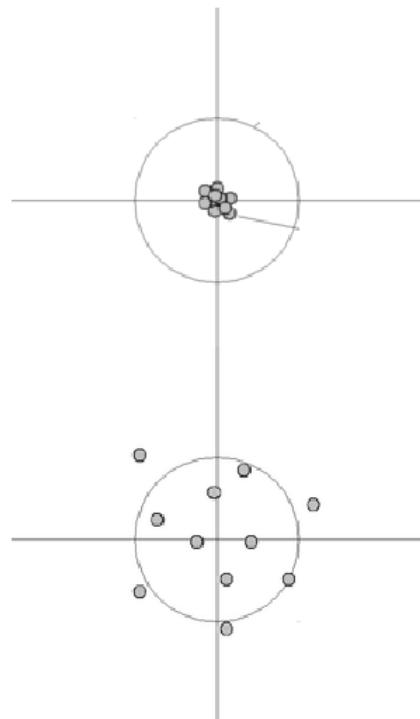
- With finite samples, likely error in the estimate.
- Mean squared error
 - $\text{MSE}[\hat{\theta}] = \mathbb{E}[(\hat{\theta} - \theta)^2]$
- Bias / Variance Decomposition
 - $\text{MSE}[\hat{\theta}] = \mathbb{E}[(\hat{\theta} - E[\hat{\theta}])^2] + (E[\hat{\theta}] - \theta)^2$

Variance

Bias

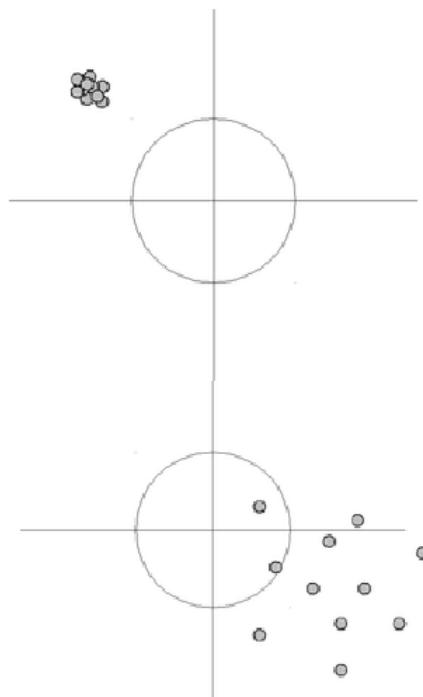
Bias / Variance

Low Bias
Low Variance



High Variance

High Bias

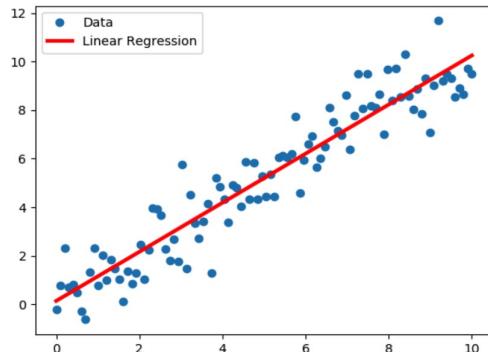


Wikipedia: Bias-variance tradeoff

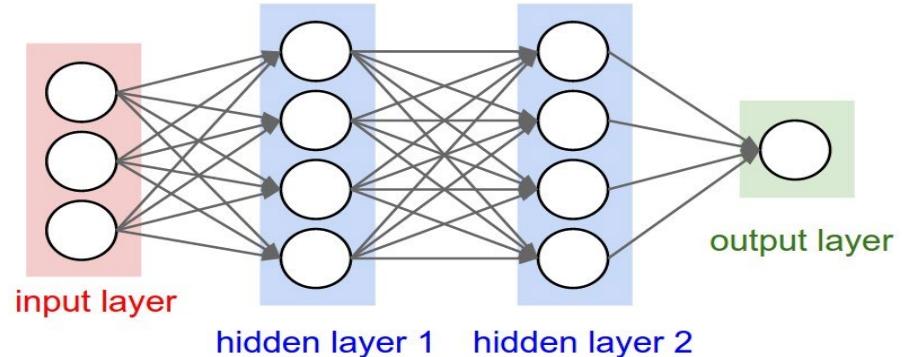
Linear Algebra

Linear Algebra: What is it good for?

- Study of Linear functions: simple, tractable
- In AI/ML: building blocks for **all models**
 - e.g., linear regression; part of neural networks



Hieu Tran



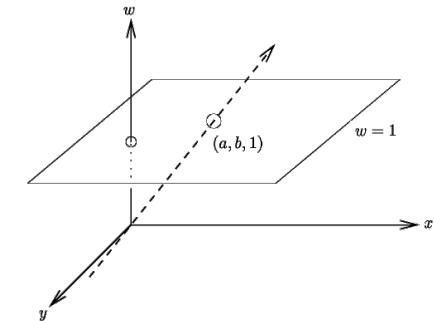
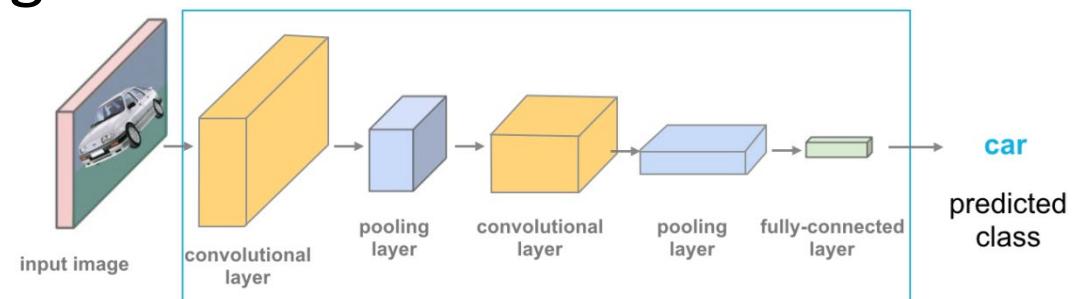
Stanford CS231n

34

Basics: Vectors

- Many interpretations
 - List of values (represents information)
 - **Point in space**
- Dimension: number of values: $x \in \mathbb{R}^d$
- AI/ML: often use very high dimensions:
 - Ex: images!

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \in \mathbb{R}^5$$



Basics: Matrices

- Many interpretations
 - Table of values; list of vectors
 - Represent linear transformations
 - Apply to a vector, get another vector
- Dimensions: # rows \times # columns, $A \in \mathbb{R}^{m \times n}$
 - indexing

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \\ A_{41} & A_{42} & A_{43} \end{bmatrix}$$

Basics: Transposition

- Transposes: flip rows and columns
 - Vector: standard is a column. Transpose: row vector
 - Matrix: go from $m \times n$ to $n \times m$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \quad A^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \\ A_{13} & A_{23} \end{bmatrix}$$

Matrix & Vector Operations

- **Vectors**

- **Addition:** component-wise

- Commutative: $x + y = y + x$

- Associative: $(x + y) + z = x + (y + z)$

$$x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

- **Scalar Multiplication**

- Uniform stretch / scaling

$$cx = \begin{bmatrix} cx_1 \\ cx_2 \\ cx_3 \end{bmatrix}$$

Matrix & Vector Operations

- **Vector products**
 - **Inner product** (e.g., dot product)

$$\langle x, y \rangle := x^T y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

- **Outer product**

$$xy^T = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix} = \begin{bmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 y_1 & x_3 y_2 & x_3 y_3 \end{bmatrix}$$

Matrix & Vector Operations

- x and y are **orthogonal** if $\langle x, y \rangle = 0$.
- Vector **norms**: “length”

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$



- A set of vectors $\{x_1, x_2, \dots, x_n\}$ is **orthonormal** if:
 - For all pairs x_i, x_j we have $\langle x_i, x_j \rangle = 0$
 - For all x_i , we have $\|x\|_2 = 1$

Break & Quiz

Q 3.1: Given two vectors $u = [2, -3, 1]$ and $v = [4, 5, -2]$, what is the inner product $\langle u, v \rangle$?

- A. $[8, -15, -2]$
- B. -9
- C. 25
- D. -5

Break & Quiz

Q 3.1: Given two vectors $u = [2, -3, 1]$ and $v = [4, 5, -2]$, what is the inner product $\langle u, v \rangle$?

- A. $[8, -15, -2]$
- B. **-9**
- C. 25
- D. -5

$$\langle u, v \rangle = 2 \times 4 + (-3) \times 5 + 1 \times (-2) = -9$$

Matrix & Vector Operations

- **Matrices:**

- **Addition:** Component-wise
- Commutative, Associative

$$A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \\ A_{31} + B_{31} & A_{32} + B_{32} \end{bmatrix}$$

- **Scalar Multiplication**
- “Stretching” the linear transformation

$$cA = \begin{bmatrix} cA_{11} & cA_{12} \\ cA_{21} & cA_{22} \\ cA_{31} & cA_{32} \end{bmatrix}$$

Matrix & Vector Operations

- **Matrix-Vector multiplication:**
 - Linear transformation; plug in vector, get another vector
 - Each entry in Ax is the inner product of a row of A with x

$$x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$$

$$Ax = \begin{bmatrix} \langle A_{1:}, x \rangle \\ \langle A_{2:}, x \rangle \\ \vdots \\ \langle A_{m:}, x \rangle \end{bmatrix} = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \cdots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \cdots + A_{2n}x_n \\ \vdots \\ A_{m1}x_1 + A_{m2}x_2 + \cdots + A_{mn}x_n \end{bmatrix}$$

Matrix & Vector Operations

Ex: feedforward neural networks. Input x .

- Output of layer k is

$$f^{(k)}(x) = \sigma(W_k^T f^{(k-1)}(x)))$$

nonlinearity

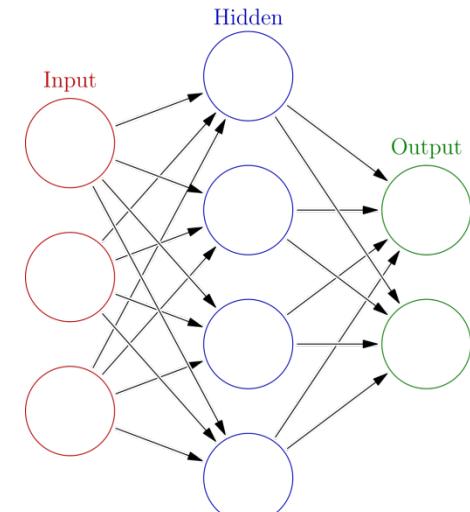
↑

↑

↑

Output of layer k: vector

Output of layer k-1: vector



Wikipedia

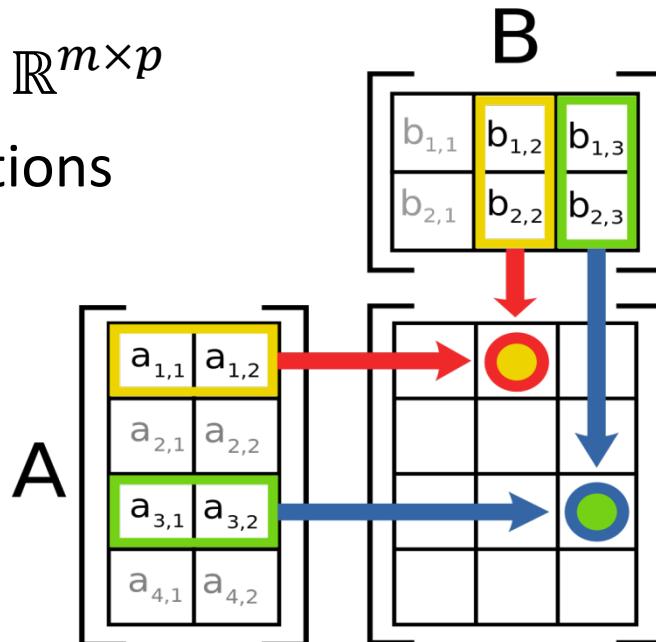
Output of layer k: vector

Weight matrix for layer k:
Note: linear transformation!

Matrix & Vector Operations

- Matrix multiplication
 - $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, then $AB \in \mathbb{R}^{m \times p}$
 - “Composition” of linear transformations
 - Not commutative in general!

$$AB \neq BA$$



Identity Matrix

- Like “1”
- Multiplying by it gets back the same matrix or vector
- Rows & columns are the **“standard basis vectors”** e_i

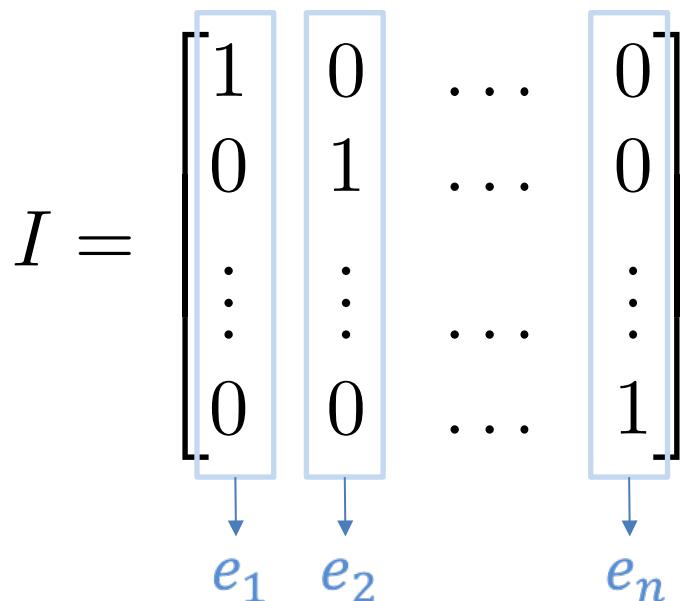
$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$


Diagram illustrating the identity matrix I as a 4×4 matrix. The matrix is shown with columns labeled e_1, e_2, \dots, e_n below it. The matrix structure is as follows:

1	0	...	0
0	1	...	0
\vdots	\vdots	\ddots	\vdots
0	0	...	1

Blue arrows point from the labels e_1, e_2, \dots, e_n to the first, second, ..., and fourth columns respectively, indicating that the columns are the standard basis vectors.

Break & Quiz

- **Q 3.2:** What is $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$?
- A. $[-1 \ 1 \ 1]^T$
- B. $[2 \ 1 \ 1]^T$
- C. $[1 \ 3 \ 1]^T$
- D. $[1.5 \ 2 \ 1]^T$

Break & Quiz

- **Q 3.2:** What is $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$?
- A. $[-1 \ 1 \ 1]^T$
- **B. $[2 \ 1 \ 1]^T$**
- C. $[1 \ 3 \ 1]^T$
- D. $[1.5 \ 2 \ 1]^T$

Break & Quiz

- **Q 3.2:** What is $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$?
- A. $[-1 \ 1 \ 1]^T$
- **B. $[2 \ 1 \ 1]^T$**
- C. $[1 \ 3 \ 1]^T$
- D. $[1.5 \ 2 \ 1]^T$

Check dimensions: answer must be 3×1 matrix (i.e., column vector).

$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 * 1 + 1 * 2 \\ 0 * 3 + 1 * 1 \\ 0 * 1 + 1 * 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

Break & Quiz

- **Q 3.3:** Given matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{d \times m}$, $C \in \mathbb{R}^{p \times n}$
What are the dimensions of BAC^T
- A. $n \times p$
- B. $d \times p$
- C. $d \times n$
- D. Undefined

Break & Quiz

- **Q 3.3:** Given matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{d \times m}$, $C \in \mathbb{R}^{p \times n}$
What are the dimensions of BAC^T
- A. $n \times p$
- **B. $d \times p$**
- C. $d \times n$
- D. Undefined

Break & Quiz

- **Q 3.3:** Given matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{d \times m}$, $C \in \mathbb{R}^{p \times n}$
What are the dimensions of BAC^T

- A. $n \times p$
- **B. $d \times p$**
- C. $d \times n$
- D. Undefined

To rule out (D), check that for each pair of adjacent matrices XY, the # of columns of X = # of rows of Y

Then, B has d rows so solution must have d rows. C^T has p columns so solution has p columns.

Break & Quiz

- **Q 3.4:** A and B are matrices, neither of which is the identity. Is $AB = BA$?
- A. Never
- B. Always
- C. Sometimes

Break & Quiz

- **Q 3.4:** A and B are matrices, neither of which is the identity. Is $AB = BA$?
- A. Never
- B. Always
- **C. Sometimes**

Break & Quiz

- **Q 3.4:** A and B are matrices, neither of which is the identity. Is $AB = BA$?
- A. Never
- B. Always
- **C. Sometimes**

Matrix multiplication is
not necessarily
commutative.

Readings

- Local classes: Math/Stat 431
- **Suggested reading:**
 - Probability and Statistics: The Science of Uncertainty, Michael J. Evans and Jeff S. Rosenthal
<http://www.utstat.toronto.edu/mikevans/jeffrosenthal/book.pdf>
(Chapters 1-3, excluding “advanced” sections)
 - Textbook: Artificial Intelligence: A Modern Approach (4th edition). Stuart Russell and Peter Norvig. Pearson, 2020. Appendix A