
Data Types

(both types are considered “variables”)

v Reference Data Types

• Objects are reference data types
• The identifier (i.e., object name) of the object is associated with a

piece of memory containing an address. This address refers to
another piece of memory containing object itself.

v Primitive Data Types

• The identifier (i.e., variable name) of the variable is associated
with a piece of memory containing the actual data.

• There are eight (8) primitive data types:

Numerical Data Types

byte
short Corresponds to Integers (numbers without fractions)
int (typically use int for most Integers)
long

float Corresponds to Real Numbers (numbers with fractions)
double (typically use double for most Real Numbers)

Other Data Types

char Corresponds to a single alphabetical character/symbol

boolean Corresponds to a value of either true or false

Variables

v A named memory location containing a certain type of data

v Three (3) Properties

1. Name: associates the variable with a particular memory location

2. Type: tells the computer how much memory to set aside for a
particular variable

3. Value: the actual value sitting in the memory location

v Variable Declaration

• Associates a name with a memory location
• The value in the memory location can change
• Syntax:

 <data type> <variable name>;

<data type>: The type of data assigned to the
memory location being allocated

<variable name>: any valid identifier

• Examples:

 int age;
 float gpa;
 long nationalDebt;

Variables...continued

v Shortcut:

• When declaring more than one variable of the same type, can
declare them all in one statement

• Syntax:
<data type> <var name>, <var name>,<var name>;

• Examples:

double interestRate1, interestRate2;
int height, width, depth;

v NOTE: Cannot declare a variable more than once!

• Example:

int number;
float number;

Assignment Statement

v Places a value into a variable using =, the “assignment” operator

v Syntax:
 <variable> = <expression>;

 <variable>: any previously declared variable
 <expression>: any expression that evaluates to a value of the

same type as the variable

Examples:

 gpa = 3.74;
 nationalDebt = 5000000000000;

v The first time a variable is assigned a value, it is said to be

“initialized”

v A variable’s value is overwritten when new assignment statements

follow the initial assignment statement.

Examples:

 gpa = 4.0;
 nationalDebt = 1000000000000000;

Assignment Statement...continued

v Shortcut #1:

• Can declare and initialize a variable in one statement
• Syntax:

<data type> <variable name> = <expression>;

Examples:
double prime = .065;
double interestRate = prime + .0125;

v Shortcut #2:

• Can declare and initialize >1 variable in one statement

Example:
int x=0, y=1, z=2;
int a, b, c=5;

• This usually is considered BAD programming practice and should
only be done in a limited number of circumstances.

Draw a Memory Diagram for the following Java code:

 int deposit;
 double intRate = .0785;

 deposit = 100;

deposit = 200;

 Calculator calc;
 Account account1;
 Account account2 = new Account (intRate);
 account1 = account2;
 account1 = new Account (intRate);

Constants

• Associates a name with an unchanging value
• Syntax:

final <data type> <constant name> = <value>;

• the constant is declared and assigned a value in one step
• Java convention: <constant name> refers to an identifier with

ALL_CAPITAL_LETTERS and with words separated by
underscores

• Examples:
final double PI = 3.1415926;

final int DAYS_IN_WEEK = 7;

• Why Constants?
1. Gives a name to an unchanging value
2. Makes programs more readable and understandable
3. Easier to update in one location rather than multiple locations

• Symbolic Constants vs. Literal Constants

Symbolic Constant: a name associated with a value
Literal Constant: the number itself

e.g. PI // Symbolic Constant

 3.1415 // Literal Constant

Arithmetic Expressions

v An expression involving numerical values that can be evaluated to
some numerical value

v Consists of operands and operators

• operand: The value or expression on which arithmetic is to be
performed

• operator: The symbol that signifies what type of arithmetic is to be
performed

� Binary operators: involve 2 operands

Syntax: <operand> <operator> <operand>

Example: 2 + 5
 x / y

� Unary operators: involve 1 operand

Syntax: <operator> <operand>

Example: -4.6
 +z // rarely used

v Expressions
• a part of a statement
• no need for semi-colon at the end
• Example:

int x = (y / z) + 4;

• Can have a multiple number of operands separated by a multiple
number of operators

Operators

+ - * / %

/ Division has two meanings depending on data type:

int i1 = 8;
int i2 = 6;
double d1 = 8.0;
double d2 = 6.0;

int answer;
double answer2;

answer = i1 / i2;

answer2 = d1 / d2;

answer2 = i1 / d2;

% “Remainder Division” (aka “modulo” or “mod”)

answer = i1 % i2;

d1 = 22.5;
d2 = 7.0;
answer2 = d1 % d2;

Precendence Rules for operators

 11 + 22 * x – 2

Type Casting

v Implicit Type Casting

Numeric Promotion
• Occurs AUTOMATICALLY when an arithmetic expression

does not consist of variables and constants of the same data type
• The “promotion” is applied to the operands of an arithmetic

operator
• The operand is converted from a lower to a higher precision
• Examples:

 int i1 = 4;
 double d1 = 6.0;

 double answer = d1 / i1;

/* answer has the value 1.5 */

Assignment Conversion
• Occurs AUTOMATICALLY when a variable and the value of

an expression in an assignment statement are not of the same
data type

• Occurs ONLY if the data type of the variable has a higher
precision than the data type of the expression

• Examples:

 double d;
 d = 5; // d contains the value 5.0

 int i;
 i = 123.456; // syntax error

Type Casting...continued

v Explicit Type Casting

• uses the type cast operator: (<data type>)
• Syntax:

(<data type>) <expression>

• the type cast operator is a unary operator
• the type cast operator has higher precedence than any binary

operator
• parentheses must enclose expressions to be type cast
• Examples

 int i1 = 4;
 int i2 = 6;
 double d1 = 6.0;
 double d2 = 8.0;

 int answerI;
 double answerD;

 answerI = 8 / i2;

 answerD = 8 / i2;

 answerD = (double) 8 / i2;

 answerI = i1 + i2;

 answerI = (int) d1 + d2;

 answerD = d2 / d1;

 answerI = (int) d1 / i1;

Math Class

• Contained in the package java.lang

• Contains functions (i.e., methods) that allow for operations other than

+ - * / %

• Methods are class methods (do not need to create a Math object in
order to use the methods)

• Syntax for sending messages to class methods:

<class name>.<method name> (<arguments>)

NOTE: Sending a message to a class method is actually an
expression that may evaluate to some value

• Examples:

 double d = Math.pow (2.0, 3.0);

 int i = Math.min (4, 8);

v See the following website for documentation on ALL predefined
classes in Java, including the Math class (but not javabook!):

http://java.sun.com/products/jdk/1.2/docs/api/index.html

class InputBox

• Contained in the package javabook

• Contains functions allowing for user input of numbers

• Requires that an “owner frame” be specified when creating an

InputBox object (MainWindow object will be used)

• Sample Code to use InputBox:

MainWindow mw = new MainWindow (“myWindow”);
InputBox inBox = new InputBox (mw);
int x;
float y;

mw.show ();
x = inBox.getInteger (“Enter an integer”);
y = inBox.getFloat (“Enter the interest rate”);

class OutputBox

• Contained in the package javabook

• Contains functions allowing for the display of a program’s output

(textual data only, no drawings)

• Requires that an “owner frame” be specified when creating an

OutputBox object (MainWindow object will be used)

• Sample Code using OutputBox:

MainWindow mw = new MainWindow (“myWindow”);
OutputBox outBox = new OutputBox (mw);

mw.show ();
outBox.show();

outBox.print (“Java is fun”);

Concatenation Operator +

• The symbol “+” is used both for addition and concatenation

(considered an “overloaded” operator)

• Examples:

“James Bond’s code name is “ + 0 + 0 + 7

0 + 0 + 7 + “ is James Bond’s code name.”

int a = 53;
int b = 70;
int c = 3;

“The zip code is “ a + b + c

a + b + c + “ is the zip code.”

 “The sum of 8 and 9 is ” + 8 + 9;

“The sum of 8 and 9 is ” + (8 + 9);

