
Object Declaration

v Every object used must be declared
v Syntax:

<class name> <object name>;

• <class name>: the name of the class to which the object belongs
• <object name>: the name of the object (any valid identifier)

v Identifier: any sequence of letters, digits, underscores, and dollar

signs with the following limitations:

• Must begin with a letter
• Cannot contain any spaces or other “white space”
• Cannot be a Java “reserved” word (aka “keyword”)

v Java Convention on Identifiers:

• First letter lowercase
• First letter of subsequent words uppercase

v Reserved Word: an Identifier that is used for a specific purpose and

cannot be used for any other purpose.

• Example of some of Java’s Reserved Words:

public private protected
import class new
static void byte
short int long
float double boolean
final return while
if do for

Object Creation

v No objects are actually created by a declaration (with declaration,

only an Identifier used to refer to an object is created)

v Use the ‘new’ command. Syntax:

<object name> = new <class name> (<arguments>)

• <object name>: the name of the declared object
• <class name>: the name of the class to which the object belongs
• <arguments>: sequence of values passed to the method

Examples of Object Declaration:

Student dave;

Noisemaker clapper;

Ship battleship;

Examples of Object Creation:

dave = new Student (4.0, 1234);

clapper = new Noisemaker ();

battleship = new Battleship (numPegs, xPos, yPos, dir);

Message Sending

v Once an object has been created, messages can be sent to it

v Syntax:

<object name>.<method name> (<arguments>);

• <object name>: name of a declared object
• ‘.’ : the “dot notation” gives relation to the items on either side of

the dot
• <method name>: name of a method of the object
• <arguments>: sequence of values passed to the method

Examples of Message Sending:

dave.setGPA (2.5);

clapper.makeNoise (decibelLevel);

battleship.insertHit ();

Program Components

Three (3) main parts:

1. Comments
2. Import statements
3. Class declarations

Comments

v Uses:

1. State the purpose of the program
2. Explain the meaning of code
3. Give other explanations to help programmers understand the

program

v Syntax:

/* ANY text between slash-asterisk and asterisk-slash */

OR

// ANY text following two slashes to the end of the line

v All programs should contain a Header Comment containing the
following information:

1. Program Title
2. Author
3. Course (including section number)
4. Date Written (or Due Date)
5. Description of Program

v Comments are NOT required to run a program. However, they are

indispensable in writing easy to understand code. (You will lose
points if your programs do NOT contain adequate comments.)

v Excessive comments can hurt more than help in understanding code.

Program Components

Three (3) main parts:

1. Comments
2. Import statements
3. Class declarations

Import Statements

v Classes are grouped into “Packages”

v To use a class from a Package, the class must be “imported” into the

program. Syntax:

 import <package name>.<class name>;

• import: a reserved word indicating a class is to be imported
• <package name>: the name of the package to which the class

belongs
• <class name>: the name of the class to be imported

v With subclasses, use multiple dot notations

For example: import java.awt.image.ColorModel;

v To import more than one class from a package, use the asterisk

notation. Syntax:

 import <package name>.*;

v When the asterisk notation is used, ALL of the classes (or

subclasses) of a particular package (or super class) will be
imported.

v Java Convention: all package names are lowercase.

Program Components

Three (3) main parts:

1. Comments
2. Import statements
3. Class declarations

Class Declaration

v Syntax:

class <class name>
{
 <class member declarations>
}

• class: a reserved word indication the declaration of a class

• <class name>: the name of a class (any valid identifier)

Java convention: class names start with a capital letter and each
subsequent word in the class name also has a capital letter

• <class member declarations>: a sequence of class member

declarations

class member: a data value or a method

v A program can (and usually does) have more than one class, but only

one class will be designated the “main” class.

v Typically, the application and the main class have the same name

v The main class must define a method called main. This method is

executed FIRST when the Java application is executed.

Method Declaration

v Syntax:

<modifiers> <return type> <method name> (<arguments>)
{

<method body>
}

• <modifiers>: sequence of terms designating different kinds of

methods

• <return type>: type of data value returned by a method

• <method name>: name of the method (any valid identifier)

• <arguments>: sequence of values passed to a method

• <method body>: sequence of instructions

public static void main (String args [])

modifier modifier return
type

method
name

parameter

Edit-Compile-Run Cycle

Three (3) steps:

1. Step 1: Type in the program using an editor and save it
2. Step 2: Compile the source file
3. Step 3: Execute the bytecode file using an Interpreter

Step 1: Type in the program using an editor and save it

v Examples of editors:

• Code Warrior
• JavaWorks
• vi
• emacs

v Save the entered code with the following filename syntax:

<name of main class>.java

v The resultant is a source file written in a “high level language” (HLL)

v Examples of high level languages;

• Java
• C
• C++
• Pascal
• BASIC
• Fortran

v Machines (i.e., computers) can only understand machine language

(written in binary). Machine language is a “low level language”
(LLL).

Edit-Compile-Run Cycle

Three (3) steps:

1. Step 1: Type in the program using an editor and save it
2. Step 2: Compile the source file
3. Step 3: Execute the bytecode file using an Interpreter

Step 2: Compile the source file

v A compiler translates the HLL into a LLL called bytecode

(Code Warrior contains a compiler)

v The bytecode file that is generated is titled as follows:

<name of source file>.class

v The whole source file is compiled at once

v Compilers can detect Compilation Errors (aka “Syntax Errors”)

• Compilation Errors: errors resulting from the source code
containing text that does not obey the rules of the language

• Examples of Compilation Errors:
� Mismatched parantheses (()))
� Missing punctuation (e.g., no semi-colon at the end of

statements)
� Misspelled reserved words

v The compiler will NOT generate a bytecode file if compilation errors

exist in the source file.

v Most good compilers give detailed error messages when identifying

the compilation errors

Edit-Compile-Run Cycle

Three (3) steps:

1. Step 1: Type in the program using an editor and save it
2. Step 2: Compile the source file
3. Step 3: Execute the bytecode file using an Interpreter

Step 3: Execute the bytecode file using an Interpreter

v The interpreter executes instructions one line at a time

v The interpreter can detect Execution Errors (aka “Run-Time Errors”)

• Execution Errors: errors occurring during the execution of the
instructions

• Examples of Execution Errors:
� Dividing by zero
� Using undeclared objects/data values
� Null pointers

Editor Compiler

bytecode
file

Interpreter Running
Program

source
file

