
Boolean Primitive Type

v Like arithmetic primitive data types, except the value can be either

true or false

v Syntax

Declaration: boolean <variable name>;

Assignment: <variable name> = <expression>;

boolean is a Java reserved word

<expression> is any expression that evaluates to true or false

Examples:

 boolean hasAllBottles;
 hasAllBottles = true;

 boolean isZero;
 isZero = (x == o);

boolean notNegative = (x >= 0);

Boolean Expressions and Variables

v Relational Operators (ALL are BINARY operators)

< less than
<= less than or equal to
== equal to
!= not equal
> greater than
>= greater than or equal to

Examples: int x = 5;
 int y = 5;
 int z = 6;
 boolean answer;

 answer = x < y;
 answer = x <= y;
 answer = x == y;
 answer = x != z;
 answer = x > z;
 answer = z >= y;

v Boolean Operators (ALL are BINARY operators EXCEPT !)

(aka “Logical Operators”)

&& AND
|| OR
! NOT (a UNARY operator)

v true false are Java reserved words

v Can string many boolean expressions together

e.g. (true && true || true && false)

Boolean Expressions and Variables...continued

v Short Circuit Evaluation of Boolean Expressions:

• For the OR operator ||, if the left operand is evaluated to true, then
the right operand will not be evaluated (the result will be true
regardless of the right operand)

(true || false)

• For the AND operator &&, if the left operand is evaluated to false,
then the right operand will not be evaluated (the result will be false
regardless of the right operand)

(false && true)

• What would happen if the short-circuit evaluation is not done for the
following expression?

 z == 0 || x / z > 20

v Ranges
 In Math, ranges are expressed by: (0 < x <= 100)

 In Java, ranges are are expressed by: (0 < x && x <= 100)

v Arithmetic Expressions can be intermixed with boolean expressions

 e.g. (x + y == y + x)

v Boolean Expressions as “flags”

 e.g. boolean secondsToZero = false;
 if (seconds == 0) {
 secondsToZero = true;
 }

Using Logical Operators

More accurate searches on the web are done using logical operators. For
each search request below, figure our which documents (A-H) would be
found.

A passing a camel through the eye of a needle
B passing a camel through the hand of a goalie
C passing a ball into the eye of a goalie
D passing a ball into the hand of a needle
E kicking a camel through the eye of a goalie
F kicking a camel through the hand of a needle
G kicking a ball into the eye of a needle
H kicking a ball into the hand of a goalie

1 eye && ball
2 passing || kicking
3 !hand
4 passing && camel && eye && needle
5 kicking || ball || hand || goalie
6 !(!(!(!camel)))
7 kicking && (eye || ball)
8 kicking && ball || hand && goalie
9 !needle && !passing
10 !(camel || goalie)
11 camel && ball || eye && hand || passing &&

goalie
12 kicking && !needle || !(camel || !eye)

If Statements

v Syntax: if (condition) {
 < then block >
 }
 else {
 < else block >
 }

if & else are Java reserved words

(condition): some boolean expression (i.e., an expression that

evaluates to either true or false)

< then block >: 0, 1, or more Java statements
< else block >: 0, 1, or more Java statements

The else and < else block > are optional!

 if (condition) {
 < then block >
 }

Using curly braces {} is optional if only one statement is contained
within the block. However, one should ALWAYS use curly braces
regardless of the number of statements contained within the block.

To “do nothing”: if (condition) {
 /* DO NOTHING */
 }
 else {
 // DO NOTHING
 }

If Statements...continued

v Nested if...else

if (condition) {
 if (condition) {
 < then block >
 }
 else {
 if (condition) {
 < then block >
 }
 < other else block statements >
 }
else {
 < then block >
}

NOTE:

• For every else, there must be a corresponding if
• Every else is matched to the closest previously unmatched if

at the same level of nesting.

v Indenting “else if”

 Instead of: Use:

 if (condition) if (condition)
 else else if (condition)
 if (condition) else if (condition)
 else else if (condition)
 if (condition) else
 else
 if (condition)
 else
import javabook.*;

class NestedIfElse {

 public static void main (String args []) {

 MainWindow mw = new MainWindow ();
 InputBox inBox = new InputBox (mw);
 OutputBox outBox = new OutputBox (mw);
 mw.show ();
 outBox.show ();

int temp = inBox.getInteger (“Enter the
temperature in Fahrenheit”);

 if (temp > 32) {
 if (temp > 212) {
 outBox.printLine (“It’s Boiling!”);
 }
 }
 else {
 outBox.printLine (“It’s Freezing”);
 }

 }

}

Using if...else

Given the following:

int year; // an integer > 0
int month; // an integer between 1 and 12
int day; // an integer between 1 and 31

Write a code fragment for each of the following:

1. Determine if it is Halloween (October 31)
2. Determine if it is a summer month (June, July, August, or September)

Write a method named daysInMonth which is passed an integer value
representing the month (i.e., 1-12) and returns the number of days in that
month. You may assume that February has 28 days.

Write a method named rightTriangle that determines whether a Triangle
represents a right triangle. Have this method use the Pythagorean Theorem
(a2 + b2 = c2 where a and b are sides and c is hypotenuse). The method
should be an instance method of the Triangle class. Triangle objects have
three data members, side1, side2, and side3, all of data type double.
The method should return a boolean value of true or false.

Switch Statements

 if...else switch

Syntax:

 switch (< expression >) {
 case < expression value >: < case body >
 case < expression value >: < case body >
 case < expression value >: < case body >
 default: < default body >
 }

switch, case, default, and break are all Java reserved words

<expression>: must evaluate to a byte, short, int or char

(char is a primitive data type referring to one
 character (e.g., char letter = ‘a’;))

< expression value >: must match the type of the evaluation of
the < expression >

< case body >: 0, 1 or more Java statements
 curly braces { } are not used

< default body >: 0, 1 or more Java statements (error messages)
 curly braces { } are not used

optional: executed only if there is no matching case

Switch Statements...continued

v Can have ANY number of cases, but can only have 0 or 1 default

v Each case is skipped until a case matches. Then ALL remaining cases,

including the case “jumped to” are executed.—Fall Through

v To prevent Fall Through, use the Java reserved word ‘break’.

When a break is encountered in a case body, the flow of control is
immediately moved to the end of the switch statement

Example: Menu

 A) Do Homework
 B) Eat A Snack
 C) Go To Bed

char choice = Class.getChoice ();
switch (choice) {

 case ‘A’:
 case ‘a’: doHomework ();
 break;

 case ‘B’:
 case ‘b’: eatASnack ();
 break;

 case ‘C’:
 case ‘c’: goToBed ();
 break;

 default: outBox.printLine (“Wrong Choice!”);
 System.exit (1);
}

class ListBox

v Defined as an instantiable class in the javabook package

v Objects of the class provide a list of items that the user can select which
gives control of input to programmer, not user. This is considered a better
interface.

v Requires an owner frame window (like a MainWindow object)

v Can be used effectively with switch statements

v Example Code:

MainWindow mw = new MainWindow ();
ListBox list = new ListBox (mw);

list.addItem (“Do Homework”);
list.addItem (“Eat A Snack”);
list.addItem (“Go To Bed”);

int choice = list.getSelectedIndex ();

switch (choice) {

 case CANCEL:
 case NO_SELECTION: /* DO NOTHING */ break;

 case 0: doHomework ();
 break;

 case 1: eatASnack ();
 break;

 case 2: goToBed ();
 break;

 default: /* ERROR if default reached */
 System.exit (1);
}

Additional Operators

v Increment ++ /Decrement --

Adds or Subtracts 1 from a variable

Unary operators

Syntax: PREFIX: ++< variable >

 increments variable FIRST

POSTFIX: < variable >++
variable retains value (for the expression)
and then is incremented

NOTES: Once incremented, the variable retains the new value
 Rather than use x = x + 1; use x++;

Example:

 int x = 0; OUTPUT
 outBox.printLine (x++);
 outBox.printLine (++x);
 outBox.printLine (x);

Other “increment/decrement” operators (these are binary):

Operator Example Usage Equivalent To:
+= x += y; x = x + y;
-+ x -= y; x = x – y;
*= x *= y; x = x * y;
/= x /= y; x = x / y;
%= x %= y; x = x % y;

