Wrapper Classes

% Instantiabl e classes representing the primitive data types, including:

* Byte * Float

e Short * Double
e Integer e Boolean
 Long

¢ Important methods of the Wrapper Classes:

public int intValue()
/'l returns an int, the value of the Integer object

publ i ¢ bool ean equal s()
/'l conpares two | nteger objects

public static int parselnt()
/'l converts a String object into an int

s All Wrapper classes are immutable like the String class
» once created, cannot be changed
* rather than being changed, awhole new object is created reflecting
that change

s Examples:

I nteger integerl = new Integer(1);
Doubl e doubl e2 = new Doubl e(2.0);

s Usefulness of Wrapper classes:
» Whenever only objects are taken, need away to represent the
primitive data types as objects
« Example: the Vector class

Vector v = new Vector (10);

for (int i =0; i <v.capacity(); i++) {
v. addEl enent (new I nteger (i));

}

Java | nput/Output

¢ In General, “streams” are used.
» A stream is a sequence of data (8-bit bytes)

» Input Stream: brings information to a program from some source
» Output Stream: sends information from a program to some

destination

Input Stream Sources Output Stream Destinations
Standard Input Standard Output

Files Standard Error

etc... Files

etc...

File input: “read” data from a file
File output: “save” data to a file

» The package java.io provides two class hierarchies that support
streams
» one is for byte streams (Standard input, output, error)
» one is for character streams (handles characters > 1 byte in size)

NOTE: must include the statement: i nport java.i o.*;

» The particular class used depends on the following:
» read vs. write
» human readable (e.g., ascii) vs. binary (e.g., 1001100011)

¢ Console 1/0O (i.e., standard input/output)

» Console Output
» Systemout.print(<arg>) & Systemout. println(<arg>)
» Example:
System.out.print(“Hello™);
System.out.printIn(* World!”);

Console Input

» System in takesinraw data (in bytes) from the standard input
(keyboard)

» Create |nputStreanReader and BufferedReader objects
to convert the raw datato areadable form

MEMORIZE THISLINE OF CODE

Buf f eredReader stdin = new BufferedReader (new
| nput St reanReader (Systemin));

» methods of the BufferedReader class:

/'l to read one line of text (up to new ine)
/1l returns a String object
stdi n. readLi ne();

/'l do not use; rather, only realize that it exists
/'l (reads in one character but returns that

/'l character as an int)

stdin.read();

» Toinput achar, use the following:
char ¢ = (stdin.readLine()).charAt(0);

» To input other primitive types, use the Wrapper classes’ static
methods:
int i = Integer.parselnt (stdin.readLine());
|l ong | = Long. parseLong (stdin.readLine());
float f = Float. parseFl oat (stdin.readLine());
doubl e d = Doubl e. parseDoubl e (stdin.readLine());

» To input a boolean (there is no parseBoolean method):
bool ean b = (new Bool ean
(stdin.readLine())).bool Val ue();

» Example:

System.out.print (“Enter a number => *);
Int 1 = Integer.parselnt (stdin.readLine());
System.out.println (*“You entered “ + 1);

“ Filel/O

* Requiresafile. (can be a directory or a “regular” file)
» The File class (also in java.io.* package) is used to create a File object
» Examples of creating File objects:

/'l default is to ook in current directory
File srcFile new File (“inputFile™);
File dstFile new File (“outputFile™);

// to specify a specific directory, use full path name
File srcFile new File (“U:\\private\\inputFile);
File dstFile new File (“U:\\private\\outputFile™);

NOTES:
> if file does not exist, the File object is still created, but itsvalueis set
to null.
» One can aso obtain the file to be associated with the File object
from user input—either standard input OR using a FileDialog object

* methods of the File class:

bool ean canRead() /* true iff the file can be
read */
bool ean canWite() /* true iff the file can be

witten */

bool ean exi sts() /* true iff the file already
exi sts */

bool ean isDirectory() /* true iff the file is a
directory */

bool ean isFile() [* true iff the file is not a
directory */

» File output:

PrintWiter out = new PrintWiter (new
BufferedWiter (new FileWiter (dstFile)));

Classes involved (an object of each class must be created):

> Fil eWiter: outputs bytes

> Buf feredWi t er: placesoutput into a buffer in blocks so that the
fileis not accessed for each output request (called a buffer cache)

» PrintWiter: putsoutput into human readable form; contains
usable methods:

print(): overloaded for all primitives & objects (viatoString())
println(): sameasprint, but with\ n at end

flush() : if output is buffered, flush the buffer
cl ose() : flush the buffer AND close the output stream
checkError () : trueiff an error has occurred during output

NOTES:

» Creation of a “Writer” object will automatically open the file
associated with it.

» One must close a file using the cl ose() method after writing
to it in order to ensure that the data written is saved to the file.

> Files are written IN-ORDER (i.e., sequential). The next location
for writing to the file is updated automatically

A A

| » growing file

« Fileinput:

Buf f eredReader in = new BufferedReader (new
Fi |l eReader (srcFile)));

Classes involved (an object of each class must be created):

> Fi | eReader : reads bytes from the given File

> Buf f er edReader : placesinput into abuffer in blocks so that the
fileis not accessed for each input request (called a buffer cache);
contains usable methods:

readLi ne(): returnsa String object
read(): returnsan int representation of acharacter

ready() : trueiff thefile has moreto read
cl ose(): closetheinput stream

NOTES:

» Creation of a “Reader” object will automatically open the file
associated with it,

» One must close a file using the cl ose() method after
reading from it.

> Files are read IN-ORDER (i.e., sequential). The next location for
reading from the file is updated automatically

19 N

| | | | | flle

** The use of buffers for input and output results in more efficient
file access

Summary of 1/0 objects and the arguments used in their constructors

CLASS CONSTRUCTOR ARG TYPES
BufferedWriter Writer
FileWriter Fileor String
PrintWriter OutputStream or Writer
BufferedReader Reader
FileReader File or String
File String

/***

Aut hor :

Ver si on:
Conpi |l er:
Pl at f or m

Jim Skrentny, skrentny@s.w sc. edu
copyright 1999, all rights reserved

1.1
CodeWarrior (JDK 1.2)
W ndows 95

***/

/1l This inmport is required when doing consol e input.
i nport java.io.*;

*

/

Java.
can get

* % % %k X X *

*/

Thi s program denonstrates how to do consol e i nput and output in
Java console 1/0O can be conplicated to understand, but you

started by follow ng and copyi ng the code exanpl es bel ow.

BUGS: none known

public class Consol el O {

/1 The "throws | OException" clause is required in nmethods having
/1 java input or any methods that directly or indirectly cal

/1 others having console input. Later in class you'll learn

/1 that this isn't required if the nmethod catches | OExcepti ons.
public static void main (String args[]) throws | OException {

/11
Il
/11
11
/11
/11

Systemout. print("This exanpl e

Java consol e output is done using Systemout, a
PrintStream object, that is predefined in the java.lang
package. Two conmmon nethods are println and print, which
take a string argunent and display it in the console

wi ndow. println causes output to continue on the next

i ne whereas print doesn’t.

+ "program?");

Systemout. println("denonstrates:");
System out. println("CONSCLE | NPUT & QUTPUT\ n\n");

I
I
Il
I
I
11
I
11
11

Data is input using a BufferedReader object that is
conposed from several different objects. The source of
console input is Systemin, an InputStream object, that
is predefined in the java.lang package. This source nust
have a nmechani sm for accessing the data. Thus an

| nput St reanReader object is constructed from System i n.
Fromthis | nputStreanReader object a BufferedReader is
constructed to nore efficiently access the data. Here is
t he code:

Buf f eredReader stdin = new BufferedReader(new

| nput St reanReader (Systemin));

/1 Wth our object stdin, we can read a line of input as a
[l String using the readLi ne net hod:
Systemout.print("Enter a string: ");

String s = stdin. readLine();

Systemout.println("You ve entered: " + s);

/1 1f you only wanted the first character of the input, use:
char ¢ = s.charAt(0);
Systemout.println("The first character is: " + c);

Systemout. println("\n\n");

/1 If you want to read a nunber the input string needs to be
/1l converted into the desired nuneric type. This is done by
/'l using wapper classes associated with each primtive

/[l type. These w apper classes have parse nethods that do
/'l the conversions.

/'l Reading integers requires the input string to be

/'l converted to a value that is assignent conpatible with
/1l the primtive variable.

Systemout.print("Enter an integer of 3 digits: ");

int i = Integer.parselnt(stdin.readLine());
Systemout.println("You ve entered: " + i);
Systemout.print("Enter a long integer of 11 digits: ");
long | = Long. parseLong(stdin.readLine());
Systemout.println("You ve entered: " + |);

Systemout. println("\n\n");

/'l Reading real nunbers is a bit nore conplicated and

/'l depends on the version of Java you have. Most will have
/1 an ol der Java version that requires the approach bel ow.
/1 In this approach a tenporary Float or Double object is
/'l created using the wapper classes. This object is asked
/[l for its value, which is then assigned to the primtive
/'l vari abl e.

Systemout.print("Enter a float: ");

float f = (new Float(stdin.readLine())).floatValue();
Systemout.println("You ve entered: " + f);
Systemout.print("Enter a double: ");

doubl e d = new Doubl e(stdin.readLi ne()). doubl evVal ue();
Systemout.println("You ve entered: " + d);

/'l The code below foll ows the parse nethod approach that was
/1 used with integers. |If you have the newest version of
/1l Java, this code will work after you uncoment it.

/*

Systemout.print("Enter a float: ");

float f = Fl oat. parseFl oat (stdin. readLine());
Systemout.println("You ve entered: " + f);
Systemout.print("Enter a double: ");

doubl e d = Doubl e. par seDoubl e(stdi n. readLi ne());
Systemout.println("You ve entered: " + d);

*/

/1 This is how you can read a string fromthe consol e and

/1l convert it into the desired type of data. By copying the
/'l code exanpl es above, you can now use consol e input and

/1 output in your prograns.

/***

Aut hor : Jim Skrentny, skrentny@s.w sc. edu
copyright 1999, all rights reserved

Ver si on: 1.2

Conpi |l er: CodeWarrior (JDK 1.2)

Platform W ndows 95

***/

i nport java.io.*; /[l for java file I/0O
inport java.util.StringTokeni zer; /[l to divide line into pieces
/**
* This program denonstrates how to do file input and output in Java
* using character streans and text files. Java file I/O can be
* conplicated to understand, but you can get started by foll ow ng
* and copyi ng the code exanpl es bel ow.
*
*

BUGS: none known

**/

public class Filel O {

/1 The "throws | OException" clause is required in nmethods having
/1l java file I/O or any nethods that directly or indirectly cal
/1l others having file I/Q Later in class you' Il learn that

[l this isn't required if the nethod catches | CExcepti ons.
public static void main (String args[]) throws | OException {

/1 This program uses console I/O Pl ease see the
/1 Consol el O java exanpl e program before | ooking at this
/'l one.

System.out.printlIn("'Example program demonstrating:” +
“NnFILE 10\n"");

System.out.printlIn("'BEFORE PROCEEDING: create a file” +
“ with these 2 lines:™);

System.out.printIn("Dolphin|1999]");
System.out.printIn(*'Lion]2000]");

System.out.printIn('"\nUse this file"s path for the* +
“ source file path.™);

/'l Create a BufferedReader object for console input.
BufferedReader stdin = new BufferedReader(
new InputStreamReader (System.in));

Il
11
11
Il
/11
Il
11

11
11
/11
11
/11

F

11
11

Java file input and output begins with the actual file
stored in the conputer’s file system These files are
the source or destination of the characters that are
process by a program W’I| access files by first
creating a File object that is associated with the path
where the actual file is located in the conputer’s file
system

The code exanpl e shown uses two File objects, one for the
source and another for the destination. The path for the
actual file is entered by the programuser for both the
source and destination files. See Ch. 11.1 for nore

i nformati on about paths and file systens.

e srcFile, dstFile; [// declare the object variables

First, the user enters the path of the source file, which
nmust be a valid file for the loop to end.

bool ean repeat = false; // assune a valid path is entered on

do

[l first try
{

Systemout.print("Enter the path of the source file: ");

/'l create file object
srcFile = new Fil e(stdin.readLine());

/1 check if source file does NOT exi st

if (!'srcFile.exists()) {
Systemout.println("ERROR file not found");
repeat = true;

}

/1l check if source file is NOT a file or is NOT readabl e

else if (!srcFile.isFile() || !srcFile.canRead()) {
Systemout.println("ERROR file not readable");
repeat = true;

}

el se

repeat = fal se;

} while (repeat);

/'l Second, the user enters the path of the destination file,
[l which nust be a valid file for the | oop to end.

repeat = false; // assune a valid path is entered on the

[l first try
do {
System.out.print("Enter the path of the destination” +
“ file: ");

/'l create the File object
dstFile = new File(stdin.readLine());

/1 if destination file already exists check if it is a
/1l directory or is NOT witeable
ifT (dstFile.exists() &&

(dstFile.i1sDirectory() || 'dstFile.canWrite())) {
System.out.printIn("’'ERROR: file not writeable™);
repeat = true;

+
else
repeat = false;

} while (repeat);

/'l At this point source and destination File objects are

/'l associate with actual files in the conputer’s file

/'l system Next objects are created that enable the program
/'l to read fromor wite to the files in a conveni ent

[l manner.

/'l Reading froma file is done in a manner simlar to

/1 reading fromthe console, that is, a BufferedReader is

/'l created. Recall BufferedReader objects are conposed from
/'l several different objects. The source of file input is a
/1 File object. This source nust have a nmechani sm for

/'l accessing the data, so fromit is constructed a

/'l FileReader object.Fromthis a BufferedReader is

/1l constructed to nore efficiently access the data.

// This is howit is coded:

BufferedReader inFile = new BufferedReader(
new FileReader(srcFile));

Il
11
/11
11
/11
11
11
/11
11
11

11

Pr

11
11
/11

11
11
Il
/11
whi

Witing to afile is done in a manner simlar to witing
to the console. Wth files a PrintWiter object is
created, which is conposed of several different objects.
The destination of file output is a File object. This
destination file nust have a nechanismfor witing the
data, so fromit is constructed a FileWiter object.
Fromthis a BufferedWiter is constructed to nore
efficiently wite the data. Fromthis a PrintWiter is
constructed so that print and prinltln nmethods can be
used as done with console 1/0QO

This is howit is coded:

ntWiter outFile = new PrintWiter(new BufferedWiter(
new FileWiter(dstFile)));

The inFile and outFile objects can now be used to do file
/O The following code illustrates sone nethods that
are used to read fromand wite to files.

The ready nethod is used to determine if there are nore
characters in the file. It returns true if there are nore
characters in the file, false when the end of the file is
reached.

le (inFile.ready()) {

/1 readLine nethod reads an entire line (same as consol e
/'l input)
String line = inFile.readLine();

/[l Often a line of characters nust be divided into parts
/1l (i.e. tokens), which are then converted (i.e. parsed)
/1l into the appropriate data types. Tokenizing a line
/1l is done using a StringTokenizer. StringTokenizer
/'l objects are constructed fromthe string to be divided
/1 and a string of delimters. Delimters are the
/'l points where the |line should be broken. In this
/'l exanple the string that is read is divided at pipe
/'l characters, i.e. "|"
StringTokeni zer tokenizer = new

StringTokeni zer(line, "|");

/1 1f you ve created the two line file as instructed

/1 above, the first token on a line is a string. W can
/1 get tokens fromthe StringTokeni zer using the

/'l next Token nethod. This nmethod returns a String

/1 object of the next group of characters upto but not
/1 including the next delimter. O her nethods include
/'l count Tokens that returns the nunber of tokens left in
/1 the StringTokeni zer, and hasMoreTokens that returns

/1l true if there are nore tokens remaining in the

/'l StringTokeni zer.

String name = tokenizer. next Token();

/1 Notice the sanme technique as with console input is
/1l used to parse (i.e.convert) the next token into an
/'l integer value. O her techniques described in the

/1 ConsolelOjava file can be used to convert to other
/'l types of data.

int year = |Integer. parselnt(tokenizer.nextToken());

/1 We'll display this line on the consol e:
Systemout. println("Nane: "

+ name + ", Year:

+ year);

/1 and also save it in the output file. PrintWiter
/1l objects can do println and print nethods that work
/1l the sane as for System out.

outFile.println(nane + "|" + year + "|");

}

/1l Finally, always close your files before finishing to
/'l guarantee that buffered data isn't | ost.
inFile.close();

out Fil e.cl ose();

/1 This is how you can read froma file using a

/1 Bufferedreader and wite to a file using a PrintWiter.
/1 By copying the code exanpl es above, you can use file
/1 input and output in your prograns.

*

>

L)

L)

*

>

L)

Exceptions

An exception is an object that defines an unusual or erroneous
situation that has occurred during run-time

Examples of exceptions:

» |OEXxception

* NumberFormatException

» NullPointerException

e |ndexOutOfBoundsException

An exception is thrown by a program or the runtime environment
and must be handled appropriately. There are two waysto
appropriately handle exceptions:

 catch the exception
 throw the exception
There are two kinds of exceptions:

» Checked exception: the compiler checksto make sure that if
a “checked” exception can be thrown, the program has code
to handle it appropriately

» Unchecked exception: the compiler does not check for the
handling of unchecked exceptions

If a method could produce a checked exception, that method
should either catch the exception or propagate the exception by
including the throws clause to the method header (see below)

If an exception is not handled appropriately, the program will
terminate (abnormally) and produce a message that describes
what exception occurred and where in the program it was
produced

Catching Exceptions. The try Statement

Thet ry statement identifies ablock of statements that may throw an
exception

A cat ch clause, which follows at r y block, defines how a particular
kind of exception is handled

A try block can have zero or more cat ch clauses associated with it.
Each cat ch clauseis called an exception handler

Syntax of thet r y statement:

try {
<try statenent bl ock>
}

catch (<ExceptionType> <identifier>) {
<catch statenent bl ock>
}

catch ...

» try & cat ch are Javareserved words
» <Except i onType> theclass of the thrown exception
» <i dentifier>aninstanceof the class<Excepti onType>

If an exception occurs while executing code inside of atry block,
execution immediately jumps to the first exception handler (i.e., catch
clause) that matches the thrown exception.

After executing the statements in the catch clause, control transfersto
the statement after the entire try statement

Thefi nal | y clause

» an optional set of statements at the end of at ry statement that is
executed no matter how thet ry block is exited and without regard to
If an exception wasthrown inthet ry statement block

> if no exception isthrown, thefi nal | y clause will be executed
before executing the statements following thet ry statement

> if an exception isthrown, thef i nal | y clause will be executed
after the appropriate cat ch statement block (if any), but before
executing the statements following the t r y statement

» if ar et ur n statement occurs (whether inthet ry statement
block or the cat ch statement block) thefi nal I y clause will
execute before returning control to the calling method

e Syntax:

try {
<try statenent bl ock>
}

catch (<ExceptionType> <identifier>) {
<catch statenent Dbl ock>

}

catch ...

}

finally {

} <finally statenent bl ock>

» A finally clauseis useful when dealing with files that need to be
closed no matter if an exception has occurred or not.

Throwing Exceptionsand The t hr ows clause

If an exception isthrown and no catch clause applies, control isimmediately
returned to the method that invoked the method that produced the exception to
seeif it is caught and handled at that outer level—called propagating the
exception.

Propagation continues until the exception is caught and handled, or until is
passed out of the main method, which terminates the program and produces an
exception message.

The propagation of an exception occurs automatically.

However, if a checked exception is not going to be caught, the method header of
the method in which this checked exception may occur must include at hr ows
clause for the exception

Syntax:

<nmodi fiers> <return type> <nane> (<arguments>) throws <ExceptionType> {

<nmet hod body>

» Example:

public static void main (String[] args) throws | OException {

[* do sone stuff with I/O here */

Example of Exception handling

public static int readlnt (BufferedReader stdin, String pronpt)
t hrows | OException {

I nt num
bool ean valid = fal se;
do {
System out. print (pronpt);
try {
num = I nteger.parselnt (stdin.readLine());
valid = true;
}
catch (Number For mat Exception e) {
/[l Systemout.println (e);
[l e.printStackTrace();
System.out.println (“Please enter a number.”);
+
} while (Yvalid);
return num;

} 7/ end of readlnt

